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Massless field perturbations and gravitomagnetism in the Kerr-Taub-NUT spacetime
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A single master equation is given describing spia2 test fields that are gauge- and tetrad-invariant
perturbations of the Kerr-Taub-NU{Newman-Unti-Tamburinpspacetime representing a source with a mass
M, gravitomagnetic monopole moment¢, and gravitomagnetic dipole mome@ingular momentujrper unit
massa. This equation can be separated into its radial and angular parts. The behavior of the radial functions at
infinity and near the horizon is studied and used to examine the influende aof the phenomenon of
superradiance, while the angular equation leads to spin-weighted spheroidal harmonic solutions generalizing
those of the Kerr spacetime. Finally, the coupling between the spin of the perturbing field and the gravitomag-
netic monopole moment is discussed.
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I. INTRODUCTION The Kerr-Taub-NUT spacetime and its special cases all
belong to the larger class of stationary axisymmetric tipe
The Kerr-Taub-NUT(Newman-Unti-Tamburinp (KTN) vacuum solutions of the Einstein equations found by Carter
spacetimd 1], first discovered by Demiaki and Newman [7] for which the Hamilton-Jacobi equation for geodesics is
[2] and later studied by many othefsee[3] for references separable. The stability of these spacetimes is probed by
and a global analysisdescribes a stationary axisymmetric studying their perturbations by fields of various spin. Pertur-
object with gravitomagnetic monopole and dipole momentsations by massless fields have been investigated in the two
associated with nonzero values of the NUT and Kerr paramlimiting cases of the Kerr spacetin{pure gravitomagnetic
eters¢ anda, respectively, and as such is a useful model fordipole) [8] and the Taub-NUT spacetim@ure gravitomag-
exploring gravitomagnetism. The well-known Dirac quanti- netic monopolg [9] in a single unifying approach making
zation of the magnetic monopole corresponds in the gravitouse of the de Rham Laplacian which allows all fields of spin
magnetic case to a condition first found by Misfi¢s5] for 0 through 2 to be considered together. In this article, the
the nonrotating special case of the Taub-NUT spacefBhie same analysis is applied to the Kerr-Taub-NUT spacetime.
(zero Kerr parametgtthat is consistent with forcing period- Motivated by scattering off virtual black holes, Prestidge
icity in the time coordinate, making the gravitomagnetic[10] has performed this analysis for all spins except 3/2 for
monopole Taub-NUT spacetime unphysiaaider normal the vacuumC metric, another vacuum typ@ metric repre-
circumstancedy having closed timelike lines, but nonethe- senting a pair of uniformly accelerated gravitoelectric mono-
less interesting as a laboratory for probing other consepoles.
quences of gravitomagnetic monopoles. As discussed by This approach to perturbations builds on the pioneering
Miller [3], this same global structure is also consistent withwork of Teukolsky [11,12], done in the context of the
the more general Kerr-Taub-NUT spacetime, which is theNewman-Penrose formalismil3,14), which partially re-
rotating version of this simpler spacetime, its rotation beingceived its mathematical foundation from Stewart and Walker
associated with the nonzero gravitomagnetic dipole momen{15] and was subject to some extensions by other authors
[16,17. Teukolsky found a separable master equation whose
eigenfunction solutions essentially solve the problem of the
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noted by Ryarj18]. Here we introduce a master equation for  ,— _(r—j¢—jacosg) !, B=—p* cotd /(22),
the Kerr-Taub-NUT spacetime whose symmetries allow the (5)
separation of the equation into radial and angular parts, gen-

eralizing some previous results valid for the Kerr and Taub-  u=p2p*A/2, w=iap?sind /12,

NUT spacetimes, and use it to study the question of super-

radiant scattering modes. a=m—B*, rt=—iapp*sing /2,
IIl. THE KERR-TAUB-NUT METRIC y=ptpp*(r—M)/2.
The metric of the Kerr-Taub-NUT spacetirf@] in Boyer- A master equation for the gauge- and tetrad-invariant
Lindquist-like coordinatesx’=t,x'=r,x?= 6,x°= ¢) is first-order massless perturbations of any spin in this back-

ground can be given starting from the following Newman-
1 2 Penrose relations for any vacuum type geometry (here
dSZ:g(A—aZ sinff)dt*— g[AA—a(EJFaA)SinZ@]dtd(ﬁ considered with no back reactipfl1]:

{{[D—p*+e€*+e—2s(p+te)|[(A+u—2sy)

1 3
[ 2 o _ A2 2_ " AHr2_ 2
sL(E+aA)?sif—A’Aldg?~ Tdri—3de? [ 64 7 — a* + B—25(1+ B)](8* + m—25a)

1) —2(s—1)(s—1/2) ¢, ¥ =0 (6)
HereX, A, andA are defined by for spin weightss=1/2,1,2 and
S =r2+(¢£+acosh)?, A=r2—2Mr—¢2+a? {LA=y*+u*—y—=2s(y+u)|(D—p—2s¢)
[ -7 +p*—a—2s(a+ 6—71-2
A=asir?§—2¢ cosé. 2 ] pr-am2slarm](o=r=25)
—2(s+1)(s+1/2) ¢} ¥ =0 (7)

Units are chosen such th&=c=1, so that M,a,¢) all ] ]
have the same dimension of length. The source of the gravfor s=—1/2,—1,—2. The case=*3/2 can be derived in-
tational field has masl, angular momentund=Ma (i.e., Stead by following the work of Guen [20], which is ex-

gravitomagnetic dipole momenalong thez direction, and  Pressed in the alternative Geroch-Held-Penrose formalism
gravitomagnetic monopole moment¢. [17]. Finally, the cases=0 is given by

The two solutions .. =M = M?—a?+ ¢? of the equation [DA+AD— & 8— 86* +(— y— ¥y* + u+u*)D
A =0 define the radii of the inner () and outer ) hori-
zons whena?<M?2+ ¢2. Our attention will be confined to +(et e —p*—p)A+(—B*—m+a+1")d

the region outside the outer horizore=r . . Adopting the N . B
Misner periodicity condition discussed by MilldB], the H(—mt - prat)& P =0. ®)
time coordinate is assumed to be periodic with peried8  Note that only in these NP equations has the standard nota-
while the angular coordinates have their usual rangesé0 tjon for the directional derivative® =1%3,, A=n*q,, and

=7, Os¢<2m. _ . 8=m*3, been used, and the second of these should not be
The metric is of Petrov typ® and a Kinnersley-like null - confysed with the equally standard notation for the metric
frame[19] quantityA=r?—2Mr —¢2+a? used everywhere else in this
article.
| = %[(EﬂLaA)aﬁA&ﬁa%]' A_s in the case _of the Kerr spacetime@], represent_ing a
gravitomagnetic dipole, and the Taub-NUT spacetif@ig

representing a gravitomagnetic monopole, all these equations
1 for distinct spin weights can be cast into a single compact
n=s5[(Z+af)d—Ad+adyl, form in the Kerr-Taub-NUT spacetime as well, by introduc-
ing a “connection vector” with components

. 1 L[ (M+1)a2+(M—3r)¢2+r2(r—3M)
J2(€—ir +acosé) =5 A
X[Acschdi—idy+cschd,] (3 +_2€+asin200030
| 1
can be introduced to define Newman-Penr@sf) quanti- Sha)
ties. The only nonvanishing Weyl scalar is
b= (M=i0)p° (4 F=-g (r=M),
and the only nonvanishing spin coefficients are I’=o,
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TABLE I. The spin weights and the physical field component with
V¥ for the master equation.

V(rag(r) =S(s+ 1)+ Q+ w?(r?+2Mr +7¢?)
S 0 12 -1/2 1 -1 32 =32 2 -2

_ 272
Y O xo p'x1 b0 p b2 Qo p Q5 o p I [am 2a)(AMr+€ )] +2is| w(r—M)
_ 2_ 24 p2
1[a(r—M) coso +am(r M)+2w[Ma“—r(M<+¢€°)]
ré=—-< +i— 9 A ’
X A sirfo
(14
satisfying
2 where () is the separation constant. Clearly, the solution
1 cot' h i ' i i
VAT =— = A= Ly, (10) R(r) of this equation depgnds on the value_ of the spin welgh't
H S, D> s, so when convenient this dependence will be made explicit
using the notatioiR(r)=R,(r). The radial potential can also
The resulting master equation has the form be given a more compact form

[(VA+STH)(V,+ST ) —482,] ¥ =0, 4P
V(ra(1) = a2w?— A+ 0?P?+ 2isw A 3 @9

1 3
S: ,i_,i ’i_’i 1
043, +1,55,%2 (11)
where A=—Q+a%w?—s(s+1)—4w?(?>—2wam and P

where ¢, is the Kerr-Taub-NUT background Weyl scalar =[r2+a2_+€2—am/cf)]/\/K. _ _
given by Eq.(4). This master equation characterizes the Eduation (13) will be studied on the intervalr
common behavior of all these massless fields in this back€ (f+,%), where the metric and the chosen tet(&l are
ground differing only in the value of the spin-weight param-We” behaved, _closely foIIOW|_ng the usual treatment of_ bla_ck
eters. In fact, the first term on its left-hand side representshole perturbations thgt motivates the present investigation.
(formally) a d’Alembertian, corrected by taking the spin Qf course, our analysis can be extgnded to the w_hole space-
weight into account, and the second term i@\eyl) curva- time, but this would require mtroducmg new coordmates and
ture term also linked to the spin weight value. Table | showdetrads and would further complicate the discussion.
the various Newman-Penrose quantities for which the master BY introducing the scaling
equation holds following the standard notat{dd], where in o o o 1k —g2 .
the spin-2 case, and, refer to the perturbed Weyl scalars. R(r)=(re+a®+€9) A H(r)=Qs " H(r) (16)

The standard notation of the Newman-Penrose formalism ) ) )
that is employed here will be confined to this section. Soménd the “tortoise” coordinate transformation-r, , where
of the symbols of this formalism will be used to designate
different physical quantities in what follows. For exampte, dr _ A
and y, used above in Eqg3) and (5), will denote, respec- dr, (24242’ (17
tively, an angular momentum parameter and the Lorentz

gamma factor in the rest of this paper. the radial equation can be transformed into the one-
dimensional Schidinger-like equation

Ill. SOLUTION OF THE MASTER EQUATION

Remarkably, the master equati¢hl) admits separable d—zH(r)+VH(r)=0 (18)
solutions of the form dr2
w(tr,0,¢)=e " "eMR(NY(0), (12) with the potential
where w>0 is the wave frequency ana is the azimuthal ) ]
separation constariand eigenvalue of the usual angular mo- ¢, K ., 4G 2iKs(r—-M)
mentum operator associated with the axial symme®jnce (r2+a2+¢2)2 dry  (r24+a2+¢?)?2

the ¢ coordinate has period72, m must be an integer in
order for these solutions to be smooth. Assuming the Misner
condition that the coordinate be periodic with period& ,
one is similarly led to the “quantization condition” thatw¥
also be an integd9].

+m[—7\+4iwr5], (19

The radial equation is then where
d dR(r) s(r—m) ra d
—s__ | AsT1 = G= + =—InQs (20
A dr(A dr +V(rad)(r)R(r) 0 (13) (r2+a2+€2) (r2+a2+€2)2 dr* S ( )

084013-3



BINI et al. PHYSICAL REVIEW D 67, 084013 (2003

andK =(r?+a+ ¢?)w—am have been introduced in anal- D~ Ae 1ot ¢ ARe Tet-ry) (25)
ogy with Teukolsky’s treatment of the perturbations of the
exterior Kerr spacetime. It is useful to rewrite this potentialwhere A is the amplitude of the incident wave amis the

in the following more compact form: reflection amplitude, while for, — —< one has
_ G D~ ATe N, (26)
V=-— Qs _2Qs
dri where 7 is the transmission amplitude, and the angular
[K2=2iKs(r—M)+A(—\+4iwrs)] coordinates in® are suppressed. The potenfialis real in
+ 2 2. 22 (21)  this case §=0); therefore, it follows from flux conservation
(re+as+€9) that
The asymptotic form of the radial equationas e (r, K
— ) is |R|2+Z|T|2=1. (27
2 .
—H(N)+| w2+ %)H(r)zo' 220 If Klw<0, then|R|>1 and so one has superradiance. The
dr? r superradiance condition

which has asymptotic solution$d ~r*Se*i®’x je., R k=w—mw,<0 (28
~e 9% /r and R~e'“'+/r?s*1 (in accordance with the _
peeling theoreni13,21]), and in this regime the effect df thus depends on the value, of the effective angular veloc-

appears negligible. On the other hand, close to the horizolty of the horizon. For any frequency>0, this condition
r—r, (r,——), the asymptotic form of the radial equa- can be satisfied for large enough values of the azimuthal

tion becomes separation constamh of the same sign a®, anda, i.e.,
when the angular momentum of the wave is in the same
2 sense as the angular velocity of the horizon. It follows from
—2H(r)+(k—ib+)2H(r)=O, (23 Eq. (24) that, for fixeda=J/M, r increases and hence,
dri decreases i or |¢| is increased. Thus, for a spherical sys-

tem wherea=0 implies w, =0, there is no superradiance,
and in the KTN case whera# 0, this phenomenon can also
be suppressed by increasiyand/or|¢| such thatw, be-
_ a _ a (24y ~ comes so small that, for fixed andm, the quantityk be-
* r2++a2+ €2 2(Mr,+¢?) comes positive. In fact, superradiance can be suppressed in-
dependently of the values dil and J by making |¢|
is the “effective angular velocity” of the horizon. The sufficiently large. Note that the transmitted wave in E2f)
asymptotic solutions ard ~e*!(k=ib:)rs A *si2grikry o~ moves toward the horizon fd/w>0, but reverses direction
R~e*"+ andR~A e X"+, Only one of these two behav- in the case of superradiance wikiio<0; moreover, total
iors for R is correct in the sense that it implies regularity of reflection occurs in the exceptional case thab=0.
the fields on the horizon=r as stated by Teukolsky. The ~ When the spin weighs is an integer, we would expect
asymptotic boundary conditions on the horizon are a delicatéhat there would still be superradiance because infthed
problem because both the coordinates and the tetrad beitighit one obtains the Kerr case, which is well known to ex-
used in this discussion are singular there, but it was solvebibit this phenomenon for integer spin fields. In the case of
by Teukolsky in the Kerr case by picking out the secondhalf-integer spin fields, the Kerr case does not exhibit super-
solution as having the correct behavior in that limit, whichradiance, but when¢#0 this effect could in principle
must therefore also be the correct choice in the present moghange, so the question must be reexamined, which we do
general case. This result follows from the requirement ofhere using a field theoretic approgd#,20,23. In fact, one
causality that at the horizon we must choose the boundargondition for having superradiance is that the flux of par-
condition that the wave is always ingoing. ticles across thénull) horizon in the forward time direction
An immediate consequence of the behavior of the solutiope negative:
at the horizon and at spatial infinity is that there are superra-
diant scattered modes as in the Kerr cfkk 22, but now (€u3f)lr=r, <O, (29
influenced by the nonzero value of the parameterFor
superradiant modes, reflected waves carry away more energyhere é=d;+ w  d, is the future-directednull) normal to
than the incident waves bring in, with the rotation of thethe horizon andf is the conserved particle number current
black hole supplying the extra energy. vector associated with the various fields of spsh This
To understand how this comes about, consider firststhe condition corresponds to a positive flux out of the horizon.
=0 case and imagine a solution of Ef8) corresponding to Alternatively, one may consider the ratelN/dt);, at
the reflection and transmission of a radially incident wave ofwhich particles are falling in through the horizon per unit
frequencyw>0. Forr —o one has time, which must be negative for superradiance to occur:

whereb, =3s(r, —M)/(Mr,+¢?), k=0—me_., and

w
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dN Since the spinor formalism can be immediately converted
E) = —J V—gJjydad$<0, (300 into the Newman-Penrose language, the neutrino current can
in f+ also be expressed as

whereg is the determinant of the spacetime metric. The Ap- Jl/2M22[|P«|Xl|2+n#|XO|2_mM(XlXB‘)_ mM*“(xox)1.
pendix shows how this integral relation follows from inte-

grating the particle flux over a suitable region of the space- (39
time. In this case [s|=1/2) the condition for superradiance is
For the scalar field case one has never satisfied. In fact, following Gen[20] and using the

relations
Jo,=1h(P*V,d-PV, d*), (31 L
so that | Xol*=IRu21)?Y, |X1|2:§|R—1/2(r)|2Y2—1/2
(40)
(€,96) ] =r, =20K[APITI?|Y(0)|?, (32

in Egs.(39) and (30), one finds

which is negative whelk=w—mw , <0, corresponding to
superradiance. Analogously, evaluating the number of par- (H

’ . : < : =[A[RyANP=2[R_y )]l =r, - (4D)
ticles entering the horizon per unit time gives

in

a Next, using our previous results for the behaviorRy{r)
2|72 :
d_) =2hk— | A% 7%, (33 near the horizon,
t in @+
L . i 2 |cyd® 2 2
which is negative under the same condition. Note that the |RyAr)]*~ A IR_1r)[*~[c-1d°A (42
angular party(6) of the scalar field, which can be taken to
be real, has been normalized by with c..,,, constants, one finds the final result
m 1 dN
2 H - _ 2
fo Y4(6)sing do o (39 (—dt)m—|cl,2| >0, (43

In fact, sinceA =0 on the horizon, the surface element for awhich means that there is no superradiance in this case.
sphere with the horizon radius is jusE{kaA)|,:r+d 0do, In the Rarita-Schwinger casg¢s{=23/2), the field is de-
where (2+aA)|,:r+:ri+a2+€2=a/w+ , so the integral scr@beq by the Majorana sp_irjor—valued one-folrf [24,25
of (32) over the horizon area produces exactly E3§). satisfying the further condition§,¥*=0 and y,¥*=0,
In contrast with the case of bosons, fermions do not exfind the current is
hibit superradiance, mirroring exactly the corresponding be- —

havior in the Kerr spacetime. For thg = 1/2 case, the neu- Jg' =Wy Ve (44)

trino particle number current is We expect that a calculation similar to that valid for the

— neutrino field would show that
Ju =V Yy, (35

—

where y* are the(coordinate Dirac matrices. Passing to the euVar"¥ |’:'+>O’ (45)

more standard spinor formalis(eee[14] p. 539 for notation

. . namely, that even in this case there is no superradiance.
and conventions this current becomes

Of course, the study of the equations for the remaining
(gauge- and tetrad-dependemomponents of the various
i Jyf=at ,(PAEB’_‘_QAaB’) (36) fields (i.e., ¢4, 3, etc) and of theorems analogous to those
J2 AB found by Wald[22], Fackerell and Ipsef26], and Gen

[20] for the Kerr case requires some extensions here. For the
with Q= —P” andQ*' = —P* and Kerr spacetime these theorems essentially state that the mas-
ter equation is enough to describe all of the relevant physics
1 /1% m+ of the fields considered in the exterior spacetime.
UABr“=—( ) (37 In the Kerr-Taub-NUT case the master equation com-
V2 pletely describes the scalas£0) and neutrino = +1/2)
fields over all of the spacetime outside the horizon. For
In particular, one finds higher spin fields of course the master equation describes
only the highest and lowest spin-weighted components, as
. specified in Table I. However, because of the “peeling theo-
(38 rem” [13,27], this equation is sufficient to understand the

m#  nk

PO:_X17 Pl:XO= E __X?I_(1 E _Xg
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relevant physics of the fields of any spin considered at spatiahay be replaced by an equivalent material medium, the
infinity, in the sense that other spin-weighted componentgroblem reduces to Maxwell’s equations in a certain gyrotro-
become negligible. Close to the horizon, one has instead onlgic medium in a global inertial frame with Cartesian coordi-
a subset of perturbations under control, namely, those indirates {,x,y,z). In this section only we employ the other
cated in Table I. metric signature—+ + +, which is more standard for the
To complete our analysis of the perturbations on the Kerrfollowing considerations. To simplify matters we assume that
Taub-NUT spacetime, we need to discuss the angular equéie electromagnetic waves have a time dependence of the
tion form e~ ', moreover, we linearize the KTN metric. With
these simplifications, the wave equation becomes

1 d/  dY(9)
sing d_g(sme—da FVang( 0)Y(6)=0,  (46) [P+ 2% wA o] X W= = Fifi o W, (51)
where whereP=—iAV, W*=E=*iH,
(s+2¢w)2mcosh+ (s+2¢ )+ m? IXp ZXp
Viang(0) = — Q— Ag=—o + , (52
(ang)( ) sir2o (9) |p|3 x2+y2

+a’w?cosh+2aw(—s+2¢w)cosd.  (47)  andN=1+2M/|p] is the index of refraction of the medium.
Here E andH are complex fields anfp|= Jx>+y?+2? is

the isotropic radial coordinate in the linearized KTN space-
time. FurthermoreW " represents the positive helicity wave
‘amplitude andV ~ represents the negative helicity wave am-
plitude. It is a general result that helicity is conserved in pure
gravitational scattering. A more detailed treatment is avail-

This equation generalizes the spin-weighted spheroidal ha
monics of Teukolsky11,28,29. Here, instead of the param-

etersin the spin-weighted spheroidal harmonics, the combi
nationss+ 2€ w and — s+ 2¢ w appear. In fact, introducing a

new variablex=1+ cosé and the rescaling

Y:X\m—s—2w€|/2(2_X)\m+s+2w€|/2x(x)' (48) able elsewheré34]. . . .
As stated above, a satisfactory interpretation of the KTN
one gets spacetime requires that the time coordindte periodic with
period 87¢. Thus a propagating wave with a time depen-
X(X=2)X"+ (B1x+Bg) X' +(Cox?+ Cyx+ Co) X=0, dence of the forme™'“! is possible only when é¢ is an

(49) integer. Equation51) can be expressed in the Dirac form
and then interpreted as the wave equation for a particle of
inertial mass my=fw and gravitomagnetic charge

Bo=—2(|m—s—2wt|+1), =—2hw p_ropagating in a gravitomagnetic fiel®

=V XAq given by

where

Bi=2+|m—s—2wf|+|m+s+2w{|, R
J Aaaoa [

1 Big=—[3(p-)p-31-—. (53)

Co=35 [MP+(s+200)+|m’~ (s+2w()? |pl |pl

Restricting our attention now to the motion in a purely

M+ (s+2w6)[+[m=(s+2wl)[] monopole fieldi.e.,J=0) of strengthu,= — ¢, we note that

+Q—-awlaw+2(s—2wl)], the classicalequation of motion would be
C,=2aw(aw+s—2wl), . pXV
! ( p:%MoWa (54)

C,=—a’w? (50)
wherep=mgyv is the kinetic momentum. It is well known
ethat this equation has a constant of the motion givenfy
=pXp—Qomop. Which can be interpreted as implying that

which is a generalized spheroidal wave equation of th
Leaver form[30].

IV. GRAVITOMAGNETISM the orbital angular momentum of the particle is augm?nted,
through its interaction with the monopole, I8/=—qouep
We note that these results contain the combinatitiss = 2% € p. Note that the magnitude of this vect®r=|S'| is

+2w{, so that, in a certain sense, the spin is coupled to tha positive integer multiple of/2, since 4v€ is an integer.

gravitomagnetic monopole moment; far=0 only the com-  The intrinsic rotational symmetry of the monopole thus leads

binations+ 2w? is involved. This is a novel manifestation of to a conservation law for the total angular momentum of the

the spin-gravity coupling31,32. particle 7 that consists of an orbital part plus a contribution
To interpret this coupling let us start with the propagationfrom the angular momentum of the total fidlgenerated by

of test electromagnetic fields in the KTN spacetime. Usingthe monopole and the partiglithat is acquired by the particle

the Skrotskii formalisni33], in which the gravitational field through its interaction with the monopole. That this mechani-
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cal result extends to the wave treatment of the scatteringertaining to axisymmetric deformations of a rotating source
problem has been demonstrated by a number of authors {i88]. The periodicity of the time coordinate in the Taub-NUT
the case of magnetic monopolese, e.g.[35,36)). spacetime renders such sources, if they exist at all, rather
Note that the canonical momentum in the present casexotic astrophysical systems. Normal astronomical systems
would be P=p+qoAg=p—2hwA . The total angular do not exhibit such periodicity; therefore, the temporal peri-
momentum for a spinning quantum particle turns out to be odicity may be associated with Hubble-scale struct{isB&
or compact dark-matter candidatg40]; in these connec-
T=pX[P+2hiwAgy]+S+S =L+L'+S+S, (55 tions, lensing properties of Taub-NUT spacetime have been
studied in detai[39,4( and compared in the latter case with
wherelL = pX P (satisfying[L;,L;]=i% €Ly is the orbital ast;\onomlcsl_ obser\éatlor:[QO]. . indi i
par, S is the spin  part, L'=2hwpxA, ~ Aremarkis in order here concerning an indirect applica-
N o ] 9) tion of Kerr-Taub-NUT spacetime to rotating relativistic
=—2hwl cotd 0, and T (satisfying[ 7, J|]=i% € Ji) IS disks, which are of great interest in astrophysics. The KTN
the generator of spatial rotations. Heuristically, one may sagnacetime can be employed to generate exact solutions of the
that the spinning particle, in its interaction with the mono- Ejnstein-Maxwell equations corresponding to stationary axi-
pole, picks up an additional spin contributi®=2Aw{p,  ally symmetric disklike configurations of matter with a mag-
such that the net effective spin of the particle along anynetic field[41,42.
radial direction(like the z axis—taken to be the axis of The Taub-NUT spacetime has had significant applications

quantization—would beS+S', ...,—S+S'. The general in theoretical studies of the spacetime structure in general
situation is, however, not so straightforward singe=L relativity and, more recently, in quantum gravity. Its Euclid-
+L'+S+S and we note that ean extension is important for the study of monopoles in
gauge theories. Embedding the Taub-NUT gravitational in-

[Li+L{ Lj+L]1=if €Lyt L+ S)). (560  Stanton into five-dimensional Kaluza-Klein theory leads to a

Kaluza-Klein monopole [43—45. Euclidean Taub-NUT
Thus th i  the total | BBy int spaces have been discussed by a number of authors in con-
us the separation of the total angular momen(&i into nection with monopoles in supersymmetric gauge theories

orbital and spin parts is not quite obvious in this case. Nev[4 47). Further generalizations and extensions of Taub-NUT
ertheless, since the master equation describes the behavior a{ces(such as the Kerr-Newman-Taub-NUT-AdS spaces

the highest and the lowest spin-weighted amplltu_des, it %re topics of current research in string thep4g—50.
natural to expect that the angular part of the equation woul

only contain the spin-weight combinatioss-2w{ and —s
+2wl. APPENDIX: INTEGRAL FORM OF THE PARTICLE
NUMBER CURRENT CONSERVATION LAW

V. DISCUSSION This article has dealt exclusively with the exterior KTN
spacetime. Therefore, in the determination of the number of
A master equation for the gauge- and tetrad-invarianparticles falling in through itg horizon per unit _time, one
first-order massless perturbations of any sgi2 on the Nneeds to apply the conservation law for the particle number
Kerr-Taub-NUT background spacetime has been obtainefurrent only in the exterior region. To this end, consider the
and separated. We have studied superradiance in this ca%@lume enclosed by two “spheres” of time-independent radii
and have shown that the situation is very similar to the Ker' + <Ri<R,. Equation(30) can be derived easily from the
spacetime; in particular, we have demonstrated the absenédegral of the particle number conservation equation
of superradiance for half-integer spin perturbations. Further-
more, the interaction of the perturbing field with the gravito- _
magnetic monopole contributes a certain half-integer spin 0= V—083%,=d,(V=93% = (\=g3) + (/= gJ)
component to the angular momentum that combines with the (AL)
spin of the field; this novel form of spin-gravity coupling has
been briefly discussed here. This investigation offers the posver the regionV within a time coordinate hypersurface
sibility of achieving a better understanding of perturbationsbounded by these two spheres, and then using Gauss’s law to
of black hole spacetimes within this larger family. That is, convert the second term to a surface integral over the bound-
one can in principle extend the methods developd@tito  ary
discuss various aspects of scattering of radiation from the
Kerr-Taub-NUT spacetime such as the polarization proper- g g
ties of the scattered radiation, glory effects and quasinormal dNy B ;
mode oscillations. These may then be used to search for gt ﬁjv‘/__g‘]tdrded‘f’__fv‘?i(‘/__g‘]l)drded‘b
rotating gravitomagnetic monopoles.
The source of the Taub-NUT solution is a gravitational

dyon (with gravitoelectromagnetic monopoles and —¢). __ f [ZaJdodd+ f [“aJded
The Taub-NUT solution can be extended to include a cosmo- r=R, g ¢ r=R; g ¢-
logical constanf2] or an infinite set of multipole moments (A2)

084013-7



BINI et al. PHYSICAL REVIEW D 67, 084013 (2003

This gives the rate of change of the numbgy of particles
in this region in terms of the flux entering the outer sphere
and exiting the inner sphere.

When the integration domain is replaced by the region
enclosed between the horizon and a large sphere at infinity,
one may compute the rate at which particles are leaving thiszhen sign-reversed, gives the rate at which particles are en-
region through the horizon alone. The contribution from thetering the horizon, leading to Eq30). This sign-reversed

dN
f \/—gJ’d6d¢=d—t\/+f J=gJdede,
r=r, r=o

(A3)

horizon, i.e.,

quantity must be negative for superradiance to occur.
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