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Massless field perturbations and gravitomagnetism in the Kerr-Taub-NUT spacetime
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A single master equation is given describing spins<2 test fields that are gauge- and tetrad-invariant
perturbations of the Kerr-Taub-NUT~Newman-Unti-Tamburino! spacetime representing a source with a mass
M, gravitomagnetic monopole moment2,, and gravitomagnetic dipole moment~angular momentum! per unit
massa. This equation can be separated into its radial and angular parts. The behavior of the radial functions at
infinity and near the horizon is studied and used to examine the influence of, on the phenomenon of
superradiance, while the angular equation leads to spin-weighted spheroidal harmonic solutions generalizing
those of the Kerr spacetime. Finally, the coupling between the spin of the perturbing field and the gravitomag-
netic monopole moment is discussed.
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I. INTRODUCTION

The Kerr-Taub-NUT~Newman-Unti-Tamburino! ~KTN!
spacetime@1#, first discovered by Demian´ski and Newman
@2# and later studied by many others~see@3# for references
and a global analysis!, describes a stationary axisymmetr
object with gravitomagnetic monopole and dipole mome
associated with nonzero values of the NUT and Kerr para
eters, anda, respectively, and as such is a useful model
exploring gravitomagnetism. The well-known Dirac quan
zation of the magnetic monopole corresponds in the grav
magnetic case to a condition first found by Misner@4,5# for
the nonrotating special case of the Taub-NUT spacetime@6#
~zero Kerr parameter! that is consistent with forcing period
icity in the time coordinate, making the gravitomagne
monopole Taub-NUT spacetime unphysicalunder normal
circumstancesby having closed timelike lines, but noneth
less interesting as a laboratory for probing other con
quences of gravitomagnetic monopoles. As discussed
Miller @3#, this same global structure is also consistent w
the more general Kerr-Taub-NUT spacetime, which is
rotating version of this simpler spacetime, its rotation be
associated with the nonzero gravitomagnetic dipole mom
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The Kerr-Taub-NUT spacetime and its special cases
belong to the larger class of stationary axisymmetric typeD
vacuum solutions of the Einstein equations found by Ca
@7# for which the Hamilton-Jacobi equation for geodesics
separable. The stability of these spacetimes is probed
studying their perturbations by fields of various spin. Pert
bations by massless fields have been investigated in the
limiting cases of the Kerr spacetime~pure gravitomagnetic
dipole! @8# and the Taub-NUT spacetime~pure gravitomag-
netic monopole! @9# in a single unifying approach makin
use of the de Rham Laplacian which allows all fields of sp
0 through 2 to be considered together. In this article,
same analysis is applied to the Kerr-Taub-NUT spacetim
Motivated by scattering off virtual black holes, Prestid
@10# has performed this analysis for all spins except 3/2
the vacuumC metric, another vacuum typeD metric repre-
senting a pair of uniformly accelerated gravitoelectric mon
poles.

This approach to perturbations builds on the pioneer
work of Teukolsky @11,12#, done in the context of the
Newman-Penrose formalism@13,14#, which partially re-
ceived its mathematical foundation from Stewart and Wal
@15# and was subject to some extensions by other auth
@16,17#. Teukolsky found a separable master equation wh
eigenfunction solutions essentially solve the problem of
massless perturbations of any spin for the Kerr black hole
terms of gauge- and tetrad-invariant quantities. For the sp
black hole case the connection between the master equ
and the de Rham Laplacian of the Riemann tensor was
©2003 The American Physical Society13-1
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noted by Ryan@18#. Here we introduce a master equation f
the Kerr-Taub-NUT spacetime whose symmetries allow
separation of the equation into radial and angular parts, g
eralizing some previous results valid for the Kerr and Ta
NUT spacetimes, and use it to study the question of su
radiant scattering modes.

II. THE KERR-TAUB-NUT METRIC

The metric of the Kerr-Taub-NUT spacetime@3# in Boyer-
Lindquist-like coordinates (x05t,x15r ,x25u,x35f) is

ds25
1

S
~D2a2 sin2u!dt22

2

S
@DA2a~S1aA!sin2u#dtdf

2
1

S
@~S1aA!2 sin2u2A2D#df22

S

D
dr22Sdu2.

~1!

HereS, D, andA are defined by

S5r 21~,1a cosu!2, D5r 222Mr 2,21a2,

A5a sin2u22, cosu. ~2!

Units are chosen such thatG5c51, so that (M ,a,,) all
have the same dimension of length. The source of the gr
tational field has massM, angular momentumJ5Ma ~i.e.,
gravitomagnetic dipole moment! along thez direction, and
gravitomagnetic monopole moment2,.

The two solutionsr 65M6AM22a21,2 of the equation
D50 define the radii of the inner (r 2) and outer (r 1) hori-
zons whena2<M21,2. Our attention will be confined to
the region outside the outer horizon:r>r 1 . Adopting the
Misner periodicity condition discussed by Miller@3#, the
time coordinate is assumed to be periodic with period 8p,,
while the angular coordinates have their usual ranges: 0<u
<p, 0<f,2p.

The metric is of Petrov typeD and a Kinnersley-like null
frame @19#

l 5
1

D
@~S1aA!] t1D] r1a]f#,

n5
1

2S
@~S1aA!] t2D] r1a]f#,

m5
1

A2~,2 ir 1a cosu!

3@A cscu] t2 i ]u1cscu]f# ~3!

can be introduced to define Newman-Penrose~NP! quanti-
ties. The only nonvanishing Weyl scalar is

c25~M2 i , !r3 ~4!

and the only nonvanishing spin coefficients are
08401
e
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-
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r52~r 2 i ,2 ia cosu!21, b52r* cotu /~2A2!,
~5!

m5r2r* D/2, p5 iar2 sinu /A2,

a5p2b* , t52 iarr* sinu /A2,

g5m1rr* ~r 2M !/2.

A master equation for the gauge- and tetrad-invari
first-order massless perturbations of any spin in this ba
ground can be given starting from the following Newma
Penrose relations for any vacuum typeD geometry ~here
considered with no back reaction! @11#:

$@D2r* 1e* 1e22s~r1e!#~D1m22sg!

2@d1p* 2a* 1b22s~t1b!#~d* 1p22sa!

22~s21!~s21/2!c2%C50 ~6!

for spin weightss51/2,1,2 and

$@D2g* 1m* 2g22s~g1m!#~D2r22se!

2@d* 2t* 1b* 2a22s~a1p!#~d2t22sb!

22~s11!~s11/2!c2%C50 ~7!

for s521/2,21,22. The cases563/2 can be derived in-
stead by following the work of Gu¨ven @20#, which is ex-
pressed in the alternative Geroch-Held-Penrose forma
@17#. Finally, the cases50 is given by

@DD1DD2d* d2dd* 1~2g2g* 1m1m* !D

1~e1e* 2r* 2r!D1~2b* 2p1a1t* !d

1~2p* 1t2b1a* !d* #C50. ~8!

Note that only in these NP equations has the standard n
tion for the directional derivativesD5 l m]m , D5nm]m , and
d5mm]m been used, and the second of these should no
confused with the equally standard notation for the me
quantityD5r 222Mr 2,21a2 used everywhere else in thi
article.

As in the case of the Kerr spacetime@8#, representing a
gravitomagnetic dipole, and the Taub-NUT spacetime@9#,
representing a gravitomagnetic monopole, all these equat
for distinct spin weights can be cast into a single comp
form in the Kerr-Taub-NUT spacetime as well, by introdu
ing a ‘‘connection vector’’ with components

G t5
1

S F ~M1r !a21~M23r !,21r 2~r 23M !

D

1 i
2,1a sin2u cosu

sin2u
G ,

G r52
1

S
~r 2M !,

Gu50,
3-2
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Gf52
1

S Fa~r 2M !

D
1 i

cosu

sin2u
G ~9!

satisfying

¹mGm52
1

S
, GmGm5

cot2u

S
14c2 . ~10!

The resulting master equation has the form

@~¹m1sGm!~¹m1sGm!24s2c2#C50,

s50,6
1

2
,61,6

3

2
,62, ~11!

where c2 is the Kerr-Taub-NUT background Weyl scal
given by Eq. ~4!. This master equation characterizes t
common behavior of all these massless fields in this ba
ground differing only in the value of the spin-weight param
eter s. In fact, the first term on its left-hand side represe
~formally! a d’Alembertian, corrected by taking the sp
weight into account, and the second term is a~Weyl! curva-
ture term also linked to the spin weight value. Table I sho
the various Newman-Penrose quantities for which the ma
equation holds following the standard notation@11#, where in
the spin-2 casec0 andc4 refer to the perturbed Weyl scalar

The standard notation of the Newman-Penrose formal
that is employed here will be confined to this section. So
of the symbols of this formalism will be used to designa
different physical quantities in what follows. For example,m
and g, used above in Eqs.~3! and ~5!, will denote, respec-
tively, an angular momentum parameter and the Lore
gamma factor in the rest of this paper.

III. SOLUTION OF THE MASTER EQUATION

Remarkably, the master equation~11! admits separable
solutions of the form

c~ t,r ,u,f!5e2 ivteimfR~r !Y~u!, ~12!

wherev.0 is the wave frequency andm is the azimuthal
separation constant~and eigenvalue of the usual angular m
mentum operator associated with the axial symmetry!. Since
the f coordinate has period 2p, m must be an integer in
order for these solutions to be smooth. Assuming the Mis
condition that thet coordinate be periodic with period 8p,,
one is similarly led to the ‘‘quantization condition’’ that 4v,
also be an integer@9#.

The radial equation is then

D2s
d

dr S Ds11
dR~r !

dr D1V(rad)~r !R~r !50 ~13!

TABLE I. The spin weights and the physical field componen
C for the master equation.

s 0 1/2 21/2 1 21 3/2 23/2 2 22
C F x0 r21x1 f0 r22f2 V0 r23V3 c0 r24c4
08401
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V(rad)~r !5s~s11!1V1v2~r 212Mr 17,2!

1
@am22v~Mr 1,2!#2

D
12isFv~r 2M !

1
am~r 2M !12v@Ma22r ~M21,2!#

D G ,
~14!

where V is the separation constant. Clearly, the soluti
R(r ) of this equation depends on the value of the spin wei
s, so when convenient this dependence will be made exp
using the notationR(r )[Rs(r ). The radial potential can also
be given a more compact form

V(rad)~r !5a2v22l1v2P212isvAD
dP

dr
, ~15!

where l52V1a2v22s(s11)24v2,222vam and P
5@r 21a21,22am/v#/AD.

Equation ~13! will be studied on the intervalr
P(r 1 ,`), where the metric and the chosen tetrad~3! are
well behaved, closely following the usual treatment of bla
hole perturbations that motivates the present investigat
Of course, our analysis can be extended to the whole sp
time, but this would require introducing new coordinates a
tetrads and would further complicate the discussion.

By introducing the scaling

R~r !5~r 21a21,2!21/2D2s/2H~r ![Q s
21 H~r ! ~16!

and the ‘‘tortoise’’ coordinate transformationr→r * , where

dr

dr*
5

D

r 21a21,2
, ~17!

the radial equation can be transformed into the o
dimensional Schro¨dinger-like equation

d2

dr
*
2

H~r !1ṼH~r !50 ~18!

with the potential

Ṽ5F K2

~r 21a21,2!2
2G22

dG

dr*
2

2iKs~r 2M !

~r 21a21,2!2G
1

D

~r 21a21,2!2
@2l14ivrs#, ~19!

where

G5
s~r 2M !

~r 21a21,2!
1

rD

~r 21a21,2!2
5

d

dr*
ln Qs ~20!
3-3



l-
he
ia

izo
-

-
of
e
a
e
ve
nd
ch
o
o
a

tio
rr

e
he

e

o

lar

he

-

thal

me
m

s-
,

o

d in-

t

x-
of
er-

do

ar-

nt

n.

it
:

BINI et al. PHYSICAL REVIEW D 67, 084013 ~2003!
andK5(r 21a21,2)v2am have been introduced in ana
ogy with Teukolsky’s treatment of the perturbations of t
exterior Kerr spacetime. It is useful to rewrite this potent
in the following more compact form:

Ṽ52Q s
21 d2

dr
*
2
Qs

1
@K222iKs~r 2M !1D~2l14ivrs!#

~r 21a21,2!2
. ~21!

The asymptotic form of the radial equation asr→` (r *→`) is

d2

dr
*
2

H~r !1S v21
2ivs

r DH~r !50, ~22!

which has asymptotic solutionsH;r 6se7 ivr
* , i.e., R

;e2 ivr
* /r and R;eivr

* /r 2s11 ~in accordance with the
peeling theorem@13,21#!, and in this regime the effect of,
appears negligible. On the other hand, close to the hor
r→r 1 (r * →2`), the asymptotic form of the radial equa
tion becomes

d2

dr
*
2

H~r !1~k2 ib1!2H~r !50, ~23!

whereb15 1
2 s(r 12M )/(Mr 11,2), k5v2mv1 , and

v15
a

r 1
2 1a21,2

5
a

2~Mr 11,2!
~24!

is the ‘‘effective angular velocity’’ of the horizon. The
asymptotic solutions areH;e6 i (k2 ib1)r

* ;D6s/2e6 ikr
* , i.e.,

R;eikr
* andR;D2se2 ikr

* . Only one of these two behav
iors for R is correct in the sense that it implies regularity
the fields on the horizonr 5r 1 as stated by Teukolsky. Th
asymptotic boundary conditions on the horizon are a delic
problem because both the coordinates and the tetrad b
used in this discussion are singular there, but it was sol
by Teukolsky in the Kerr case by picking out the seco
solution as having the correct behavior in that limit, whi
must therefore also be the correct choice in the present m
general case. This result follows from the requirement
causality that at the horizon we must choose the bound
condition that the wave is always ingoing.

An immediate consequence of the behavior of the solu
at the horizon and at spatial infinity is that there are supe
diant scattered modes as in the Kerr case@11,22#, but now
influenced by the nonzero value of the parameter,. For
superradiant modes, reflected waves carry away more en
than the incident waves bring in, with the rotation of t
black hole supplying the extra energy.

To understand how this comes about, consider first ths
50 case and imagine a solution of Eq.~18! corresponding to
the reflection and transmission of a radially incident wave
frequencyv.0. For r * →` one has
08401
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F;Ae2 iv(t1r
*

)1ARe2 iv(t2r
*

), ~25!

whereA is the amplitude of the incident wave andR is the
reflection amplitude, while forr * →2` one has

F;ATe2 ivt2 ikr
* , ~26!

where T is the transmission amplitude, and the angu
coordinates inF are suppressed. The potentialṼ is real in
this case (s50); therefore, it follows from flux conservation
that

uRu21
k

v
uT u251. ~27!

If k/v,0, thenuRu.1 and so one has superradiance. T
superradiance condition

k5v2mv1,0 ~28!

thus depends on the valuev1 of the effective angular veloc
ity of the horizon. For any frequencyv.0, this condition
can be satisfied for large enough values of the azimu
separation constantm of the same sign asv1 and a, i.e.,
when the angular momentum of the wave is in the sa
sense as the angular velocity of the horizon. It follows fro
Eq. ~24! that, for fixeda5J/M , r 1 increases and hencev1

decreases ifM or u,u is increased. Thus, for a spherical sy
tem wherea50 implies v150, there is no superradiance
and in the KTN case whereaÞ0, this phenomenon can als
be suppressed by increasingM and/oru,u such thatv1 be-
comes so small that, for fixedv and m, the quantityk be-
comes positive. In fact, superradiance can be suppresse
dependently of the values ofM and J by making u,u
sufficiently large. Note that the transmitted wave in Eq.~26!
moves toward the horizon fork/v.0, but reverses direction
in the case of superradiance withk/v,0; moreover, total
reflection occurs in the exceptional case thatk/v50.

When the spin weights is an integer, we would expec
that there would still be superradiance because in the,→0
limit one obtains the Kerr case, which is well known to e
hibit this phenomenon for integer spin fields. In the case
half-integer spin fields, the Kerr case does not exhibit sup
radiance, but when,Þ0 this effect could in principle
change, so the question must be reexamined, which we
here using a field theoretic approach@14,20,23#. In fact, one
condition for having superradiance is that the flux of p
ticles across the~null! horizon in the forward time direction
be negative:

~jmJusu
m !ur 5r 1

,0, ~29!

where j5] t1v1]f is the future-directed~null! normal to
the horizon andJusu

m is the conserved particle number curre
vector associated with the various fields of spinusu. This
condition corresponds to a positive flux out of the horizo

Alternatively, one may consider the rate (dN/dt) in at
which particles are falling in through the horizon per un
time, which must be negative for superradiance to occur
3-4
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S dN

dt D
in

52E
r 1

A2gJusu
r dudf,0, ~30!

whereg is the determinant of the spacetime metric. The A
pendix shows how this integral relation follows from int
grating the particle flux over a suitable region of the spa
time.

For the scalar field case one has

J0 m5 i\~F* ¹mF2F¹mF* !, ~31!

so that

~jmJ0
m!ur 5r 1

52\kuA u2uT u2uY~u!u2, ~32!

which is negative whenk5v2mv1,0, corresponding to
superradiance. Analogously, evaluating the number of p
ticles entering the horizon per unit time gives

S dN

dt D
in

52\k
a

v1
uAu2uT u2, ~33!

which is negative under the same condition. Note that
angular partY(u) of the scalar field, which can be taken
be real, has been normalized by

E
0

p

Y2~u!sinu du5
1

2p
. ~34!

In fact, sinceD50 on the horizon, the surface element for
sphere with the horizon radius is just (S1aA)ur 5r 1

dudf,

where (S1aA)ur 5r 1
5r 1

2 1a21,25a/v1 , so the integral
of ~32! over the horizon area produces exactly Eq.~33!.

In contrast with the case of bosons, fermions do not
hibit superradiance, mirroring exactly the corresponding
havior in the Kerr spacetime. For theusu51/2 case, the neu
trino particle number current is

J1/2
m5C̄gmC, ~35!

wheregm are the~coordinate! Dirac matrices. Passing to th
more standard spinor formalism~see@14# p. 539 for notation
and conventions!, this current becomes

1

A2
J1/2

m5sAB8
m

~PAP̄B81QAQ̄B8! ~36!

with QA52PA andQA852 P̄A8 and

sAB8
m5

1

A2
S l m mm

m̄m nm D . ~37!

In particular, one finds

P052x1 , P15x0 , P̄0852x1* , P̄185x0* .
~38!
08401
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Since the spinor formalism can be immediately conver
into the Newman-Penrose language, the neutrino current
also be expressed as

J1/2
m52@ l mux1u21nmux0u22mm~x1x0* !2m* m~x0x1* !#.

~39!

In this case (usu51/2) the condition for superradiance
never satisfied. In fact, following Gu¨ven @20# and using the
relations

ux0u25uR1/2~r !u2Y1/2
2 , ux1u25

1

S
uR21/2~r !u2Y21/2

2

~40!

in Eqs.~39! and ~30!, one finds

S dN

dt D
in

5@DuR1/2~r !u222uR21/2~r !u2#ur 5r 1
. ~41!

Next, using our previous results for the behavior ofRs(r )
near the horizon,

uR1/2~r !u2;
uc1/2u2

D
, uR21/2~r !u2;uc21/2u2D ~42!

with c61/2 constants, one finds the final result

S dN

dt D
in

5uc1/2u2.0, ~43!

which means that there is no superradiance in this case.
In the Rarita-Schwinger case (usu53/2), the field is de-

scribed by the Majorana spinor-valued one-formCa @24,25#
satisfying the further conditions¹aCa50 and gaCa50,
and the current is

J3/2
m5C̄agmCa. ~44!

We expect that a calculation similar to that valid for th
neutrino field would show that

jmC̄agmCaur 5r 1
.0, ~45!

namely, that even in this case there is no superradiance
Of course, the study of the equations for the remain

~gauge- and tetrad-dependent! components of the variou
fields ~i.e., f1 , c3, etc.! and of theorems analogous to tho
found by Wald @22#, Fackerell and Ipser@26#, and Güven
@20# for the Kerr case requires some extensions here. For
Kerr spacetime these theorems essentially state that the
ter equation is enough to describe all of the relevant phy
of the fields considered in the exterior spacetime.

In the Kerr-Taub-NUT case the master equation co
pletely describes the scalar (s50) and neutrino (s561/2)
fields over all of the spacetime outside the horizon. F
higher spin fields of course the master equation descr
only the highest and lowest spin-weighted components
specified in Table I. However, because of the ‘‘peeling the
rem’’ @13,27#, this equation is sufficient to understand th
3-5
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relevant physics of the fields of any spin considered at spa
infinity, in the sense that other spin-weighted compone
become negligible. Close to the horizon, one has instead
a subset of perturbations under control, namely, those i
cated in Table I.

To complete our analysis of the perturbations on the Ke
Taub-NUT spacetime, we need to discuss the angular e
tion

1

sinu

d

du S sinu
dY~u!

du D1V(ang)~u!Y~u!50, ~46!

where

V(ang)~u!52V2
~s12,v!2m cosu1~s12,v!21m2

sin2u

1a2v2 cos2u12av~2s12,v!cosu. ~47!

This equation generalizes the spin-weighted spheroidal
monics of Teukolsky@11,28,29#. Here, instead of the param
eters in the spin-weighted spheroidal harmonics, the com
nationss12,v and2s12,v appear. In fact, introducing a
new variablex511cosu and the rescaling

Y5xum2s22v,u/2~22x! um1s12v,u/2X~x!, ~48!

one gets

x~x22!X91~B1x1B0!X81~C2x21C1x1C0!X50,
~49!

where

B0522~ um2s22v,u11!,

B1521um2s22v,u1um1s12v,u,

C05
1

2
@m21~s12v, !21um22~s12v, !2u

1um1~s12v, !u1um2~s12v, !u#

1V2av@av12~s22v, !#,

C152av~av1s22v, !,

C252a2v2, ~50!

which is a generalized spheroidal wave equation of
Leaver form@30#.

IV. GRAVITOMAGNETISM

We note that these results contain the combinations6s
12v,, so that, in a certain sense, the spin is coupled to
gravitomagnetic monopole moment; fora50 only the com-
binations12v, is involved. This is a novel manifestation o
the spin-gravity coupling@31,32#.

To interpret this coupling let us start with the propagati
of test electromagnetic fields in the KTN spacetime. Us
the Skrotskii formalism@33#, in which the gravitational field
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g

may be replaced by an equivalent material medium,
problem reduces to Maxwell’s equations in a certain gyrot
pic medium in a global inertial frame with Cartesian coord
nates (t,x,y,z). In this section only we employ the othe
metric signature2111, which is more standard for the
following considerations. To simplify matters we assume t
the electromagnetic waves have a time dependence of
form e2 ivt; moreover, we linearize the KTN metric. Wit
these simplifications, the wave equation becomes

@P12\vA(g)#3W657 i\vN W6, ~51!

whereP52 i\“, W65E6 iH,

A(g)5
J3r

uru3
1,z

ẑ3r̂

x21y2
, ~52!

andN.112M /uru is the index of refraction of the medium
Here E and H are complex fields anduru5Ax21y21z2 is
the isotropic radial coordinate in the linearized KTN spac
time. Furthermore,W1 represents the positive helicity wav
amplitude andW2 represents the negative helicity wave am
plitude. It is a general result that helicity is conserved in pu
gravitational scattering. A more detailed treatment is av
able elsewhere@34#.

As stated above, a satisfactory interpretation of the K
spacetime requires that the time coordinatet be periodic with
period 8p,. Thus a propagating wave with a time depe
dence of the forme2 ivt is possible only when 4v, is an
integer. Equation~51! can be expressed in the Dirac for
and then interpreted as the wave equation for a particle
inertial mass m05\v and gravitomagnetic chargeq0
522\v propagating in a gravitomagnetic fieldB(g)
5“3A(g) given by

B(g)5
J

uru3
@3~ r̂• Ĵ!r̂2 Ĵ#2,

r̂

uru2
. ~53!

Restricting our attention now to the motion in a pure
monopole field~i.e.,J50) of strengthm052,, we note that
the classicalequation of motion would be

ṗ5q0m0

r3v

uru3
, ~54!

wherep5m0gv is the kinetic momentum. It is well known
that this equation has a constant of the motion given byJ
5r3p2q0m0r̂, which can be interpreted as implying th
the orbital angular momentum of the particle is augment
through its interaction with the monopole, byS852q0m0r̂

52\v,r̂. Note that the magnitude of this vectorS85uS8u is
a positive integer multiple of\/2, since 4v, is an integer.
The intrinsic rotational symmetry of the monopole thus lea
to a conservation law for the total angular momentum of
particleJ that consists of an orbital part plus a contributio
from the angular momentum of the total field~generated by
the monopole and the particle! that is acquired by the particle
through its interaction with the monopole. That this mecha
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cal result extends to the wave treatment of the scatte
problem has been demonstrated by a number of autho
the case of magnetic monopoles~see, e.g.,@35,36#!.

Note that the canonical momentum in the present c
would be P5p1q0A(g)5p22\vA(g) . The total angular
momentum for a spinning quantum particle turns out to b

J5r3@P12\vA(g)#1S1S85L1L 81S1S8, ~55!

whereL5r3P ~satisfying@Li ,L j #5 i\e i jkLk) is the orbital
part, S is the spin part, L 852\vr3A(g)

522\v, cotu û, andJ ~satisfying@Ji ,Jj #5 i\e i jkJk) is
the generator of spatial rotations. Heuristically, one may
that the spinning particle, in its interaction with the mon
pole, picks up an additional spin contributionS852\v,r̂,
such that the net effective spin of the particle along a
radial direction~like the z axis!—taken to be the axis o
quantization—would beS1S8, . . . ,2S1S8. The general
situation is, however, not so straightforward sinceJ5L
1L 81S1S8 and we note that

@Li1Li8 ,L j1L j8#5 i\e i jk~Lk1Lk81Sk8!. ~56!

Thus the separation of the total angular momentum~55! into
orbital and spin parts is not quite obvious in this case. N
ertheless, since the master equation describes the behav
the highest and the lowest spin-weighted amplitudes, i
natural to expect that the angular part of the equation wo
only contain the spin-weight combinationss12v, and2s
12v,.

V. DISCUSSION

A master equation for the gauge- and tetrad-invari
first-order massless perturbations of any spins<2 on the
Kerr-Taub-NUT background spacetime has been obtai
and separated. We have studied superradiance in this
and have shown that the situation is very similar to the K
spacetime; in particular, we have demonstrated the abs
of superradiance for half-integer spin perturbations. Furth
more, the interaction of the perturbing field with the gravit
magnetic monopole contributes a certain half-integer s
component to the angular momentum that combines with
spin of the field; this novel form of spin-gravity coupling ha
been briefly discussed here. This investigation offers the p
sibility of achieving a better understanding of perturbatio
of black hole spacetimes within this larger family. That
one can in principle extend the methods developed in@37# to
discuss various aspects of scattering of radiation from
Kerr-Taub-NUT spacetime such as the polarization prop
ties of the scattered radiation, glory effects and quasinor
mode oscillations. These may then be used to search
rotating gravitomagnetic monopoles.

The source of the Taub-NUT solution is a gravitation
dyon ~with gravitoelectromagnetic monopolesm and 2,).
The Taub-NUT solution can be extended to include a cos
logical constant@2# or an infinite set of multipole moment
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pertaining to axisymmetric deformations of a rotating sou
@38#. The periodicity of the time coordinate in the Taub-NU
spacetime renders such sources, if they exist at all, ra
exotic astrophysical systems. Normal astronomical syste
do not exhibit such periodicity; therefore, the temporal pe
odicity may be associated with Hubble-scale structures@39#
or compact dark-matter candidates@40#; in these connec-
tions, lensing properties of Taub-NUT spacetime have b
studied in detail@39,40# and compared in the latter case wi
astronomical observations@40#.

A remark is in order here concerning an indirect applic
tion of Kerr-Taub-NUT spacetime to rotating relativist
disks, which are of great interest in astrophysics. The K
spacetime can be employed to generate exact solutions o
Einstein-Maxwell equations corresponding to stationary a
ally symmetric disklike configurations of matter with a ma
netic field @41,42#.

The Taub-NUT spacetime has had significant applicati
in theoretical studies of the spacetime structure in gen
relativity and, more recently, in quantum gravity. Its Eucli
ean extension is important for the study of monopoles
gauge theories. Embedding the Taub-NUT gravitational
stanton into five-dimensional Kaluza-Klein theory leads to
Kaluza-Klein monopole @43–45#. Euclidean Taub-NUT
spaces have been discussed by a number of authors in
nection with monopoles in supersymmetric gauge theo
@46,47#. Further generalizations and extensions of Taub-N
spaces~such as the Kerr-Newman-Taub-NUT-AdS spac!
are topics of current research in string theory@48–50#.

APPENDIX: INTEGRAL FORM OF THE PARTICLE
NUMBER CURRENT CONSERVATION LAW

This article has dealt exclusively with the exterior KT
spacetime. Therefore, in the determination of the numbe
particles falling in through its horizon per unit time, on
needs to apply the conservation law for the particle num
current only in the exterior region. To this end, consider
volume enclosed by two ‘‘spheres’’ of time-independent ra
r 1<R1,R2. Equation~30! can be derived easily from th
integral of the particle number conservation equation

05A2gJa
;a5]a~A2gJa!5] t~A2gJt!1] i~A2gJi !

~A1!

over the regionV within a time coordinate hypersurfac
bounded by these two spheres, and then using Gauss’s la
convert the second term to a surface integral over the bou
ary

dNV

dt
[

d

dtEV
A2gJtdrdudf52E

V
] i~A2gJi !drdudf

52E
r 5R2

A2gJrdudf1E
r 5R1

A2gJrdudf.

~A2!
3-7
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This gives the rate of change of the numberNV of particles
in this region in terms of the flux entering the outer sph
and exiting the inner sphere.

When the integration domain is replaced by the reg
enclosed between the horizon and a large sphere at infi
one may compute the rate at which particles are leaving
region through the horizon alone. The contribution from t
horizon, i.e.,
in
r

r.

g.

ra

s

08401
e

n
ty,
is
e

E
r 5r 1

A2gJrdudf5
dNV

dt
1E

r 5`
A2gJrdudf,

~A3!

when sign-reversed, gives the rate at which particles are
tering the horizon, leading to Eq.~30!. This sign-reversed
quantity must be negative for superradiance to occur.
ss.

e,
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