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ON BAYESIAN MODELLING

OF FAT TAILS AND SKEWNESS

By Carmen Fern�andez and Mark F.J. Steel1

CentER for Economic Research and Department of Econometrics

Tilburg University, 5000 LE Tilburg, The Netherlands

Abstract

We consider a Bayesian analysis of linear regression models that can account for
skewed error distributions with fat tails. The latter two features are often observed char-
acteristics of empirical data sets, and we will formally incorporate them in the inferential
process. A general procedure for introducing skewness into symmetric distributions is �rst
proposed. Even though this allows for a great deal of 
exibility in distributional shape,
tail behaviour is not a�ected. In addition, the impact on the existence of posterior mo-
ments in a regression model with unknown scale under commonly used improper priors is
quite limited. Applying this skewness procedure to a Student-t distribution, we generate
a \skewed Student" distribution, which displays both 
exible tails and possible skewness,
each entirely controlled by a separate scalar parameter. The linear regression model with
a skewed Student error term is the main focus of the paper: we �rst characterize existence
of the posterior distribution and its moments, using standard improper priors and allowing
for inference on skewness and tail parameters. For posterior inference with this model, a
numerical procedure is suggested, using Gibbs sampling with data augmentation. The lat-
ter proves very easy to implement and renders the analysis of quite challenging problems
a practical possibility. Two examples illustrate the use of this model in empirical data
analysis.

KEY WORDS: Gibbs sampling; Improper prior; Linear regression model; Posterior mo-
ments; Student-t sampling.
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1. INTRODUCTION

This paper aims at introducing two pervasive features of empirical data into statistical
modelling and inference. In particular, we shall introduce a class of sampling models that
can simultaneously account for both skewness and fat tails, and conduct Bayesian inference
in the context of a regression model with unknown scale. Quite surprisingly, the currently
existing toolbox for handling the frequently ocurring phenomenon of skewed data with fat
tails seems very limited indeed. The solutions that we are aware of, e.g. using Stable laws as
in Buckle (1995), seem quite complicated to implement numerically and, more importantly,
seem to lack the 
exibility and ease of interpretation that an applied statistician would
typically require.

In a general context, Section 2 introduces skewness into any continuous (with respect
to Lebesgue measure in <), unimodal and symmetric distribution in a rather straightfor-
ward way: we simply use inverse scaling of the probability density function (p.d.f.) both
sides of the mode. This does not a�ect the unimodality and allows us to control, with a
single unidimensional parameter, the amount of probability mass both sides of the mode.
Tail behaviour is not a�ected by this operation, yet a great deal of 
exibility in distribu-
tional shape is introduced at the expense of a scalar parameter. Clearly, simultaneously
capturing thick tails and skewness can now be achieved by applying this method to a
symmetric fat-tailed distribution.

Despite the relative simplicity of the latter idea, one can not hope to use analytical
methods to perform posterior and predictive inference in suchmodels allowing for skewness.
Therefore, numerical methods will have to be employed. A very useful type of Monte Carlo
method in this context is based on Markov chains. The recent statistical literature in the
area of Markov chain Monte Carlo (MCMC) abounds and it su�ces to refer the reader
to Tierney (1994) for a general discussion. A particularly useful version of MCMC is
Gibbs sampling, for which we mention the seminal paper of Gelfand and Smith (1990)
and the very clear exposition in Casella and George (1992). Gibbs sampling approximates
drawings from a (complicated) joint distribution by a Markov chain of drawings from all
full conditional distributions. Properness of these full conditionals, however, does not
imply properness of the joint distribution [an example is provided in Casella and George
(1992)]. Thus, if one uses such methods under improper priors, it becomes crucial to verify
existence of the posterior before actually conducting the numerical analysis. Furthermore,
e�cient estimates of marginalmoments are often achieved by averaging over the conditional
moments, using the Rao-Blackwell argument introduced in Gelfand and Smith (1990).
Again, existence of the conditional moment does not imply that the marginal moment
from the joint distribution is �nite. The problem of existence of moments does not even
vanish when proper priors are used. Thus, we should also check whether the posterior
moments that we wish to compute actually exist. Therefore, Sections 3 and 4 are devoted
to checking for the existence of the posterior distribution and its moments.

Section 3 considers a general regression model with unknown scale under an improper
prior distribution, and examines the impact of introducing skewness (following the method
outlined above) into the error distribution on the existence of the posterior distribution
and of its moments.
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Section 4 speci�es the model further, by considering a linear regression structure with
independent skewed Student error terms and an unknown scale factor. We consider a
standard \non-informative" prior on the regression and scale parameters. Furthermore,
we do not �x tail behaviour (controlled by the degrees-of-freedom parameter) nor skewness,
but leave both subject to inference. This model, which will be the focus of the sequel of
the paper, thus allows for both skewness and 
exible tail behaviour.

In Section 4 we examine when a Bayesian analysis can be conducted (i.e. properness
of the posterior) and which moments of regression coe�cients and scale parameter can
meaningfully be computed. We then design a Gibbs sampler (using data augmentation) to
conduct posterior inference using this model. The actual numerical implementation will be
shown to result in a very simple sampler, that can easily be run on a PC for the analysis of
moderately large data sets. Section 5 presents the details, and illustrates that judgmental
user input is restricted to a minimum.

Finally, Section 6 presents two examples: a location-scale model applied to a data set
of share price returns, which was used in Buckle (1995) with the Stable distribution as a
modelling device. The second example concerns a data set from astronomy (a Hertzsprung-
Russell diagram) where a regression model with two explanatory variables is used. In
both examples, posterior and predictive inference is conducted for the general model with
skewness and fat tails, and also for models that only account for one of both features. In
addition, Bayes factors between these models are computed using the methods advocated
in Chib (1995) and in Verdinelli and Wasserman (1995). A �nal section concludes.

In summary, we will argue that the approach proposed here leads to very 
exible
modelling of both skewness and fat tails, using only two scalar parameters that are clearly
interpretable with well-de�ned modelling purposes. In addition, the numerical require-
ments are quite modest and the model can easily be used to tackle problems of direct
practical relevance.

All proofs will be grouped in the Appendix, without explicit mention in the main text.

2. INTRODUCING SKEWNESS

In this Section we present a general method for transforming a symmetric distribution
into a skewed distribution. This generalizes the approach followed in Fern�andez, Osiewal-
ski and Steel (1995), where a skewed version of the Exponential Power distribution was
introduced.

Let us consider a univariate p.d.f. f(�), which is unimodal and symmetric around zero.
More formally, we assume that f(s) = f(jsj) and that the latter is decreasing in jsj. We
then generate the following class of skewed distributions, indexed by a scalar 
 2 (0;1):

p("j
) =
2


 + 1




�
f

�
"




�
I[0;1)(") + f(
")I(�1;0)(")

�
: (2:1)

The basic idea underlying (2:1) is simply the introduction of inverse scale factors in the
positive and the negative orthant. Clearly, p("j
) retains the unique mode at zero, but
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loses symmetry whenever 
 6= 1. More formally, we deduce

p("j
 = 1) = f("); (2:2)

P (" � 0j
)

P (" < 0j
)
= 
2; (2:3)

from which it is clear that 
 controls the allocation of mass to each side of the mode.
Furthermore, the way 
 intervenes in (2:1) implies

p("j
) = p(�"j1=
); (2:4)

so that inverting 
 produces the mirror image around zero. In addition, p("j
) will inherit
the di�erentiability properties of f(�). By way of illustration, Figure 1 displays a symmetric
distribution (
 = 1) and its skewed counterparts for 
 = 1:5 and 2.

In order to gain more insight in the properties of (2:1), let us examine how 
 a�ects
its moments. Generally, (2:1) leads to a �nite rth order moment (r 2 <) if and only if the
corresponding moment of f(�) exists (i.e. for 
 = 1). In particular, we obtain

E("r j
) = Mr


r+1 + (�1)r


r+1


 + 1




; (2:5)

where

Mr =

Z 1

0

sr 2f(s) ds; (2:6)

i.e. the rth order moment of f(�) truncated to the positive real line. Of course, E("rj
) will
only be real-valued for integer r. In addition, the assumptions on f(�) imply that Mr =1
for r � �1. Let us, therefore, concentrate on positive integer order moments. From (2:5),
the following properties can be shown to hold for noncentered moments: for odd r, the rth

order moment retains the same absolute value but changes sign if we invert 
, takes the
value zero only for 
 = 1, and is an increasing function of 
 with lim
!1E("rj
) = 1.
Even moments, on the other hand, are entirely una�ected by inverting 
 and, again,
increase without bounds in 
 for 
 > 1. As a consequence, min
 E("rj
) = E("rj
 = 1)
for even r.

If we now consider centered moments, we obtain the following expressions (provided
f(�) allows for the existence of these moments):

E("j
) = M1

�

 �

1




�
; (2:7)

V ar("j
) = (M2 �M2

1
)

�

2 +

1


2

�
+ 2M2

1
�M2; (2:8)

where V ar("j
) possesses all the properties mentioned above for even noncentered mo-
ments.
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Skewness, as measured by the standardized third cumulant [see Box and Tiao (1973,
p.150)], is given by

Sk("j
) =

�

 �

1




� (M3 + 2M3

1
� 3M1M2)

�

2 + 1


2

�
+ 3M1M2 � 4M3

1n
(M2 �M2

1
)
�

2 + 1


2

�
+ 2M2

1
�M2

o3=2 : (2:9)

As with noncentered odd moments, we �nd Sk("j
) = �Sk("j1=
) and Sk("j
 = 1) = 0,
but now we have a �nite limit as 
 ! 1, namely the skewness of f(�) truncated to the
positive real line.

Another popular measure of skewness is the Pearson measure, de�ned through the
standardized di�erence between mean and mode. Since the p.d.f. in (2:1) has zero mode,
we obtain:

SP ("j
) =
M1

�

 � 1




�
n
(M2 �M2

1
)
�

2 + 1


2

�
+ 2M2

1
�M2

o1=2 : (2:10)

This skewness measure changes sign as a result of inverting 
 and is strictly increasing in

, converging to the Pearson skewness measure of 2f(s)I(0;1)(s) as 
 !1.

In the context of the class of unimodal distributions de�ned in (2:1), a natural measure
of skewness is that introduced in Arnold and Groeneveld (1995), de�ned as one minus two
times the probability mass left of the mode, leading to

SM("j
) =

2 � 1


2 + 1
; (2:11)

which is a strictly increasing function of 
, taking values anywhere in (�1; 1). The results
in Arnold and Groeneveld (1995) imply that the latter skewness measure maintains the
convex ordering of distributions introduced by van Zwet (1964) if f(�) is di�erentiable.
Clearly, we also have SM("j
) = �SM("j1=
) and SM("j
 = 1) = 0. In contrast to the
skewness coe�cients in (2:9) and (2:10), (2:11) does not depend on the choice of f(�), and
the entire range of this skewness measure can be covered by choosing 
 appropriately with
lim
!0 SM("j
) = �1 (extreme left skewness) and lim
!1 SM("j
) = 1 (extreme right
skewness).

3. EFFECT OF SKEWNESS ON THE EXISTENCE OF POSTERIOR MOMENTS

Let us now consider the impact of introducing skewness into the sampling distribution
on Bayesian inference in the context of a general regression model. In particular, we
examine the issue of existence of the posterior distribution and of its moments.

We shall assume the observables yi 2 <, i = 1; : : : ; n, to be generated from

yi = gi(�) + ��1"i; (3:1)
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where gi(�) is a known measurable function from <k(k � 1) to <, � = (�1; : : : ; �k)0 2 <k

parameterizes the location and � 2 <+ is a precision parameter. We assume the error
terms "1; : : : ; "n to be i.i.d. given a parameter � 2 N (possibly of in�nite dimension) and

 2 <+ with conditional p.d.f.

p("ij�; 
) =
2


 + 1




�
f�

�
"i




�
I[0;1)("i) + f�(
"i)I(�1;0)("i)

�
; (3:2)

where f� (�) is unimodal and symmetric around zero. This stochastic assumption introduces
two extra parameters into the problem: 
, the skewness parameter, as explained in the
previous Section, and � which can describe other properties of the sampling distribution.
In particular, � will control the thickness of the tails in the next Section.

We shall adopt the following class of prior distributions:

P(�;�;�;
) = P� � P� � P� � P
; (3:3)

with P� the usual noninformative distribution characterized by the improper density

p(� ) / ��1 (3:4)

on <+, P� is any �-�nite measure on <k, and P� and P
 are proper distributions. An
important special case of (3:3) is where P
 is Dirac on 1, which characterizes symmetry
of the error distribution. In the sequel of this Section, we shall examine the in
uence of
allowing for skewness on posterior inference. To this end, we compare posterior results
under a general P
 with those where P
 is a Dirac distribution on 1. For notational
simplicity, we shall denote the latter case by 
 = 1.

First of all, since the prior distribution in (3:3) � (3:4) is improper, existence of the
posterior distribution needs to be veri�ed. In addition, our interest will be focussed on the
location and precision parameters � and � , since � and 
 are merely auxiliary parameters
to widen the class of sampling distributions. We shall therefore also address the issue of
existence of posterior moments of � and � . Needless to say, negative order moments of �
correspond to positive order moments of the scale � = ��1 and vice-versa.

We now present the main results of this Section for the Bayesian model corresponding
to (3:1)� (3:4).

Theorem 1. Given (r1; : : : ; rk) 2 <k, we obtain that for any P


E(
kY

j=1

j�j j
rj jy1; : : : ; yn) <1

if and only if the same holds under 
 = 1. �

Theorem 1 clearly states that the existence of posterior moments of � is entirely
una�ected by the added uncertainty on 
. An important special case is where rj = 0 for
all j 2 f1; : : : ; kg, which establishes the fact that incorporating skewness in the sampling
does not a�ect properness of the posterior distribution either.
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Theorem 2.

(i) For r � 0 and any P
 ,

E(� rjy1; : : : ; yn) <1

if and only if the same moment exists under 
 = 1.
(ii) Given r > 0 and P
, we obtain the following:

(iia) E(� rjy1; : : : ; yn) <1 requires existence of the same moment under 
 = 1,
(iib) if

E(� rjy1; : : : ; yn) <1 for 
 = 1; and

Z 1

0

�
max

�

;

1




��r
dP
 <1;

then E(� rjy1; : : : ; yn) <1 under P
 . �

Thus, existence of negative order moments of � (equivalently, positive order moments
of �) is never a�ected by skewness, whereas for positive order moments of � Theorem 2
(ii) provides necessary and su�cient conditions that do not coincide in general. However,
in certain situations, the su�cient condition in Theorem 2 (iib) also becomes necessary, as
stated in the following Theorem:

Theorem 3. If both

P�(\i=1;:::;nf� : gi(�) > yig) and P�(\i=1;:::;nf� : gi(�) < yig)

are strictly positive, where P� is the prior measure of �, then for any r > 0 and P
:

E(� rjy1; : : : ; yn) <1

if and only if the same moment exists for 
 = 1 and
R1
0
[maxf
; 1=
g]rdP
 <1. �

The moment condition on P
, which is often necessary from Theorem 3, is quite a
strong requirement: indeed, many commonly used distributions on <+ fail to satisfy this
condition even for moderate values of r (e.g. neither Exponential nor half-Normal P
 allow
for the posterior mean of � ).

Finally, we note that the pure location-scale model, where gi(�) = � 2 <, combined
with a prior density p(�) strictly positive in all of <, is within the framework of Theorem
3; thus, the in
uence of P
 on the existence of posterior moments of precision (or scale)
is entirely characterized for this model. As a simple example where Theorem 3 does
not apply, consider n = 2 and k = 1 with g1(�) = � and g2(�) = ��. Then the set
\i=1;2f� : gi(�) > yig is empty whenever y1 � �y2, whereas \i=1;2f� : gi(�) < yig is
empty if y1 � �y2, which precludes the application of Theorem 3.

4. INFERENCE UNDER SKEWED STUDENT SAMPLING

In the previous Section, we assessed the e�ect of skewing a symmetric unimodal error
distribution with p.d.f. f�(�) on the existence of posterior moments. Now, we shall fully
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specify a Bayesian model which accounts for both skewness and fat tails and the sequel of
the paper will be devoted to posterior and predictive inference from this model. Whereas
the present Section groups results on the properness of the posterior and the existence of
its moments, the next Section will provide a numerical framework for conducting inference
from this model.

In particular, we consider a special case of the model in (3:1)�(3:4), using the following
assumptions:
(a) we specify a linear regression model in (3:1), i.e. gi(�) = x0

i
�, where xi 2 <k is a

vector of explanatory variables. Throughout, we shall condition on xi without explicit
mention. The entire design matrix X = (x1; : : : ; xn)0 will always be assumed to be of
full column rank k, which implies that n � k;

(b) f�(�) is chosen to be the p.d.f. of a standard Student-t distribution with � degrees of
freedom. Thus, � 2 <+;

(c) for the prior of � we take the improper uniform distribution on <k. This leads to
p(�; � ) / ��1, which corresponds to the usual noninformative distribution for regres-
sion and precision parameters, and is the reference prior in the sense of Berger and
Bernardo (1992) if 
 and � are known [see Fern�andez and Steel (1995)]. Following
(3:3), P
 and P� are taken to be any probability measures on <+.
In summary, we assume n independent replications from the sampling density

p(yij�; �; �; 
) =2
�(�+1

2
)

�(�
2
)(��)1=2

�


 + 1


�
1 +

�2

�
(yi � x0i�)

2

�
1


2
I[0;1)(yi � x0i�) + 
2I(�1;0)(yi � x0i�)

��� �+1
2

;

(4:1)
with prior distribution

P(�;�;�;
) = P� � P� � P� � P
 ;

where P� � P� has density p(�; � ) / ��1 and P
 and P� are proper:
(4:2)

The sampling distribution in (4:1) will be denoted by \Skewed Student" with location
x0
i
�, precision �2, � degrees of freedom and skewness parameter 
. Let us brie
y discuss

the interpretation of the parameters in (4:1). � 2 <k groups the regression coe�cients,
usually of primary interest, and � 2 <+ is the precision parameter. In addition to these
parameters of interest, (4:1) contains two more parameters, each with a clearly de�ned
modelling purpose. The thickness of the tails is entirely determined by � 2 <+. From
our results in Section 2 [see e.g. (2:5)], we know that introducing skewness does not a�ect
the existence of moments of the underlying symmetric distribution. Thus, the sampling
moments will exist up to � (not including), as under Student sampling. Skewness is
controlled by 
 2 <+, as explained in Section 2. Following (2:3), 
 determines the amount
of mass both sides of the location:

P (yi � x0
i
�j�; �; �; 
)

P (yi < x0
i
�j�; �; �; 
)

= 
2: (4:3)
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Before discussing existence of posterior moments from the Bayesian model in (4:1)�
(4:2), we stress that (from Section 3) P
 does not a�ect properness of the posterior distri-
bution, nor the existence of posterior moments of � and of negative order moments of � .
Thus, most results presented here would also apply to the case of (symmetric) Student-t
sampling. The latter was examined in Fern�andez and Steel (1996), in the context of gen-
eral scale mixtures of Normals, but under �xed �. Here we shall explicitly incorporate
prior uncertainty on the thickness of the tails, as the latter may be a crucial modelling
instrument. Thus, even when P
 does not a�ect the results, the uncertainty on � precludes
direct application of the analysis in Fern�andez and Steel (1996).

Since the prior distribution in (4:2) is improper, we �rst investigate properness of the
posterior distribution.

Theorem 4. With n independent replications from the sampling model in (4:1) under

the prior in (4:2), we obtain a proper posterior distribution if and only if n > k, for any

choices of P� and P
. �

This well-known result under Normal sampling is thus seen to hold in our much more
general framework, where skewness and fat tails are both allowed for. Clearly, any Bayesian
inference from this model will require at least k + 1 observations. Throughout the sequel
of the paper, we shall, therefore, assume n � k + 1.

We now present our �ndings for marginal posterior moments of the components of
�. The following technical De�nition concerning the design matrix X will be required to
adequately characterize the existence of these moments.

De�nition 1. singularity index for column j

Given an n � k full column-rank matrix X, we de�ne the singularity index for column

j = 1; : : : ; k as the largest number pj (0 � pj � n�k) such that there exists a (k�1+pj )�k
submatrix of X of rank k�1 which retains rank k�1 after removing its jth column. �

Clearly, if X contains rows of zeros, then pj is at least equal to the number of such
zero rows for all j = 1; : : : ; k. Furthermore, maxfpj : j = 1; : : : ; kg = 0 if and only if every
k� k submatrix of X is nonsingular. Intuitively, the higher pj is, the less information the
design matrix X contains about �j .

As mentioned previously, P
 will not a�ect the existence of posterior moments of �.
If � is assumed �xed at some positive value �0 (i.e. P� is a Dirac distribution on �0), we
know from Fern�andez and Steel (1996) that for r > 0

E(j�j j
rjy1; : : : ; yn) <1 if and only if r < minfn�k; n�k�pj+�0(n�k�pj+1)g: (4:4)

We now consider a general P�. In order to examine its in
uence, we partition the class
of probability distributions on <+ on the basis of the presence of mass arbitrarily close to
zero.

Theorem 5. Consider n observations from the sampling model (4:1) and the prior in

(4:2) with P� verifying P�(0; c) > 0 for all positive c smaller than some constant C. Then,

for any r � 0:

E(j�j j
rjy1; : : : ; yn) <1 if and only if

�
r < n� k if pj = 0
r � n� k � pj if pj � 1 �
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In practice, the most common situation where Theorem 5 applies is when P� is given
through a p.d.f. verifying p(�) > 0 for all � 2 (0; C) where C is some positive constant.
As in the case where � is �xed [see (4:4)], the design matrix a�ects existence of moments
of � only through pj , the singularity index of column j. If pj = 0 (intuitively, the best
type of design matrix for �j), we have marginal posterior moments up to n� k, as under
Normal sampling. The other extreme corresponds to pj = n� k, which does not allow for
any positive order moments of �j . Note that di�erent elements of � can possess posterior
moments up to di�erent orders.

The sampling model in (4:1) has moments up to and not including �. Thus, if we
allow � to be arbitrarily close to zero, we can preclude the existence of any positive order
sampling moment. If we wish to guarantee �nite sampling moments of a certain order
�0 > 0, we need to rectrict � to be bigger than �0, i.e. we consider distributions P� with
support on (�0;1). In this situation, more moments of the regression coe�cients can be
shown to exist, as the next Theorem explains.

Theorem 6. Combining n observations from (4:1) with the prior (4:2) where P� has

support on (�0;1), �0 > 0, we obtain:

(i) if r � n� k, then

E(j�j j
rjy1; : : : ; yn) =1;

(ii) if 0 � r < minfn� k; n� k � pj + �0g, then

E(j�j j
rjy1; : : : ; yn) <1: �

The necessary and the su�cient condition in Theorem 6 only coincide when �0 � pj ,
in which case moments exist exactly up to n � k (not including). Otherwise, we can
guarantee moments of order smaller than n � k � pj + �0 and Theorem 6 does not cover
the range [n� k � pj + �0; n� k). Clearly, when pj = 0, bounding � away from zero does
not a�ect existence of moments, but for pj � 1, we gain at least the moments of order
r 2 (n� k � pj ;minfn� k; n� k � pj + �0g).

In contrast to the situation where P� has mass arbitrarily close to zero, analyzed in
Theorem 5, moments of order smaller than minfn � k; �0g will now exist for any design
matrix X. Thus, the design matrix can no longer destroy the existence of all positive order
moments of �.

Finally, in the important special case of the location-scale model, i.e. where x0
i
� = � 2

<, p1 = 0 and posterior moments of � exist exactly up to n�1 (not including), irrespective
of the choice of P� (and P
).

Let us now consider posterior moments of � of order r 2 <. The in
uence of P
 on
the existence of these moments was addressed in Theorems 2 and 3. Taking 
 = 1 and �

�xed at �0 > 0, Fern�andez and Steel (1996) tells us that the range of �nite moments of �
is given by r 2 (�(n � k); (n � k)�0). We now consider general probability distributions
on �.

First of all, we treat the case where � is not bounded away from zero:

Theorem 7. Under the assumptions of Theorem 5, we obtain

E(� rjy1; : : : ; yn) <1 if and only if � (n� k) < r � 0: �
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Theorem 7 entirely characterizes the moment existence for � , under any P
 and choos-
ing any P� with mass arbitrarily close to zero. This choice of P� precludes �nite moments
of � of positive order.

However, choosing distributions for � which give zero probability to some interval
(0; �0] potentially allows for the existence of some positive order moments of � .

Theorem 8. Under the assumptions of Theorem 6, we can derive

(i) for r � 0,
E(� rjy1; : : : ; yn) <1 if and only if r > �(n� k);

(ii) taking 
 = 1,
E(� rjy1; : : : ; yn) <1 if 0 < r < �0: �

From Theorem 7 and Theorem 8 (i) we immediately deduce that negative order mo-
ments of � (positive order moments of the scale parameter �) always exist exactly up to
�(n � k), irrespective of P� and P
 . The su�cient condition in Theorem 8 (ii) indicates
that some positive order moments of � exist when 
 = 1. However, we know from Theo-
rems 2 (ii) and 3 that P
 can in
uence these moments. In particular, with our choice of
P�, Theorem 3 applies in the pure location-scale model (x0

i
� = � 2 <) and, thus, existence

of the rth and �rth prior moments of 
 is also required in that case.

5. NUMERICAL IMPLEMENTATION

In order to conduct inference with the Bayesian model in (4:1)-(4:2), numerical meth-
ods will be required. In particular, we shall use a Markov chain Monte Carlo method,
namely the Gibbs sampler with data augmentation. The data augmentation adopted is
motivated by the representation of a Student-t distribution as a scale mixture of Normals
[see (A:8) in the Appendix]. Thus, we can, alternatively, express the sampling density in
(4:1) as

p(yij�; �; �; 
) =

�
2

�

� 1
2 1


 + 1




Z 1

0

�
1
2

i
� exp

"
�
�i�

2

2
(yi � x0i�)

2

�
1


2
I[0;1)(yi � x0i�) + 
2I(�1;0)(yi � x0i�)

�#
fG

�
�ij

�

2
;
�

2

�
d�i;

(5:1)

where fG(�ij�=2; �=2) denotes the p.d.f. of a Gamma distribution parameterized as in De-
Groot (1970, p.60). Thus, each observation yi; i = 1; : : : ; n, has its own mixing parameter
�i and �1; : : : ; �n are i.i.d. given �. Augmenting the parameter set with (�1; : : : ; �n) will
greatly facilitate the numerical analysis. Therefore, we shall conduct a Gibbs sampler
on (�; �; �; 
; �1; : : : ; �njy1; : : : ; yn). Essentially, the Gibbs sampler approximates draw-
ings from the joint distribution by a Markov chain of drawings from the full conditional
distributions, which are described subsequently.
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5.1 Conditional of �

We will analyze each element of � in a separate Gibbs step. From (5:1) and (4:2), the
conditional posterior p.d.f. of �j ; j 2 f1; : : : ; kg; is de�ned by

p(�j jf�s : s 6= jg; �; �; 
; �1; : : : ; �n; y1; : : : ; yn) /

exp

"
�
�2

2

nX
i=1

�i(yi � x0
i
�)2

�
1


2
I[0;1)(yi � x0

i
�) + 
2I(�1;0)(yi � x0

i
�)

�#
;

(5:2)

which will now be rewritten in a form that immediately suggests a simple algorithm for
generating random drawings. Clearly, those observations for which xij , the jth element
of xi, is zero do not contribute to the conditional distribution of �j in (5:2). For the m
remaining observations, we compute

w
(j)

i
=

yi � x0
i
� + xij�j

xij
; (5:3)

noting that the full column rank assumption on X implies that m � 1. Then, we order

the observations such that w
(j)

1
< w

(j)

2
: : : < w

(j)

m and partition <, the domain of �j , into

the sets S
(j)

0
= (�1; w

(j)

1
]; S

(j)

h
= (w

(j)

h
; w

(j)

h+1
] for h = 1; : : : ;m � 1 and S

(j)

m = (w
(j)

m ;1).
Ultimately, we can express the conditional posterior of �j as:

p(�j jf�s : s 6= jg; �; �; 
; �1; : : : ; �n; y1; : : : ; yn) /
mX
h=0

fp
(j)

h
g�

1
2 exp

 
�
�2l

(j)

h

2

!
f1
N

 
�j j�

(j)

h
;

1

�2p
(j)

h

!
I
S
(j)

h

(�j);
(5:4)

with f1
N
(�jt; v) the p.d.f. of a univariate Normal distribution with mean t and variance v,

and

p
(j)

h
=

hX
i=1

�
(j)

i1
+

mX
i=h+1

�
(j)

i2
;

p
(j)

h
�
(j)

h
=

hX
i=1

�
(j)

i1
w
(j)

i
+

mX
i=h+1

�
(j)

i2
w
(j)

i
;

l
(j)

h
=

hX
i=1

�
(j)

i1
fw

(j)

i
g2 +

mX
i=h+1

�
(j)

i2
fw

(j)

i
g2 � p

(j)

h
f�

(j)

h
g2;

(5:5)

where we have de�ned

�
(j)

i1
= �ix

2

ij
f
1


2
I(�1;0)(xij ) + 
2I(0;1)(xij )g;

�
(j)

i2
= �ix

2

ijf

2I(�1;0)(xij ) +

1


2
I(0;1)(xij )g:

(5:6)
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The expression in (5:4) is now straightforward to draw from. First, we compute the

probabilities attached to each of the sets S
(j)

h
forming the partition of <, then we choose

one set at random according to those probabilities, and �nally we draw the corresponding
truncated Normal, using the mixed rejection algorithm of Geweke (1991).

5.2 Conditional of �

It is immediate from (5:2) and (4:2) that

p(�2j�; �; 
; �1; : : : ; �n; y1; : : : ; yn) =

fG

 
�2
���n
2
;
1

2

nX
i=1

�i(yi � x0
i
�)2

�
1


2
I[0;1)(yi � x0

i
�) + 
2I(�1;0)(yi � x0

i
�)

�!
;

(5:7)
from which random drawings can immediately be generated; in particular, we shall use
Cheng's (1977) GB algorithm.

5.3 Conditional of �

Generally, the full conditional distribution of � given (�; �; 
; �1; : : : ; �n; y1; : : : ; yn) is
proportional to

��
2

�n�=2 n
�
��
2

�o�n
exp

(
�
�

2

nX
i=1

(�i � log�i)

)
P� ; (5:8)

i.e. the conditional posterior distribution of � is absolutely continuous with respect to the
prior P� with Radon-Nikodym derivative proportional to the �rst three factors in (5:8).
Clearly, the distribution in (5:8) does not directly lend itself to random number generation,
but as � is a scalar, many numerical methods should work e�ciently.

In our empirical Section, we shall not bound � away from zero and we take P� to be
an Exponential distribution with p.d.f.

p(�) = d exp(�d�); (5:9)

leading to

p(�j�; �; 
; �1; : : : ; �n; y1; : : : ; yn) /
��
2

�n�=2 n
�
��
2

�o�n
exp

"
��

(
d+

1

2

nX
i=1

(�i � log�i)

)#
:

(5:10)
Drawings from (5:10) will be generated through rejection sampling [see e.g. Devroye (1986)]
using an Exponential source density, with its parameter chosen so as to maximize the
overall acceptance probability, as described in Geweke (1994). In particular, we employ
the following strategy:
1. Draw � from a distribution with p.d.f. (��)�1 exp(��=��) with �� the unique solution

to
n

2

n
log
��
2

�
�	

��
2

�o
+

1

�
+
n�

Pn

i=1
(�i � log�i)

2
� d = 0; (5:11)
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where 	(�) is the digamma function.
2. Accept the drawn value � with probability

��
2

�n�
2

�
��

2

��n��

2 n
�
��
2

�o�n�
�

�
��

2

��n
exp

�
(� � ��)

�
1

��
�

P
n

i=1
(�i � log �i)

2
� d

��
:

(5:12)
For a grid of values of n (ranging from 50 to 500) and plausible values for d +

1

2

P
n

i=1
(�i � log�i) (ranging from slightly larger than n=2 to 2n) empirical acceptance

probabilities are typically in the order of 0.10 and always above 0.05. See also Table A.2
in Geweke (1994).

5.4. Conditional of 


With general P
, the conditional distribution of 
 given (�; �; �; �1; : : : ; �n; y1; : : : ; yn)
is proportional to

�

 +

1




��n
exp

"
�
�2

2

nX
i=1

�i(yi � x0i�)
2

�
1


2
I[0;1)(yi � x0i�) + 
2I(�1;0)(yi � x0i�)

�#
P
 ;

(5:13)
using the same notation as in (5:8). In our empirical Section, we shall use a Gamma(a; b)
prior on ' � 
2, leading to

p('j�; �; �; �1; : : : ; �n; y1; : : : ; yn) / '
n
2+a�1('+ 1)�n exp

�
�

�
#

'
+ �'

��
; (5:14)

where we have de�ned

# =
�2

2

nX
i=1

�i(yi � x0i�)
2I[0;1)(yi � x0i�) � 0;

� = b +
�2

2

nX
i=1

�i(yi � x0i�)
2I(�1;0)(yi � x0i�) > 0:

(5:15)

The distribution in (5:14) is not of any standard form, for which random number generators
are readily available. However, the density function is bell-shaped and has subquadratic
tails, so that the Ratio-of-Uniforms method of Kinderman and Monahan (1977) can be
applied. Generally, as explained in Devroye (1986), using this method to draw a scalar
variate with p.d.f. proportional to an integrable function g(�), consists in:
1. draw a Uniform distribution on the set A = f(u; v) : 0 � u � fg(v=u)g1=2g;
2. the ratio v=u is a drawing from the required distribution.
In order to draw from the Uniform distribution on A, it is convenient to draw a Uniform on
a rectangle enclosingA, accepting the drawing only if it falls inA. The most e�cient imple-
mentation of this algorithm corresponds to choosing the smallest possible rectangle enclos-
ing A, which is generally given by [0; supxfg(x)g

1=2]� [infx xfg(x)g1=2; supx xfg(x)g
1=2]:
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Taking g(�) to be the kernel in (5:14), it is immediate that inf' '2g(') = 0, whereas
the unique positive solution of ��'3 + (q � �� n)'2 + (q + #)' + # = 0 maximizes g(')
for q = (n=2) + a� 1 and '2g(') for q = (n=2) + a+ 1.

Choosing a wide range of values for n (from 50 to 500) and a range of empirically
plausible values for a; # and � we estimate acceptance rates to be typically around 15%
and always exceeding 10%.

5.5. Conditional of �1; : : : ; �n

Drawing from the conditional distribution of the mixing parameters is straightforward
as they are independent with p.d.f.

p(�1; : : : ; �nj�; �; �; 
; y1; : : : ; yn) =
nY
i=1

fG

�
�i

���� + 1

2
;
�

2
+
�2(yi � x0

i
�)2

2

�
1


2
I[0;1)(yi � x0i�) + 
2I(�1;0)(yi � x0i�)

��
:

(5:16)
The full conditional distributions in (5:4), (5:7), (5:10), (5:14) and (5:16) de�ne a

Gibbs sampler with k + 4 steps in n + k + 3 dimensions. Convergence of the induced
Markov chain to the posterior distribution is ensured, since the parameter space has a
Cartesian product structure [see Roberts and Smith (1994)].

6. EMPIRICAL EXAMPLES

6.1 Preliminaries

In this Section, we will use the Bayesian model described in Section 4 for the analysis
of some examples, following the numerical implementation outlined in the previous Section.

We remind the reader that we adopted the prior distribution in (4:2) with an Expo-
nential distribution on � as in (5:9), and a Gamma(a; b) prior for ' = 
2. Thus, a full
description of our prior distribution still requires a choice for d in (5:9) and for a and b.
In the elicitation of these hyperparameters we shall try to avoid introducing strong prior
information. To this end, we choose d = 0:1, thus obtaining a prior mean of � equal to 10
and a prior variance of 100, essentially allocating substantial prior mass to very thick tails
as well as almost Normal tails. For the skewness parameter, 
, we specify a prior with
mean one, which centers the prior around the case of symmetric sampling. The latter is
equivalent to choosing

b =

�
�(a + 1

2
)

�(a)

�2

; (6:1)

and we shall elicit a using both the prior variance of 
 and the prior mass on the interval
(0; 1). The variance of 
 is the following decreasing function of a:

V ar(
) = a

�
�(a)

�(a + 1

2
)

�2

� 1: (6:2)
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The expression in (6:2) would seem to suggest that a very small value of a adequately
conveys a lack of prior information: e.g. a = 0:01 corresponds to V ar(
) = 31:7. However,
the prior probability that 
 2 (0; 1) also decreases in a, and for a = 0:01 we obtain
P (
 < 1) = 0:93. Since we prefer a prior that gives approximately equal weights to left
skewness (i.e. 
 < 1) and right skewness (i.e. 
 > 1), a compromise is in order. We feel
that the value a = 0:5, leading to V ar(
) = 0:57 and P (
 < 1) = 0:58 is quite reasonable.
This particular value leads exactly to a half-Normal prior for 
. We shall adopt these prior
choices in both of the examples subsequently analyzed.

Besides the general model allowing for both skewness and fat tails simultaneously, we
shall also consider simpler versions, which incorporate only one of these features at a time.
Thus, we examine three possible sampling models, namely the skewed Student in (4:1), the
skewed Normal [the limiting case of (4:1) as � !1] and the Student-t model [(4:1) with

 = 1]. Priors for parameters present in the models will always be as described above.

In the sequel, we present posterior inference on model parameters and predictive
inference in the context of each model. The latter will be conducted through averaging
the sampling density, using the Rao-Blackwell argument suggested in Gelfand and Smith
(1990).

Model comparison will formally be done through the use of Bayes factors. Due to the
fact that we have proper priors on model-speci�c parameters, the latter can meaningfully
be computed. In order to conduct the actual computations, two distinct methods are
employed: the method of Chib (1995) and the Savage-Dickey density ratio mentioned in
Verdinelli and Wasserman (1995), based on Dickey (1971).

Throughout, we used a sequential version of the Gibbs sampler, discarding the �rst
10,000 realizations (the \burn-in") and basing our results on the following 250,000 draw-
ings. However, much smaller runs already lead to reliable results. All density plots are
presented without smoothing and are based on 50 bins.

As a �nal, but important, note, we stress that the numerical implementation described
in Section 5 leads to very e�cient algorithms. Using Gauss-386i VM version 3.2, the most
complicated models for both examples treated here executed at a rate of over 30,000 Gibbs
draws per hour on a PC equipped with a Pentium-100 processor. Thus, the analysis of
much more challenging data sets is entirely within reach, even with modest computing
facilities.

6.2. Share Price Returns

In our �rst example we use a simple location-scale structure (i.e. k = 1 and xi = 1; i =
1; : : : ; n) to model daily share price returns. The particular data set we use concerns Abbey
National shares between July 31 and October 8, 1991, and was used in Buckle (1995).
Table 1 in Buckle (1995) lists the price data, pi, i = 0; : : : ; 49, from which we construct
the observations yi = (pi � pi�1)=pi�1, i = 1; : : : ; 49.

Buckle (1995) proposed Stable distributions as a way of dealing with skewness and fat
tails. Before discussing our results, let us brie
y contrast this approach with the approach
proposed in the present paper. We feel the main advantages of using the model introduced
in Section 4 are model 
exibility, interpretability of the parameters and computational
simplicity.
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In particular, whereas we can account for a smooth transition of very fat to Normal
tails, since the sampling density in (4:1) behaves in the tails as a Student distribution
with � degrees of freedom, Stable distributions display an inherent discontinuity in tail
behaviour, since they either do not possess a �nite variance or are Normal. In addition,
skewness is only allowed for when the variance does not exist.

A related point is that the skewness and tail parameters are inextricably linked for
Stable laws, therefore complicating both the issue of prior elicitation and interpretation
of the parameters. In sharp contrast, our approach entirely separates the e�ect of the
skewness parameter 
 and the tail parameter �, facilitating their interpretation and making
prior independence between the two a plausible assumption.

In addition, the Gibbs sampler used in Buckle (1995) requires far more numerical
e�ort than ours, as it involves four Metropolis-Hastings steps and n univariate rejection
sampling steps for the augmentation variables. Since the p.d.f. of a Stable distribution does
not possess a closed form expression, predictive distributions are also much more di�cult
to evaluate than in our case.

Before our discussion of posterior results, a technical issue still needs to be addressed.
Since n > 1, Theorem 4 assures us of the existence of the posterior distribution. However,
this obviously does not prevent the predictive density p(y1; : : : ; yn) from being in�nite in
a set of Lebesgue measure zero in <n. For the location-scale model, the latter set consists
of all the samples (y1; : : : ; yn) for which P�(0; fs � 1g=fn� sg] > 0, where s is the largest
number of identical observations. Thus, when P� has mass arbitrarily close to zero (as is
the case with the exponential prior considered here), any sample that contains at least two
identical observations leads to p(y1; : : : ; yn) =1. Whereas theoretically a set of Lebesgue
measure zero poses no problem, the censoring and rounding mechanisms underlying many
empirical observations may lead to repeated data points, as is the case in our particular
data set. One obvious solution would be to restrict � to be bigger than (s� 1)=(n� s). In
practice, this restriction is relatively harmless; e.g. in our example, 7 of the 49 observations
are repeated (yi = 0), yet � > 1=7 is su�cient. In the interest of a fair comparison with
the results in Buckle (1995), we have chosen not to restrict the support of P� , but instead
we have slightly perturbed the yi's. The empirical impact of this minor perturbation is,
however, quite negligible, since we never obtained any empirical evidence of posterior mass
for � < 1=2. Explicitly incorporating the censoring mechanism into the model is, naturally,
a very appealing solution. However, this is outside the scope of the present paper, and is
the object of ongoing research.

Posterior results using the general sampling model in (4:1) with the prior as explained
in Subsection 6.1 are summarized in Table 1 and Figures 2-5. Besides the general skewed
Student sampling model, we have also used the Student-t model, which only allows for
thick tails, and the skewed Normal, with only skewness accounted for. From our theoretical
results in Section 4 we know that positive order posterior moments of � and � = ��1 exist
up to order n�k = 48 (not including) in all three models, whereas positive order moments
of � are precluded under Student or skewed Student sampling. Table 1 reports posterior
means and standard deviations of � and �. The latter vary substantially across models.
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Table 1

skewed Student Student skewed Normal
mean � �0:0068 �0:0012 �0:0064
st: dev: � (0:0028) (0:0018) (0:0031)
mean � 0:0091 0:0103 0:0117
st: dev: � (0:0018) (0:0018) (0:0014)

Figure 4 clearly indicates right skewness in the data; thus, if our model does not account
for this skewness, the location will be shifted to the right, as occurs for the Student-t
model. As Figure 5 indicates, � has substantial posterior mass in regions corresponding
to thick tails. Thus, the skewed Normal model, which has Normal tail behaviour, needs
to decrease the precision � in order to capture observations in the tails. Figure 3 indicates
that precision increases if we account for fat tails and even more if we allow for skewness
as well (see also Table 1).

An interesting feature is that inference on skewness is little a�ected by allowing for
thick tails. Indeed, the skewed Student and the skewed Normal lead to similar posterior
distributions for 
 (Figure 4). Even more striking is the similarity of the posterior distribu-
tions for � under Student and skewed Student sampling (Figure 5). Whether we allow for
skewness or not has virtually no impact on inference on the degrees of freedom parameter
�. In summary, inference on skewness and thickness of tails seems well separated in our
model. However, the present data set is not very informative on the thickness of the tails,
as we have empirically noticed some sensitivity of posterior inference on � with respect to
the choice of d in (5:9).

Figure 7 displays the post-sample predictive density functions under each of the three
models. Note that the predictive from the skewed Student model closely resembles the
data histogram in Figure 6. The Student model obviously leads to a symmetric predictive,
which seems at odds with the data, whereas the skewed Normal sampling model clearly
induces more dispersion in the predictive.

A formal comparison of the three models is now conducted using Bayes factors. We
have used the method based on the \Basic Marginal Likelihood Identity" (BMI) developed
in Chib (1995). This method estimates the marginal likelihood of the observed sample
using Gibbs sampling in combination with the integrating constants of the required full
conditionals. Wherever the latter integrating constants were not available analytically
(i.e. for � and 
), we have estimated them empirically by normalizing the histograms.
All results were based on 75,000 draws after a burn-in of 5,000 draws for each additional
Gibbs sampler involved. Table 2 presents the resulting Bayes factors. Entry (i; j) in the
Table indicates the Bayes factor in favour of model i versus model j. For completeness,
the simple Normal model (for which the marginal likelihood is known analytically) is also
included. Clearly, there is some evidence for both fat tails and skewness in the data.

As a check, we also assessed the evidence in favour of skewness using the Savage-
Dickey density ratio, as explained in Verdinelli and Wasserman (1995). Comparing skewed
Student with Student and skewed Normal with Normal led to the same Bayes factors as
displayed in Table 2.
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Table 2

skewed Student Student skewed Normal Normal
skewed Student 1 2:3 4:0 11:9

Student 1 1:7 5:1
skewed Normal 1 3:0

Normal 1

Overall, our results are not incompatible with those found in Buckle (1995), who also
recorded evidence of right skewness and heavy tails. Only his posterior �ndings on the
location parameter seem in con
ict with ours, as he obtains a posterior mean of 0.00053.
Note, however, that the location parameter in Buckle is not interpretable as the mode
(under asymmetry), whereas our sampling model in (4:1) always locates the mode at x0

i
�.

Thus, our location parameter � has the unequivocal interpretation of the mode of the
sampling distribution in this example. We feel this is an added advantage of using the
Bayesian model described in Section 4.

6.3. Hertzsprung-Russell Diagram

Our second example concerns explaining the logarithm of the light intensity of stars
(yi) by an intercept and the logarithm of the e�ective surface temperature of the star.
Thus, we now have a regression model with k = 2, xi1 = 1 and xi2 is the log of the
temperature of star i. We have 47 observations for the star cluster CYG OB1 (in the
direction of Cygnus), which are taken from Rousseeuw and Leroy (1987, Table 3, p. 27).

The analysis is conducted using the numerical procedures outlined in Section 5, im-
plemented as described in Subsection 6.1. We consider two sampling models, Student-t
and skewed Student, with the priors described in Subsection 6.1. The design matrix X

of our data set veri�es p1 = p2 = 4. Recalling De�nition 1, this can easily be seen as
follows: none of the values xi2 are zero and the maximum number of identical values for
xi2 is �ve. This immediately leads to p1 = p2 = 4. Thus, from Theorem 5, positive order
posterior moments of �1 and �2 exist up to the order n � k � 4 = 41 (including), under
both sampling assumptions. Theorem 7 implies that the range of �nite posterior moments
of � = ��1 is given by [0; 45) under both sampling schemes.

As in the previous Example, a technical comment is in order. For the model considered
here, i.e. k = 2 with an intercept, the practically relevant conditions to check for having
a �nite predictive value are: no zero observations and those observations corresponding to
equal rows of X should be di�erent. The �rst condition can easily be achieved by adding a
constant to all observations and the intercept. In case the second condition is not ful�lled,
restricting � to be bigger than some small value will typically solve the problem. Even
though the empirical posterior probability for � < 1 is zero in our example, we have based
our results on a slightly perturbed sample.

Posterior results are summarized in Table 3 and Figures 8-11. Inference on the regres-
sion coe�cients is somewhat a�ected by allowing for skewness, and the posterior mean of
� is smaller under skewed Student sampling. There seems to be evidence of left skewness
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in the data (see Figure 10) and, as was the case in our previous example, inference on tail
behaviour is largely una�ected by allowing for skewness (see Figure 11).

Table 3

mean �1 st: dev: �1 mean �2 st: dev: �2 mean � st: dev: �
skewed Student 7:53 (1:37) �0:495 (0:275) 0:428 (0:132)

Student 6:71 (1:42) �0:391 (0:327) 0:552 (0:065)

The left skewness revealed in Figure 10 is translated into a skewed predictive plot under
skewed Student sampling, conditional on mean values of X and the full observed sample.
Of course, the predictive under Student sampling is symmetric (see Figure 12).

The Bayes factor of skewed Student versus Student sampling was computed to be
1.5 using the Savage-Dickey density ratio. The latter result conveys moderate evidence in
favour of skewness.

7. CONCLUSION

In this paper, we have introduced a general method for transforming symmetric into
skewed distributions, at the cost of a single scalar parameter. Using such a skewed dis-
tribution for the error terms in a regression model, we establish that the e�ects of this
skewness on the existence of the posterior distribution and its moments is quite limited.
We then consider linear regression under independent skewed Student errors with unknown
skewness and thickness of tails, in combination with a commonly used improper prior on
the regression coe�cients and the precision parameter. For this model, which is central
to the paper, we obtain that the posterior is well-de�ned under the same conditions as
for Normal sampling (i.e. when sample size exceeds the number of regressors); existence
of posterior moments of regression coe�cients and precision are examined in detail. A
numerical analysis based on the Gibbs sampler is outlined and applied to a number of
examples.

We feel that the approach proposed here has a number of attractive features:

(a) It allows for very 
exible modelling of the skewness and fat tail features of the data.
Skewness covers the entire range of e.g. the skewness measure in Arnold and Groeneveld
(1995), which implies that mass can be allocated to the regions both sides of the mode
in any proportion, irrespective of the underlying symmetric distribution. Within the
skewed Student setup, we can allow for any Student tail behaviour, thus ranging from
very fat tails to limiting Normality.

(b) The extra parameters introduced into the analysis have very clearly de�ned mod-
elling purposes. The skewness parameter alone controls the allocation of mass with
respect to the mode, whereas the degrees of freedom parameter entirely accounts for
tail behaviour. The two parameters are, thus, clearly interpretable. Prior indepen-
dence is typically a very plausible assumption, which drastically simpli�es the process
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of choosing prior distributions: prior elicitation for each of them can simply be con-
ducted independently. From our empirical examples, it seems that prior independence
between these parameters is not substantially altered by the data information.

(c) The empirical analysis is very feasible indeed. The Gibbs sampler we construct uses
either standard algorithms or simple rejection methods that prove to work very e�-
ciently. The speed of execution is such that the analysis of quite challenging problems
is a real practical possibility, even for users with modest computing facilities.

APPENDIX: PROOFS

Proof of Theorem 1

For the Bayesian model in (3:1)� (3:4), E(
Qk

j=1
j�j jrj jy1; : : : ; yn) <1 if and only if

the integral

I� =

Z
<k�<+�N�<+

(
kY

j=1

j�j j
rj )��1f

nY
i=1

p(yij�; �; �; 
)gdP�d�dP�dP
 (A:1)

is �nite. Since f�(s) = f�(jsj) is decreasing in jsj, we obtain the following upper and lower
bounds for the sampling density p(yij�; �; �; 
):

2
�


 + 1




f�

�
� jyi � gi(�)j

h(
)

�
; (A:2)

with

h(
) =

(
maxf
; 1



g for the upper bound,

minf
; 1


g for the lower bound.

(A:3)

We now substitute each of these bounds inside the integral in (A:1). Applying Fubini's
Theorem, we �rst consider the integral with respect to � . Transforming from � to � =
�=h(
), immediately leads to the upper and lower bounds for I�:

2n
Z
<+

 
h(
)


 + 1




!n

dP


Z
<k�<+�N

(
kY

j=1

j�j j
rj )�n�1f

nY
i=1

f�(�jyi � gi(�)j)gdP�d�dP� ; (A:4)

with h(
) as de�ned in (A:3). Clearly, for both choices of h(
) in (A:3), the value of the
�rst integral in (A:4) lies in the interval (0; 1). In addition, the second integral in (A:4) is

�nite if and only if E(
Qk

j=1
j�j jrj jy1; : : : ; yn) < 1 under 
 = 1, thus obtaining Theorem

1. �

Proof of Theorem 2

Having a �nite rth order posterior moment of � is equivalent to a �nite integral

I� =

Z
<k�<+�N�<+

� r�1f
nY
i=1

p(yij�; �; �; 
)gdP�d�dP�dP
 : (A:5)
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We now substitute the bounds given in (A:2) � (A:3) for the sampling density inside the
integrand in (A:5). Considering �rst the integral with respect to � and transforming to
� = �=h(
), leads to upper and lower bounds for I� of the form

2n
Z
<+

h(
)n+r

(
 + 1



)n
dP


Z
<k�<+�N

�n+r�1f
nY
i=1

f�(�jyi � gi(�)j)gdP�d�dP� ; (A:6)

with h(
) as de�ned in (A:3). Note that the second integral in (A:6) is �nite if and only
if E(� rjy1; : : : ; yn) <1 under 
 = 1.
(A) Since the �rst integral in (A:6) is strictly positive for h(
) = minf
; 1=
g, it follows

that E(� rjy1; : : : ; yn) < 1 under P
 requires the same moment to be �nite under

 = 1.

(B) In order to obtain a su�cient condition, we consider h(
) = maxf
; 1=
g. The �rst
integral in (A:6) is then �nite if and only if

Z
<+

�
max

�

;

1




��r
dP
 <1; (A:7)

which is immediately ful�lled for r � 0, but not for r > 0.
Combining (A) and (B) proves Theorem 2. �

Proof of Theorem 3

The necessity of a �nite rth order posterior moment of � under 
 = 1 was already
established in Theorem 2. Thus, we just need to prove that, under the assumptions of
Theorem 3, (A:7) is also necessary.

I� , de�ned in (A:5), can be bounded from below as I� � I1+I2, where I1 restricts the
domain of integration to f� : gi(�) > yi for all ig; � 2 <+; � 2 N , and 
 � 1, whereas I2
covers f� : gi(�) < yi for all ig; � 2 <+; � 2 N , and 
 � 1. Integrating �rst with respect
to � , transforming to � = 
� for I1 and to � = �=
 for I2 leads to the result. �

Remarks

1. In the remainder of the Proofs we shall be using the fact that the Student distribution is
in the class of scales mixtures of Normals. In particular, the p.d.f. of a standard Student-t
with � degrees of freedom can be written as

f�(") =

Z 1

0

�
�

2�

�1=2

exp

�
�
�

2
"2
�
dP�; (A:8)

with P� a Gamma distribution with shape and precision parameters both equal to �=2 (i.e
with unitary mean).

Fern�andez and Steel (1996) examines Bayesian inference in the context of a linear
regression model with i.i.d. errors distributed as a known scale mixture of Normals. Thus,
�1; : : : ; �n, the mixing parameters corresponding to each of the observations, are i.i.d. with
some known probability distribution, say P�, on <+. Our setup now is slightly di�erent:
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�1; : : : ; �n are i.i.d. given �, with a Gamma(�=2; �=2) distribution, but the prior P� destroys
the independence between the mixing parameters, leading to the p.d.f.

p(�1; : : : ; �n) =

Z 1

0

(
nY
i=1

fG

�
�ij

�

2
;
�

2

�)
dP� : (A:9)

Despite this di�erence with Fern�andez and Steel (1996), many of the proofs and results
from the latter paper are useful for the proofs of the present paper; thus, we will frequently
refer to it in what follows.

2. The following result [see Whittaker and Watson (1927), chap. 12] will be used in the
sequel to provide bounds on the Gamma function: for z > 0,

�(z) = (2�)1=2zz�
1
2 exp(�z) expf�(z)g; (A:10)

with 0 < �(z) < K=z for some positive constant K. �

Proof of Theorem 4

Since, from Theorem 1, P
 does not a�ect the existence of the posterior distribution,
we consider the Bayesian model in (4:1)� (4:2) taking 
 = 1. Using the representation in
(A:8), the proof now proceed as follows:
(A) Consider the joint distribution of (y1; : : : ; yn; �; �; �1; : : : ; �n).
(B) Integrate out � as a k-variate Normal.
(C) Integrate out � using a Gamma distribution on �2, which requires n > k.
(D) Finally we are left with a function of (�1; : : : ; �n), which can be shown to be bounded

[see proof of Theorem 2 (ii) in Fern�andez and Steel (1996)]. Thus, it is integrable for
any probability distribution of (�1; : : : ; �n); in particular, it is integrable under (A:9).
�

Proof of Theorem 5

Again, from Theorem 1, we simply take 
 = 1.
(A) Following the reasoning in the proof of Theorem 2 (i) in Fern�andez and Steel (1996),

it is immediate that r < n � k is always required, for any choice of P� , for the rth

order posterior moment of �j to exist.
(B) Furthermore, from the proof of Theorem 2 (ii) in Fern�andez and Steel (1996) [see

(A:14) � (A:16) in that proof], we obtain that combining pj = 0 with r < n � k or
pj � 1 with r � n�k�pj leads to an rth order posterior moment of �j , for any choice
of P� .

(C) Finally we show that when pj � 1, posterior moments of �j of order r > n� k� pj do
not exist:
From Theorem 3 (ii) of Fern�andez and Steel (1996) we know that if r � n� k � pj +
�(n � k � pj + 1) [or, equivalently, � � fr � (n � k � pj)g=(n � k � pj + 1)], then
E(j�j jrjy1; : : : ; yn; �) = 1. Clearly, if r > n � k � pj , P�(0; fr � (n � k � pj)g=fn �
k � pj + 1g) > 0, which implies E(j�j jrjy1; : : : ; yn) =1. �
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Proof of Theorem 6

Again we take 
 = 1. From exactly the same argument used in Parts (A) and (B) of
the proof of Theorem 5 we know that E(j�j jrjy1; : : : ; yn) = 1 if r � n � k, whereas the
latter integral is �nite if pj = 0 and r < n� k or if pj � 1 and r � n � k � pj . Thus, we
only need to examine the case where pj � 1 and r 2 (n � k � pj ; n� k).

From the proof of Theorem 2 (ii) in Fern�andez and Steel (1996) [in particular, expres-
sions (A:14) � (A:16) in that proof], follows that if r < n� k and

Z
(0;1)n

�
�1

�2

�(n�k�pj�r)=2

p(�1; : : : ; �n) d�1 : : : d�n <1; (A:11)

with p(�1; : : : ; �n) as de�ned in (A:9), then E(j�j jrjy1; : : : ; yn) <1. Using Fubini's The-
orem we compute the integral in (A:11) in two steps: �rst we condition upon �, which
requires r � n � k � pj + �0 for a �nite integral. We then obtain a function of �, which
can be shown to be bounded by applying (A:10), whenever r < n� k � pj + �0; therefore
(A:11) holds for these values of r. �

Proof of Theorem 7

We start by considering 
 = 1.
(A) If r � �(n � k) we know from Theorem 4 (i) in Fern�andez and Steel (1996) that

E(� rjy1; : : : ; yn; �) =1 for all � 2 <+. Thus, E(� rjy1; : : : ; yn) =1 for any P� .
(B) We now consider �(n � k) < r < 0. From the proof of Theorem 4 (ii) in Fern�andez

and Steel (1996) [in particular, (A:23)� (A:24) in that proof], and with p(�1; : : : ; �n)
as de�ned in (A:9), we can deduce that

Z 1

0

Z
0<�1�:::��n�k<1

(
n�kY
i=1

�
1=2

i
)��(n�k+r)=2

n�k

(
n�kY
i=1

fG

�
�ij

�

2
;
�

2

�)
d�1 : : : d�n�kdP� <1;

(A:12)
implies a �nite rth order posterior moment of � . We now show that the inside integral
in (A:12), which shall be denoted by I(�), is a bounded function of �, and thus
integrable, for any P� . Since I(�) is continuous in �, we only need to prove that it has
�nite limits as � converges to zero and in�nity. To show that each of these limits is
�nite, we consider two di�erent upper bounds for I(�).

(B1) Limit as � !1:

Since �n�k = maxf�1; : : : ; �n�kg, we have (
Q

n�k
i=1

�
1=2

i
)�
�(n�k+r)=2
n�k � �

�r=2
n�k and

I(�) �

Z 1

0

�
�r=2
n�k fG

�
�n�kj

�

2
;
�

2

�
d�n�k: (A:13)

The latter integral is proportional to

�r=2�

�
� � r

2

�n
�
��
2

�o�1
; (A:14)

which, by applying (A:10), can be shown to have a �nite limit as � !1.



25

(B2) Limit as � ! 0:
We now perform the integral I(�) iteratively. In each of the n � k steps of the
integration we use the upper bound

Z
�

0

�!�1 exp(���)d� �
�!

!
; for any !; � > 0: (A:15)

This leads to an upper bound for I(�) proportional to

�r=2

(� + 1)n�k�1
�

�
(n� k)� � r

2

�n
�
��
2

�o�(n�k)
: (A:16)

Applying (A.10) leads to an upper bound for (A:16) which has a �nite limit as � ! 0.
(C) Finally we take r > 0: From Theorem 5 (ii) in Fern�andez and Steel (1996) we know

that if r � (n � k)�, then E(� rjy1; : : : ; yn; �) = 1. If r > 0, P� assigns positive
probability to the interval (0; r=fn � kg), which precludes a �nite rth order posterior
moment of � .

Combining (A)-(C) we obtain that, under 
 = 1, E(� rjy1; : : : ; yn) < 1 if and only if
�(n� k) < r � 0. Applying Theorem 2 concludes the proof. �

Proof of Theorem 8

Parts (A) and (B) of the proof of Theorem 7, together with Theorem 2, immediately
lead to Theorem 8 (i). In order to prove Theorem 8 (ii), we follow the reasoning in Part
(B) of the proof of Theorem 7, now considering r > 0. As was shown there, I(�) has
an upper bound proportional to the expression in (A:14), which is bounded for � > �0
provided that r < �0. �
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