
Wright State University
CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2006

FPGA Frequency Domain Based Gps Coarse
Acquisition Processor using FFT
Cyprian D. Sajabi
Wright State University

Follow this and additional works at: http://corescholar.libraries.wright.edu/etd_all

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all
Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact
corescholar@www.libraries.wright.edu.

Repository Citation
Sajabi, Cyprian D., "FPGA Frequency Domain Based Gps Coarse Acquisition Processor using FFT" (2006). Browse all Theses and
Dissertations. Paper 27.

http://corescholar.libraries.wright.edu?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://corescholar.libraries.wright.edu/etd_comm?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://corescholar.libraries.wright.edu/etd_all/27?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:corescholar@www.libraries.wright.edu

FPGA FREQUENCY DOMAIN BASED GPS COARSE

 ACQUISITION PROCESSOR USING FFT

A thesis submitted in partial fulfillment of the requirements for the degree of

 Master of Science in Engineering

By

CYPRIAN D. SAJABI

B.A. BIOLOGY, Earlham College, 1995

2006

Wright State University

WRIGHT STATE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

June 8, 2006

I HEREBY RECOMMEND THAT THE THESIS PREPARED
UNDER MY SUPERVISION BY Cyprian Sajabi ENTITLED
Design and Implementation Of an FPGA Frequency
Domain Based GPS Coarse Acquisition Processor
Using FFT BE ACCEPTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF Master of
Science in Engineering

 Chien-In Henry Chen, Ph.D.
 Thesis Director

 Fred Garber, Ph.D.
 Department Chair

Committee on
Final Examination

 Chien-In Henry Chen, Ph.D.

 Raymond Siferd, Ph.D.

 Marty Emmert, Ph.D.

 Dr. Joseph F. Thomas, Jr., Ph.D.
Dean, School of Graduate Studies

Abstract

Sajabi, David, Cyprian, M.S.E.E., Department of Electrical Engineering, Wright State
University, 2006.
FPGA Frequency Domain Based GPS Coarse Acquisition Processor Using FFT.

The Global Positioning System or GPS is a satellite based technology that has gained

widespread use worldwide in civilian and military applications. Direct Sequence Spread

spectrum (DSSS) is the method whereby the data transmitted by the satellite and received

by user is kept secure, low power and relatively noise-immune. The first step required in

the GPS operation is to perform a lock on the incoming signal, both with respect to time

synchronization and frequency resolution. Because of the need for reduced time to lock

and also reduced hardware, algorithms based in the frequency domain have been

developed. These algorithms take advantage of the time to frequency matrix operation

known as the fast Fourier transform or FFT. For this thesis, a Direct Sequence Spread

Spectrum Coarse Acquisition code processor based on the FFT was implemented in

VHDL and targeted to a Xilinx Virtex –II Pro Field Programmable Gate Array (FPGA).

The use of the FFT allows simultaneous lock on coarse acquisition (C/A) code and carrier

frequency. Because of hardware limitations, a novel technique of sub-sampling is used in

this system to obtain data block sizes that match hardware limitations. In addition, design

challenges related to scheduling and timing were addressed, allowing a system with 19

pipeline stages to be built. The system, which fits on a Xilinx Virtex-II pro XC2VP70

FPGA, uses 10 ms of data to perform the lock with 5.5 ms of processing time at 100 MHz

and theoretically can operate on signals 20 db below the noise floor.

iii

TABLE OF CONTENTS

 1 INTRODUCTION 1
1.1 GPS Background 1
1.2 Motivation 2
1.3 Spread Spectrum Basics 2
1.4 The Fast Fourier Transform 7

1.4.1 Direct Computation of the DFT.. 8
1.4.2 Divide-and-Conquer Approach .. 9
1.4.3 DECIMATION-IN-TIME APPROACH TO COMPUTING THE

DFT ... 12
1.5 Radix-2 FFT Algorithms 12
1.5 Hardware Implications of FFT 14

 2 STATEMENT OF NEED 17
2.1 The Field Programmable Gate Array (FPGA) 17
2.2 GPS Locking in on GPS Coarse Acquisition Code 17

2.2.1 Spreading Data with C/A Code .. 18
2.2.2 Despreading at the Receiver .. 19
2.2.3 Frequency Steps In Acquisition.. 22
2.2.4 C/A Code Multiplication and The FFT ... 23

 3 FREQUENCY DOMAIN BASED APPROACHES TO ACQUISITION.
 25

3.1 Time-Domain Circular Correlation 25
3.2 Resolving range and Doppler uncertainties 26
3.3 Acquisition By FFT Based Circular Correlation 30
3.4 Threshold Values 33

 4 ARCHITECTURE AND DESIGN CONSIDERATIONS 34
4.1 Design Choices 34

4.1.1 Buffering ... 34
4.1.2 Sample Rate Conversion ... 35
4.1.3 Mapping 5,000 Point DFT To Hardware... 36
4.1.4 Direct Digital Synthesizer (DDS) Challenges 38

 5 GLOBAL VIEW OF DATAFLOW THROUGH THE SYSTEM 39
5.1 Data Capture Domain. 39

5.1.1 Details of Datapaths In The Data Capture Domain 40
5.1.1.1 The Dual Port RAMs 40
5.1.1.2 Counters 41
5.1.1.3 The Direct Digital Synthesizer (DDS) 42
5.1.1.4 The C/A Code Generator (CCG) 43
5.1.1.4 The Complex Multiplier 43
5.1.1.5 Complex Multiplexor (CM) 44

iv

5.1.2 Controllers in the Data Capture Domain. ... 44
5.1.2.1 Front_dual_port_control (FDPC) 44
5.1.2.2 DDS / Data Controller (DDC) 45
5.1.2.3 Supplementary Control for Subsampling (SCS) 46
5.1.2.4 Pre FFT Control (PFC) 47
5.1.2.5 C/A Code Control (CCC) 47
5.1.2.6 Some Observations and Notes on Synchronization: 48

5.2 FFT 4,096 Domain 49
5.2.1 Overview of Operations in the FFT 4,096 Domain........................... 49
5.2.2 Datapath And Control Operations In The FFT 4,096 Domain 52

5.2.2.1 FFT_4096 52
5.2.2.2 Counter_2048 55
5.2.2.3 RAM_2048 55
5.2.2.4 Cplx_mult_1 55
5.2.2.5 Demultiplexer_2 (DEMUX 1_2) 56

5.2.3 Controllers in the FFT_4096 Domain .. 56
5.2.3.1 IFFT_Cont (IC) 56

5.3 IFFT_2048 Domain. 58
5.3.1 Overview of Operations the IFFT_2048 Domain.............................. 59
5.3.2 Details of Datapaths in the IFFT_2048 Domain 59

5.3.2.1 IFFT_2048 59
5.3.2.2 FIFO_2048 60
5.3.2.3 DEMUX 1_10 61

5.3.3 Controllers in the IFFT_2048 Domain .. 62
5.3.3.1 IFFT_OP_CONT (IOC) 62

5.3.4 Timing Issues Post IFFT_2048 ... 62
5.4 The 10 Point DFT/ Sorting Domain 63

5.4.1 Overview of Operations in the 10 Point DFT/ Sorting Domain. 64
5.4.2 Details of Datapaths in The 10-Point DFT/Sorting Domain 64

5.4.2.1 DFT_10 64
5.4.2.2 Max_find_0 66
5.4.2.3 Max_find_1 67
5.4.2.4 Max_find_2 68
5.4.2.5 Final Calculation Circuitry 68

5.4.2.5.2 FDM_0 69
5.4.2.5.2 FDM_1 69

5.4.3 Controllers in the DFT_10/Sorting Domain 70
5.4.3.1 Max_find_1 Control 70
5.4.3.1.2 Max_find_2_control 71

5.5 Simulation results of the Processor 71

 6 Finite Word-length Considerations. 73
6.1 Growth of the Bits in the Datapath Due to Addition and Multiplication 73
6.2 Effects of Truncation on the Datapath. 74
6.3 Resizing without changing value. 76
6.4 Truncation and resizing schedule for C/A processor 76

v

 7 HARDWARE REQUIREMENTS FROM XILINX REPORTS 79

 8. COMPARISONS WITH CURRENT DESIGNS 81

 9. CONCLUSIONS AND FUTURE WORK 83
9.1 Conclusions 83
9.2 Future Work 83

 APPENDIX 85
A.1 MATLAB CODE FOR C/A PROCESSOR BLOCKS 85

A.1.1 C/A Code Generation .. 85
A.1.2 C/A Code Sampling ... 86
A.1.3 Generation of real-world data. ... 87
A.1.4 C/A code acquisition function. .. 88
A.1.5 Subsampling Matlab Function. .. 90

 REFERENCES 91

vi

List of Figures
Figure Page

Figure 1.1 Direct Sequence code spreading of data.. 6

Figure 1.2 DS- Concept, before and after despreadinga .. 6

Figure 1.3 Basic Butterfly Computation in the FFT Algorithm 13

Figure 1.4 Three stages in the computation of an N = 8-point DFT (Proakis P. 459)...... 13

Figure 2.1 Autocorrelation of 1,023 C/A code chips.. 21

Figure 2.2 AutoCorrelation 5,000 C/A code chips. .. 21

Figure 2.3 C/A coded input signal multiplied by C/A code .. 24

Figure 3.1 The Ambiguity Function Concept ... 27

Figure 3.1 A block diagram of the proposed C/A code acquisition process.................... 32

Figure 4.1. Count sequence of LFSR_enable module showing enable signal.................. 36

Figure 4.2. C/A code generator showing sample rate conversion 36

Figure 4.3 Autocorrelation properties of C/A code before and after “subsampling.” 37

Figure 5.1. The Data Capture Domain.. 39

Figure 5.2 Dual Port RAM used in Data Capture Domain ... 41

Figure 5.3 Schematic symbol of the Direct Digital Synthesizer....................................... 42

Figure 5.4 Schematic Symbol of C/A code Generator ... 43

Figure. 5.5. Block diagram of 4,096 FFT domain .. 51

Figure 5.6: Synchronization of Beginning of Data Frame with index for FFT. 53

Figure 5.7 FFT_4096 symbol (overflow not shown).. 54

Figure 5.8, Unloading results after fft_done has pulsed.. 54

Figure 5.9 Complex multiplier Schematic .. 56

Figure 5.10 The IFFT_2048 Domain.. 58

vii

Figure 5.11 Schematic of IFFT_2048 module... 60

Figure 5.12 FIFO 2,048 IP Core ... 61

Figure 5.13 Simulation showing that FIFO collisions are avoided. 63

Figure 5.14 Block Diagram of 10 Point DFT/Sorting Domain .. 63

Figure 5.15 DFT_10 Module Sample Simulation... 66

Figure 5.16 Behavioral simulation showing successful emulation of MATLAB code. ... 72

Figure 6.1 Action of std_resize to smaller size... 76

viii

List of Tables
Table Page

Table 1.1 Complexity of Direct Computation of the DFT vs FFT Algorithm........... 14

Table 5.1 Synthesis Results of FFT_10 showing FPGA resources utilized................ 65

Table 6.1 Examples of Truncation Error for positive and negative numbers 75

Table 6.2 Theoretical versus implemented truncation and resizing schedule........... 77

Table 7.1 Overall Virtex-II Pro 70 FPGA Resource Usage of Processor 79

Table 7.2 Analysis of Individual Synthesis Results of Major Components 80

Table 8.1 Comparisons with some Current GPS Receivers.. 82

ix

Acknowledgements

This work was supported in part by the program of Receiver and Processing Concepts
Evaluation (RAPCEval), Department of Defense, Air Force Research Lab, USA.

I especially thank my wife, Nacim Sajabi and my whole family both locally and overseas
for their patience, support and strong encouragement throughout this thesis. I know it has
not been easy, thanks for hanging in there and helping keep up my spirits.

I would like to heartily thank my advisor, Dr. Henry Chen for his invaluable insights
unflagging energy, and facilitation of my thesis work over the last year and a half. It has
been a great learning and growth journey for me. Thank you ever so much Dr. Chen.

The members of my thesis defence committee have my heartfelt thanks for taking the
time out of their busy schedules to read my thesis and advise me in big and small ways
throughout the circuit design process.

To all the folks in the VLSI lab, it has been great spending time with you, debating EE
and life topics and sharing all our various experiences on our respective thesis paths. It is
always easier to go through these experiences together rather than singly.

I would also like to thank numerous individuals from the Wright Patterson Air force Base
who gave me pointers on tips on how to make the design simpler and practical. The list
includes, but is not limited to David Lin, Dr. James Tsui, James Stephens, Ted
Vandewerker, George Gonczy, Ed Huling, and Cliff Bullmaster.

To Vicky Slone, and Jenny and Barry Woods and Marie Donohue, thank you ever so
much for helping me fill in all the big and small details that would otherwise go unfilled
in all my haste and myopic focus on the all consuming “circuit”.

x

DEDICATION

I dedicate this thesis to the memory of my beloved parents, Lorna Hope Forbes Sajabi

and Samuel Sembuze Sajabi, who always encouraged their children, natural or adopted,

to excel in all that they do.

xi

1 INTRODUCTION

1.1 GPS Background

The Global Positioning System, usually called GPS is referred to by the United

States Military as NAVSTAR GPS - Navigation Signal Timing and Ranging Global

Positioning System. GPS has a number of applications such as ranging and targeting of

ammunition, civilian navigation, and tracking of goods, personnel, and vehicles, just to

name a few [1].

 The rapid development in Very Large Scale Integration (VLSI) means that GPS

units can now be purchased for less than $100.00 or integrated into Cell phones, PDAs

and vehicle navigation systems. There is almost no limit the range of applications for

GPS and it promises to become as fundamental as the telephone in modern society.

GPS is based on 24 orbiting satellites in Intermediate circular orbit (ICO) orbiting at

around 11,000 nautical miles in such a manner that there will always be at least four

satellites visible from anywhere on earth [2]. The precise position and velocity of each

satellite is known and is used as a reference point for the GPS calculations. Each satellite

is generating and continuously transmitting a Pseudorandom Noise (PN) sequence of

ones and zeroes that can be used to identify it uniquely. This sequence is combined with

a very low frequency signal that is used in further data processing for the GPS process.

The GPS receiver unit can generate the same PN sequences as the satellites and uses the

similarity or correlation between these and the received sequence to identify which

satellite or satellites are visible at a given time. [2] This step of identifying the satellites

is part of an overall process known as acquisition. Acquisition is only the first step in

the GPS process and is required for the next phases of GPS to proceed. This thesis will

1

focus on initial acquisition, as the other phases of the GPS are beyond the scope of this

project.

1.2 Motivation

This thesis is based on a proven model of a GPS acquisition system on MATLAB.

The use of powerful mathematical software such as MATLAB to model systems is very

important because it allows design and prototyping to take place at a high level of

abstraction. In this way proof-of-concept can be demonstrated efficiently and if needed,

rapid modifications can be made to a model under study. The acquisition system model

for this thesis is based in a frequency-domain approach, which, although using more

hardware than a time-domain approach, is considerably faster [3]. The need for rapid

algorithms to carry out GPS acquisition is critical, and in most cases is worth the

hardware cost. A rapidly moving system such as an airplane or rocket cannot afford large

delays when determining its relative position and velocity.

1.3 Spread Spectrum Basics

Now, a few words about Spread Spectrum technology are in order. A spread-

spectrum communication system is one that uses much more bandwidth than would

ordinarily be needed simply for information transmission. Sometimes the transmitted

bandwidth is as much as 105 times the information bandwidth. Spread Spectrum

technology was first used developed by the US Navy in the 1950 and was conceived by

Hedy Lamar, a Hollywood actress, during WWII [4]. DSSS techniques are ubiquitous in

wireless devices such as cell phones, Wireless Ethernet standard 802.11, and of course

2

GPS units. DSSS technology allows multiple users access to the same frequency band at

the same time, leading an efficient use of spectrum. DSSS is designed to operate in low

signal to noise ratio environments, and this allows transmitters to use low power signals,

major factor to consider when designing a GPS system. Another benefit of DSSS is that

it is resistant to jamming (intentional or otherwise) by narrowband signals, making it

ideal for military applications and critical civilian applications. In a Spread Spectrum

system, the bandwidth of the transmitted signal is much greater than minimum bandwidth

needed to transmit it. For example a typical GPS satellite data signal bandwidth is about

50 Hz, so 100 Hz is the minimum bandwidth needed to transmit this signal. The spread

spectrum bandwidth is over 2 MHz - a 20,000 fold increase in the needed bandwidth to

transmit the signal if double sideband transmission is used. This spreading of the

spectrum is accomplished by modulating or multiplying the information with a wideband

encoding signal. There are three types of techniques that are generally thought of as

spread spectrum. They are direct sequence, frequency hopping, and “chirp” modulation.

This thesis is focused on the direct sequence method, so the details will only be given on

this method. In direct sequence, there is modulation of a carrier by a digital code

sequence whose “chip” rate is much higher than the information signal bandwidth.

The basis of spread spectrum technology is expressed by Claude Shannon in the

form of channel capacity:

⎟
⎠
⎞

⎜
⎝
⎛ +=

N
SWC 1log 2 (1.1)

C = capacity in bits per second, W = bandwidth in Hz

N = noise power, S = signal power

3

This equation shows that the higher the signal to noise ratio and the higher the bandwidth,

the more information we can transmit though a channel.

If we change to natural logarithms and rearrange the equation, we get the following

expression:

⎟
⎠
⎞

⎜
⎝
⎛ +=

N
S

W
C

e 1log44.1 , (1.2)

and for small S/N of less than 0.1 (which is the case in a GPS system),

⎟
⎠
⎞

⎜
⎝
⎛≈

N
S

W
C 44.1 (1.3)

Further rearranging to make W the subject of the equation gives

⎟
⎠
⎞

⎜
⎝
⎛≈

44.1*S
NCW (1.4)

From this equation we can see that if we have a fixed channel capacity and fixed

signal strength, then in the presence of a large amount of noise, we need to increase the

transmitting bandwidth to counteract the effects of the noise. This is the price that needs

to be paid to ensure secure and error free transmission in a noisy environment. There are

various methods of embedding the information onto the spread spectrum signal. One

common method is to add the information to the spectrum spreading code before a carrier

wave is added. Alternately, one may modulate the information and then apply the

spreading code. Each approach has pros and cons which need to be weighed before

proceeding. There are numerous reasons for using spread spectrum technology. Below

are just a few:

1. Selective addressing capability

2. Code division multiplexing is possible for multiple access (CDMA).

4

3. Low density spectra for signal hiding

4. Message screening from eavesdroppers

5. High resolution ranging

6. Interference rejection. (High Jamming Margin)

The major figure of merit for a spread spectrum system is the jamming margin. It is

closely related to another property of the system known as process gain. The process

gain is simply the ratio of the spread bandwidth to the minimum bandwidth needed to

transmit a signal. In a spread spectrum signal process gain is given by:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

o

RF
P R

BWG
inf

, (1.5)

where RF bandwidth (BWRF) is the bandwidth of the transmitted spread spectrum signal

and the information rate (Rinfo) is the data rate in the information base-band channel.

Processing Gain is inherent in the transmission of the system and is an upper

bound on the quality of the system. No real system achieves its potential process gain. A

more realistic figure of merit is the jamming margin. To understand jamming margin, we

need to discuss how the spectrum is “de-spread” at the receiver end. Basically, what

happens at the receiver is as follows: First carrier needs to be wiped off, base banding the

incoming signal. Then and the incoming signal is correlated with a local reference code

identical to the code that was used to spread the spectrum. If there is a match between

the local code and the signal, the spectrum collapses back to its original bandwidth before

spreading. Any uncorrelated signal, such as a jamming signal or noise, is spread by the

local code to the local reference bandwidth. A filter is then used to reject all but the

desired narrowband signal of interest. One thing to note is that the spreading codes tend

to be periodic. They are generated by a device known as a Linear Feedback Shift

5

Register or LFSR. This periodicity is important in the synchronization of the incoming

signal with the locally generated version of the code. Figures 1.1 and 1.2 give an

overview of the spectrum changes occurring in a spread spectrum system.a

Figure 1.1 Direct Sequence code spreading of data

Figure 1.2 DS- Concept, before and after despreadinga

This process results in enhancement of the desired signal and attenuation of the

spurious signals. The difference in output and input signal to noise ratios is defined as

the process gain. Ideally this should also be equal to the jamming margin. In reality the

jamming margin is less than the process gain. Jamming margin takes into account internal

a Source : http://cas.et.tudelft.nl/~glas/ssc/techn/techniques.html

6

losses and the minimum SNR needed to decode the received information. Jamming

margin in dB is expressed as:

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+−=

out
sysPj N

SLGM , (1.6)

Where Lsys = system implementation losses, and (S/N)out = SNR at the information

output.

A sample calculation with a system that has a 30-dB process gain,

minimum(S/N)out of 10 dB and Lsys of 2dB would have an 18-dB jamming margin (Mj).

Therefore, if the jamming signal is more than 18-dB above the signal of interest, the

system would not operate properly [5].

1.4 The Fast Fourier Transform

The fast Fourier transform (FFT) is based on the discrete Fourier transform

(DFT), an algorithm that performs a frequency analysis on a discrete sampled signal. The

DFT transforms a sequence of N complex numbers {xn1, xn2… xnN-1} in the time domain

to a sequence of N complex numbers {XK1, XK2 ... XKN-1} in the frequency domain. The

formula is as follows:

 (1. 7)

The DFT gives a representation of the signal in the frequency domain and is

useful for understanding where in the frequency domain most of the energy or

information in a signal is concentrated.

The inverse DFT or IDFT translates data from the frequency domain to the time

domain and the formula is as follows

7

 (1.8)

The DFT and IDFT are used extensively in digital signal processing algorithms such as

linear filtering, correlation analysis and spectrum analysis. [6]

1.4.1 Direct Computation of the DFT

“For a complex valued sequence x(n) of N points, the DFT may be expressed as

∑
−

=
⎥⎦
⎤

⎢⎣
⎡ +=

1

0

2sin)(2cos)()(
N

n
IRR N

knnx
N
knnxkX ππ

 (1.9)

∑
−

=
⎥⎦
⎤

⎢⎣
⎡ −−=

1

0

2cos)(2sin)()(
N

n
IRI N

knnx
N
knnxkX ππ

 (1.10)

The direct computation of (1.9) and (1.10) requires:

1. 2N2 evaluations of trigonometric functions.

2. 4N2 real multiplications.

3. 4N (N-1) real additions.

4. A number of indexing and addressing operations.

These operations are typical of DFT computational algorithms. The operations in items 2

and 3 result in the DFT values XR(k) and XI(k). The indexing and addressing operations

are necessary to fetch the data x(n), 10 −≤≤ Nn , and the phase factors (WN) and to

store the results.”[7]

The DFT and IDFT are very computation-intensive, and for large blocks of data are not

very practical in real-time systems. Efficient computation of the DFT is carried using

what are termed Fast Fourier Transforms or FFTs. The two kinds of FFTs used in this

thesis are the divide-and-conquer approach and the decimation-in-time approach.

8

1.4.2 Divide-and-Conquer Approach

If we adopt a divide-and-conquer approach, the DFT can be carried out in a fairly

efficient manner. By prime factoring, the N point DFT is broken into successively

smaller DFTs, whose results are then used to compute the final DFT.

The algorithm below is one of many that can be used to accelerate the calculation of the

DFT:

 Algorithm to Directly Calculate the DFT of any sequence using the

 Divide and Conquer Approach.

1. Factor N into the product of two prime integers; N = LM;

2. We can zero pad if needed to ensure factorization

3. Store the signal column-wise in L rows and M columns.

4. Compute the M-point DFT of each row.

5. Multiply the resulting array by the phase factors

6. Compute the L-point DFT of each column

7. Read the resulting array row-wise

Here is an example to illustrate the algorithm. Consider the computation of an N = 10

DFT. The following summary information is given.

• a = [a0 a1 a2 a3 a4 a5 a6 a7 a8 a9]; a is assumed to be complex.

• b = fft(a); b = [A0 A1 A2 A3 A4 A5 A6 A7 A8 A9]; b is complex.

• The number 10 can be factored into 2 * 5. We select L = 5 and M = 2.

9

Step 1: Store the 10-point sequence column-wise in 2 columns. (M = 2)

row1 a(0,0) = a0 a(0,1) = a5

row2 a(1,0) = a1 a(1,1) = a6

row3 a(2,0) = a2 a(2,1) = a7

row 4 a(3,0) = a3 a(3,1) = a8

row5 a(4,0)= a4 a(4,1) = a9

Step 2: Compute the 2-point DFT on each row

f(0,0) = a0 + a5= f0 f(0,1) = a0 - a5 = f5

f(1,0) = a1 + a6 = f1 f(1,1) = a1 - a6 = f6

f(2,0) = a2 + a7 = f2 f(2,1) = a2 - a7 = f7

f(3,0) = a3 + a8 = f3 f(3,1) = a3 - a8 = f8

f(4,0)= a4 + a9 = f4 f(4,1) = a4 - a9 = f9

10

Step 3: Multiply each of the terms f(l,q) by the phase factors

f(0,1)* = f5*1
=g(0,1) = g5

f(0,0)* = f0*1
=g(0,0) = g0

f(1,1)* = f6* (0.8090 - 0.5878i)

=g(0,2) = g6

f(1,0)* = f1*1
=g(1,0) = g1

f(2,1)* = f7* (0.3090 - 0.9511i)
=g(0,3) = g7

f(2,0)* =f2*1
=g(2,0) = g2

f(4,1)* = f9* (-0.8090 - 0.5878i)
=g(0,5) = g9

f(3,1)* = f8* (-0.3090 - 0.9511i)
=g(0,4) = g8

f(4,0)* = f4*1
=g(4,0) = g4

f(3,0)* = f3*1
=g(3,0) = g3

qlW .
10

0.0
10W

0.1
10W

0.2
10W

0.3
10W

0.4
10W

1.0
10W

1.1
10W

1.2
10W

1.3
10W

1.4
10W

Step 4: Compute the 5-point DFT of each column. A(k) = DFT(g(n))

Step 5: Read the resulting array row-wise

A(0,0) = A0 A(0,1) = A1

A(1,0) = A2 A(0,2) = A3

A(2,0) = A4 A(0,3) = A5

A(3,0) = A6 A(0,4) = A7

A(4,0) = A8 A(0,5) = A9

11

1.4.3 DECIMATION-IN-TIME APPROACH TO COMPUTING THE DFT

One of the most efficient forms of the FFT is the decimation in time FFT. It is derived as

follows:

 If we perform the substitution: ., where WN
Nj We =− /2π

N is known as the phase factor,

then the DFT then becomes:

∑
−

=

=
1

0
)()(

N

n

kn
NWnxkX . (1.11)

Similarly, the IDFT becomes:

∑
−

=

−=
1

0

)(1)(
N

n

kn
NWkX

N
nx . (1.12)

Using the properties of complex exponentials, we discover two interesting characteristics

in the phase factors that allow us to simplify the DFT and IDFT computations. These two

characteristics are:

Symmetry Property: (1.13)
2/Nk

N
k

N WW +=−

Periodicity Property: (1.14)
Nk

N
k

N WW +=

All the computationally efficient FFT algorithms exploit these two basic characteristics

of the phase factor.

1.5 Radix-2 FFT Algorithms

By far the most widely used FFT algorithm is the radix-2 FFT algorithm. If N is a power

of 2, then the dataset lends itself to a radix-2 FFT algorithm. The mathematical details of

12

implementation of the radix-2 FFT algorithm are beyond the scope of this thesis, but a

brief description here will suffice.

1 The data set is successively divided (or decimated by 2) into odd and even sequences

until resulting sequences are reduced to one-point sequences.

2 These one point sequences are then operated on and successively combined to

produce the final results.

The basic operation at each stage, as illustrated in figure 1.3 is know as a butterfly. In this

operation, take two complex numbers (a,b) multiply b by the appropriate phase factor and

then add and subtract the product from a to form two new complex numbers (A,B). The

combination of the results of each butterfly is shown in figure 1.4. [8]

a A = a + WNb

B = a - WNb WNb
b

-1

Figure 1.3 Basic Butterfly Computation in the FFT Algorithm

Figure 1.4 Three stages in the computation of an N = 8-point DFT (Proakis P. 459)

13

An analysis of the reduction in computations in a radix-2 FFT versus a straight DFT is

shown below in table 1.1

Table 1.1 Complexity of Direct Computation of the DFT vs FFT Algorithm

Number of

Points

N

Complex

Multiplications in

Direct Computation

N2

Complex

Multiplications in

FFT algorithm

(N/2) log2 N

Speed

Improvement

Factor

4 16 4 4.0

8 64 12 5.3

16 256 32 8.0

32 1,024 80 12.8

64 4,096 192 21.3

128 16,384 448 36.6

256 65,536 1,024 64.0

512 262,144 2,304 113.8

1,024 1,048,576 5,120 204.8

There are a number of other kinds of FFTs such as Radix-4 and split Radix, which are

also commonly used.

1.5 Hardware Implications of FFT

There are numerous multiplications at each butterfly stage of the FFT, which

potentially leads to bit growth. The following excerpt from the Xilinx fast Fourier

14

transform Datasheet gives a summary of the considerations surrounding this bit growth:

“For a radix-4 Decimation in Time FFT (4,096 is a radix-4 number), the values computed

in a butterfly stage (except the second) can experience a growth to 657.524 ≈ . For

radix-2 (2,048 is a radix-2 number), the growth can be up to 414.221 ≈+ .

 Various approaches are used to deal with this dynamic range expansion. There are three

main approaches:

• Performing the calculations with no scaling and carrying all significant integer

bits to the end of the computation.

• Scaling at each stage using a fixed-scaling schedule

• Scaling automatically using block-floating point

All significant integer bits are retained when doing full-precision unscaled

arithmetic. The width of the data path increases to accommodate the bit growth through

the butterfly. The growth of the fractional bits created from the multiplication are

truncated (or rounded) after the multiplication. The width of the output will be the (input

width + number of stages + 1). This will accommodate the worst case scenario for bit

growth. For example, a 1024-pt transform with an input of 16 bits consisting of 1 integer

bit and 15 fractional bits, will have an output of 27 bits with 12 integer bits and 15

fractional bits.

When using scaling, a scaling schedule is used to scale by a factor of 1, 2, 4, or 8

in each stage. If scaling is insufficient, a butterfly output may grow beyond the dynamic

range and cause an overflow. As a result of the scaling applied in the FFT

implementation, the transform computed is a scaled transform.... If a radix-4 algorithm

uses a scaling schedule of all 2’s, the factor of 1/s will be equal to the factor of 1/N in the

15

inverse FFT equation. For radix-2, a scaling schedule of all 1’s provides the factor of 1/N.

Otherwise, additional scaling is necessary.”

With block floating point, each data point in a frame is scaled by the same

amount, and the scaling is tracked by a block exponent. Scaling is performed only when

necessary (to prevent data overflow), which is detected by the core. As with unscaled

arithmetic, for scaled and block floating point arithmetic, the core does not have a

specific location for the binary point. The location of the binary point in the output data is

inherited from the input data and then shifted by the scaling applied. [9]

16

2 STATEMENT OF NEED

2.1 The Field Programmable Gate Array (FPGA)

 The Field Programmable Gate Array or FPGA is an attractive hardware platform

for implementation of signal processing algorithms. It provides a compromise between

flexibility of a general purpose processor (GPP) and the speed of a dedicated Application

Specific Integrated Circuit (ASIC). The development of an algorithm on an FPGA is not

as rapid as a software approach for a GPP, but is considerably more rapid than a full

custom design. In addition, the FPGA is easily reprogrammable and carries out many

more effective operations per clock cycle than a GPP [10].

2.2 GPS Locking in on GPS Coarse Acquisition Code

The “lock” on a GPS signal is accomplished initially via the coarse acquisition or

“C/A” code. Subsequent to this, the system will proceed to lock onto another code

known as the P code using information gathered from the data embedded in the C/A

code.

Under normal conditions GPS signal strength is about 130 dBm in a bandwidth of

about 2 MHz where the thermal noise at R0 is about -111 dBm [11]. In this case, 1 ms of

data is adequate to acquire the signal. However, in many cases, such as indoors or in

cloudy or forested areas, the GPS signal is 20 dB below the noise floor (-131 dBm), so

instead of the usual 1 ms of data usually required, a receiver may have to process 10 ms

of data to acquire the signal [12]. This provides special challenges for extracting the

phase and carrier information from the received signal. The computational and time

requirements are quite large, and if the acquisition is attempted in the time domain,

17

something on the order of 4*N2 multiplications and additions are required [13], where N

represents the number of data samples. These computational demands discourage the

performing acquisition in the time domain, especially in a weak signal environment

where repeated locks may be required. A number of approaches, based in the frequency

domain, have been developed to deal with this challenge. One way to speed up the

acquisition process is to move the intermediate operations from the time domain to the

frequency domain. This results in reduced time and power requirements for the complete

operation. The FFT-and-multiply implementation of circular correlation is a very popular

and standard method of transferring the correlation operation to the frequency domain.

This is followed by an IFFT, which transfers the finished results back to the time domain

[13, 14]. If a fast Fourier Transform (FFT) is used, the number of calculations is reduced

to (2*log2*2N+l) * 2N additions and half of the number of multiplications as before.

Compared with the time domain approach the overall efficiency of the system improves

exponentially as the number of data points increases.

There have been numerous software approaches to GPS acquisition because of

their relative flexibility, but if real-time processing is wanted for long blocks of data, a

hardware approach remains the most attractive because of speed of operation [15, 16, 17].

The following sections will cover the GPS C/A/ lock Algorithm in more detail.

2.2.1 Spreading Data with C/A Code

Each of the 24 GPS satellite generates a number of unique PN sequences know as

coarse acquisition code (C/A code), and precision code (P-code). This analysis will focus

on the C/A code acquisition because this is the fundamental step in the GPS process.

18

Within each satellite, the C/A code is generated by a specialized class of PN code

generators known as Gold Code generators, which are beyond the scope of this thesis.

The C/A code is generated at a rate of 1.023 MHz and sampled at 5 MHz. The 50 Hz

GPS navigation data that is needed for performing lock on the P code is also sampled at 5

MHz and multiplied by the C/A code samples. The product of this multiplication is now

termed the C/A GPS signal. We now have a 2.046 MHz spread spectrum signal that is

ready for transmission. The following step is the mixing of the spread spectrum signal up

to 1575.42 MHz using Binary Phase shift keying or BPSK. In BPSK, the phase φ of the

carrier is π± , depending on whether the signal is a ‘1’ or a ‘0’. The satellite then

transmits the GPS C/A signal at a center frequency of 1575.42 MHz (L1). The

transmitted signal can be written as:

)2cos()()(11 φπ tftDtCAS cL ≡ (2.1)

Where SL1 is the signal at L1 frequency, Ac is the amplitude of the C/A code, C (t) = 1±

represents the C/A code, D (t) = 1± is the navigation data code, f1 is the L1 frequency

in Hz, and φ is the initial phase of the carrier. [18]

2.2.2 Despreading at the Receiver

At the receiver side, in order to obtain the navigation data, SL1 has to be down

converted back to base band and C(t) has to then be stripped from the signal yield D(t).

Base-banding involves multiplying SL1 by cos(2πf1tφ). This is a very simplified

approach to basebanding, and in reality a multi-stage approach is used. C(t) then has to

be stripped from the resulting signal. This is achieved by a point multiplication with a

19

locally generated copy of C (t). The process of stripping the C (t) from a spread spectrum

signal is often called “despreading” because the resulting spectrum is collapsed back to

its original bandwidth-in our case 100 MHz. If the despreading is successful, the

navigation data, D (t) is available and can be used to perform lock on the P code. If the

despreading is not successful, the process of point multiplying the two signals needs to be

repeated for different delays of the locally generated code. This process basically

amounts to an autocorrelation function, which generally has its maximum when the two

sequences are aligned. The mathematical representation of the correlation function, a(n)

between two discrete time signals, x(n) and h(n) and is given as:

∑
=

+=
N

m
mnhnxna

0
)()()(, (2.2)

where N is the number of sample points in either discrete time signal.

The figures below show the autocorrelation properties of 5,000 samples of C/A

code and 1,023 samples of C/A code. It is apparent that the incoming signal and the

locally generated code need to be very closely aligned to give a strong correlation peak

needed for lock. If the two are not properly aligned, the spectrum remains spread and

acquisition cannot follow. Another point to note is that the magnitude of the correlation

peak is equal to the number of samples of data. Therefore if there is a very weak signal, a

longer data record is needed for acquisition.

20

960 980 1000 1020 1040 1060 1080

0

200

400

600

800

1000

st
re

ng
th

 o
f c

or
re

la
tio

n

number of chips out of phase

Figure 2.1 Autocorrelation of 1,023 C/A code chips

4960 4970 4980 4990 5000 5010 5020 5030 5040 5050

0

1000

2000

3000

4000

5000

number of chips out of phase

st
re

ng
th

 o
f c

or
re

la
tio

n

Figure 2.2 AutoCorrelation 5,000 C/A code chips.

21

The acquisition process in complicated by the fact that the receiver is moving

relative to the satellite. This relative movement introduces a Doppler shift in frequency

into the received signal. This Doppler shift must be accounted for otherwise acquisition

is bound to fail. For a low speed vehicle, the Doppler shift is in the range of KHz.

For a high speed aircraft, the shift is in the range of

5±

10± KHz [19]. Because of the

unknown Doppler shift, the receiver must attempt a number of down conversion

multiplications and select the one that gives an output that is closest to base band.

A successful acquisition therefore gives two important parameters about the

received C/A code, namely the code phase and the Doppler shift. It is clear then that C/A

code acquisition is a two-dimensional search among a number of C/A code phases and

Doppler shifts. These two parameters are continually used to keep a lock on the

incoming navigation data, which are needed to lock onto the P code.

One can perform C/A “acquisition” on two consecutive 10 ms of data. Between

two consecutive sets of 10 ms of data there is at most one navigation data bit phase

transition because the navigation data frequency is 50 Hz. Therefore, one set of these

data will have no data bit transition and can result in successful acquisition. [20]

2.2.3 Frequency Steps In Acquisition

It is necessary to determine the down conversion frequency steps needed in

acquisition. Let us assume a KHz10± Doppler range. The frequency step is closely

related to the length of data used. One chip difference between locally generated C/A

code and the input signal will result in almost zero correlation. If the signals are out of

step by half a chip, then there is partial correlation between them. Therefore the

22

maximum allowable frequency separation between the two signals is 0.5 cycles. If the

data length is 1 ms, then a1 KHz signal will toggle once in 1 ms. The maximum

frequency offset allowable from baseband is

±

± 0.5 of a cycle or ± 0.5 Hz/ ms. For a 1 ms

dataset, this maximum frequency step is 1KHz in order to allow for partial correlation.

This arrangement will center the input signal in between baseband and 1 KHz in the

worst case. If the 10 ms of data are taken, then a 100 Hz frequency step is needed. This

fits with conventional FFT results in which the frequency resolution is inversely

proportional to the number of points in the FFT [21]. The number of FFT bins increases

by a factor of 10 and the memory needed to hold the data record increases by the factor of

10. The above discussion brings home the point of using as short a data record as possible

for acquisition. The hardware requirements and operations increase by a factor of about

100 for a 10 fold increase in the data record.

2.2.4 C/A Code Multiplication and The FFT

Acquisition has as its objective the dispreading of the input signal and obtaining

the carrier frequency. Assuming the reference C/A code has the same phase as the C/A

code in the transmitted GPS signal, then the input signal will be despread and become a

narrowband signal continuous wave (cw) signal as shown in the figure 2.3. The top plot

is an RF signal carrying the C/A code. The second plot is the locally generated reference

C/A code, and the bottom plot is the result of multiplying the two top signals, assuming

they are phase aligned with respect to the C/A code. The FFT of the bottom signal would

reveal the Doppler shift and then the carrier could be stripped off the cw signal to reveal

23

the navigation data. The order of operations is matter of preference and in some

implementations the carrier is stripped off before the spectrum is despread.

 If 1 ms of data sampled at 5 MHz were used, then the record would consist of 5,000

samples. The DFT of this signal would have a frequency resolution of 3

6

105
105

×
× or 1

KHz. A 5,000 point DFT generates 5,000 frequency components, but the first 2,500

contain the majority of the energy relative to last 2,500 points. If the frequency range of

interest is , KHz10±

C / A c o d e d i n p u t s i g n a l

C / A c o d e

C o n t i n u o u s w a v e s i g n a l

Figure 2.3 C/A coded input signal multiplied by C/A code

Source : Tsui, Fundamentals of GPS Receivers P 137

then in some implementations, only 21 frequency components need to be calculated if

speed is an issue.

24

3 FREQUENCY DOMAIN BASED APPROACHES TO

ACQUISITION.

3.1 Time-Domain Circular Correlation

In order to complete the necessary acquisition operations in real-time, a number

of approaches have been used. They range from the combination of time and frequency

domain discussed above to more rapid frequency domain based approaches.

Since this thesis is focusing in a frequency domain approach, the discussion will be

limited to this area.

Before going into details about frequency domain acquisition, a mathematical

exploration of the circular correlation is in order. If a signal passes through a linear time

invariant (LTI) system, the output of that system can be found by either convolution in

the time domain or through the Fourier Transform in the frequency domain. We will limit

our discussion to discrete LTI systems because of the digital nature of today’s computers.

If the impulse response of a discrete LTI system is given as h(n), then an input signal x(n)

will produce an output y(n) through convolution as follows:

∑
−

=

−=
1

0
)()()(

N

m
mnhmxny (3.1)

Note the similarity to the correlation function expressed earlier. The exception is

the negative sign in the second term. Convolution in the time domain is equivalent to

multiplication in the frequency domain, hence the above expression transforms to:

25

)()()()()(
1

0

/)2(kHkXemxkHkY
N

m

Nmkj == ∑
−

=

− π
 (3.2)

where Y(k), X(k) and H(k) are the DFTs of y(n), x(n) and h(n). These convolution

expressions are often termed circular convolution because the results are periodic due

the periodic nature of the DFT.

The acquisition algorithm uses correlation and not convolution, but the two

processes are very similar, with a simple flip of sign on one of the operands. In the time

domain circular correlation is given by:

∑
−

=

+=
1

0
)()()(

N

m
mnhmxna ; (3.3)

 in the frequency domain the function is given by the formula:

|A(k)| = |X*(k)H(k)| = |X(k)H*(k)|, (3.4)

where X*(k) and H*(k) are the complex conjugates of X(k) and H(k).

As mentioned earlier, this formula represents the circular correlation of the signal x(n)

and h(n), which is the required operation for acquisition.

3.2 Resolving range and Doppler uncertainties

The GPS signals that are collected have two uncertainties associated with them.

These are in the realm of velocity (which gives rise to a Doppler ambiguity) and distance

(which gives rise to a range ambiguity). This combination of uncertainties means that

there are a large number of range-Doppler estimations that must be carried out in a fairly

short period of time. For example, if there are 10 possible Doppler shifts and 5,000

possible time delays, then there are a total of 50,000 combinations of range-Doppler

26

uncertainties to consider. This concept is illustrated in Figure 3.1. This algorithm

operates on a10-ms block of data and generates Doppler shifted copies of the input signal

and correlates them with the baseband reference code. This result is sometimes referred

to as the ambiguity function of a signal and is often used in RADAR processing. [22]

The algorithm will give a global maximum that corresponds to the best Doppler and

delay match for the input data. In discrete-time notation, the ambiguity function is

written as:

() ∑
−

=

−=Ψ
1

0

/2)(*)(,
N

n

Nnjenhnx πντντ (3.5)

Doppler –shifted reference copies

-fd Hz

+fd Hz

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
0

0

0

0

0

0

0

0

0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
0

0

0

0

0

0

0

0

0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
0

0

0

0

0

0

0

0

0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
0

0

0

0

0

0

0

0

0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
0

0

0

0

0

0

0

0

0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
0

0

0

0

0

0

0

0

0

C
ross C

orrelate

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
0

0

0

0

0

0

0

0

(eg. 10 copies)

Collected data

10 ms

AMPLITUDE-RANGE
DOPPLER SURFACE

D
oppler S

hift

Time delay

Figure 3.1 The Ambiguity Function Concept

If each block of 10-ms input data were used for correlation with 10-ms of the

reference C/A code, the number of calculations would be prohibitive. A modified

algorithm is used in which the input signal is broken up into 10 blocks of 1-ms and

processed in parallel.

27

3.3 Noise and Amplification Considerations

The GPS signal is typically about -130 dBm at the antenna [23]. The maximum

processing gain of a typical GPS system is given by:

10 log (chip rate /data rate) = 10 log (1.023 MHz/50 Hz) = 43 dB for this system.

The formula for available noise power Ni, in watts, at the input of the receiver is:

Ni = kTB watts, (3.5)

where k is Boltzman’s constant (1.38 X 10-23 J/K), T is the absolute temperature of a 50

Ω resistor R, and B is the bandwidth of the receiver in Hz. Over a sampled null-to-null

bandwidth of 2.046 MHz, the integrated thermal noise power (T = 290 K) expressed in

dBm (dB relative to a milliwatt) is given as follows:

Ni = 1.38 X 10-23 x 290 x 2.046 x 106 = 8.1881 x 10-15 W over a 2.046 MHz bandwidth.

If we take this power relative to a milliwatt and find the power per Hz, then we get:

Ni = 63-

-15

10046.210
10 x 8.1881
××

= 4 x 10-18 (3.6)

We can then take log to base 10 and multiply by 10.

So now Ni (dBm) = 10*log10(4 x 10-18) = -174 dBm/Hz.

This works out to approximately -111 dBm, for a 2.046 MHz bandwidth [24]. In this

arrangement, the GPS signal is 19 dB below the noise floor at the input to the receiver.

One common approach is to amplify the signal so that the noise floor at right at the

maximum range of the ADC. A typical ADC will have a 100 mV dynamic range. The

corresponding power is:

R
VP
2

2

= =
502
)1.0(2

×
= 0.1 mW = -10 dBm. (3.7)

28

Since the noise floor is -111 dBm, then 101 dB of amplification would be adequate to get

it to this range. In the RF chain there are insertion losses caused by mixers, filters and

cables and these must also be compensated for when calculating the required net gain of

the system. We want to avoid saturation of the ADC and also wastage of the quantization

levels.

Assuming a base band processor requires a Bit Error Rate (BER) of 10-5 , the

corresponding post correlator Eb/N0 for the BPSK modulation used is no less than 9.5 dB

(assuming additive white Gaussian noise). Eb/N0 is defined as the ratio of energy per bit

to the spectral noise density [25]. Subtracting 43 dB of theoretical processing gain from

the required 9.5 dB post correlator Eb/N0, the minimum SNR at the correlator input is -

33.5 dB. Assuming implementation losses of 3.3 dB for software GPS, the SNR required

at the quantizer input is – 30 dB. Assuming insertion losses of about 10 dB for amplifiers

and filters, the GPS signal can theoretically be 23.5 dB below the noise floor and still be

acquired. Using results of experimental work by Tsui et.al, very low energy signals of -

20 dB relative to the noise floor can be acquired. A block size of 10 ms input data is

found to be adequate for C/A code acquisition at these low signal levels. The longer the

data record used, the weaker the signals that can be acquired.

This value for block size yields a searching frequency resolution of 100 Hz.

This operation is suitable for a block of data. The data are sampled at 5 MHz and stored

in memory for use as needed by the C/A system.

29

3.3 Acquisition By FFT Based Circular Correlation

Van Nee and Coenen have devised a technique to perform the two dimensional

search for code phase and Doppler shift in a parallel manner [26]. The algorithm used in

this paper is based largely on this technique with some modifications for handing a longer

data record. Assuming we know the satellite were are trying to acquire, following steps,

as shown in Figure 3.1, are taken to perform acquisition on the input data:

1. Downconvert the input data y (n) to 10 slightly different frequencies close to

baseband by multiplication with a 10 different complex RF signals fi separated by

1 KHz. The resulting complex signals are now called d_c(n)[i] where i = 1 to 10 .

2. For each i, perform the DFT on the 10 ms of d_c (n) in 1ms blocks, and convert

the input into the frequency domain as D_C (k) where n = k = 0 to 4999 for each

1 ms block. This will result in 10 different frames of D_C (k) each of length

5,000.

3. Take the complex conjugate of each frame of D_C (k) and the outputs become

D_C (k)*.

4. Discard the second half of the D_C(k)* sequence, we only lose a small amount of

energy from this step. There are now 10 frames of D_C(k) of length 2,500.

5. Generate one local reference C/A code c_a (n) of length 1 ms for the given

satellite. The local code must be sampled at 5 MHz to generate 5,000 samples.

6. Perform DFT on c_a(n) to transform it to the frequency domain as C_A(k).

7. Discard the second half of the C_A(k) sequence. 2,500 samples remain.

8. Multiply C_A(k) and each frame of D_C(k) point by point and call the result

D_S(k). There are 10 frames of D_S(k), each of length 2,500.

30

9. Take the inverse DFT of each frame of D_S(k) to transform the result into the

time domain as d_s(n). There are now 10 frames of d_s(n).

10. Store the frames in parallel in a 10 * 2,500 matrix.

11. Access the matrix one column at a time and perform a 10 point DFT on each

column and repeat until all columns have been transformed. The result is a

10*2,500 matrix in called D_S_P(k).

12. Sort through the matrix to locate the maximum of the | D_S_P(k)|. Store the row

and column index of this maximum.

13. Repeat steps 2 through 12 for all i to generate 10 maxima and their associated row

and column indices.

14. Sort through these maxima to generate a global maximum with an associated row,

column and i index.

15. Via some simple arithmetic shown in the following equations , decode these three

indices to infer the C/A code phase and carrier Doppler shift.

The complex RF signal is represented by the equation:

)sin()cos(tte tj ωωω += (3.8)

31

Buffer

y(n) 5 MHz

8 bits,

50,000 samples

y(n) 100 MHz

7 bits real

DDS
c_e(n)

100 MHz

7 bits
complex

d_c(n), complex

14 bits, 40,960 samples

cacode
module

4096
FFT

c_a(n), 16 bits,

100 MHz, real

4096 FFT

C_A(F)
complex

9 bits

D_C(F)* 6 bits

Discard 2nd half

D_C(F) complex ,6 bits

discard 2nd half

C_A(F)
conj 9 bits

2048 IFFT

D_S(F) conj, 11 bits

Fifo_0
1:10
Demuxd_s(n)

11 bits

d_s(n) , 11 bits

Fifo_9

10 PT DFT

find max of
each frame

of 10

d_s(n)

D_S_P(F) 11 bits

D_S_P_MAX(F)
23 bits

find max of
each batch

of 2048

row#

D_S_P_MAX(F)
23 bits

row# col#

find max of
each stack

of 10
stack# 4 bits

col# 11 bits

row# 4 bits

Decode the
row, stack

and column
data

code phase

13 bits
carrier
frequency

16 bits

Subsample

Subsample

-1 * imaginary part

D_C(F)*

Figure 3.1 A block diagram of the proposed C/A code acquisition process.
The equations for decoding the code phase are shown below. Let us define the inputs as

follows:

i_c is the column index, m_c is the stack index, and m_f is the row index.

The code phase in samples, c_p is therefore calculated as:

2*)_2500(_ cipc −= (3.9)

Multiplication by 2 is as a result of the dropping of the second half of the DFT

results in steps 4 and 7. The result needs to be mapped back from a data set of 2,500 to a

data set of 5,000. The code phase time resolution is accurate to 200 ns in this approach.

Since the code chips are about 977 ns long, this is well within the half-chip resolution

needed by the system.

32

The calculation for Doppler frequency, dopp is a little more involved and depends

on the value of the row index m_f. If m_f is less than or equal to 5, then the following

calculation is used:

100*)1_(1000*)2/10_(−+−= fmcmdopp (3.10)

If m_f is greater than 5, then the following calculation is used:

100*)11_(1000*)2/10_(−+−= fmcmdopp (3.11)

 This acquisition process repeats every 10 ms, with a fresh block of data in order to keep

a lock on the C/A code for a given satellite.

3.4 Threshold Values

In the above discussion, no mention of threshold has been made, but this is a very

important consideration. Depending on the environment where this GPS receiver is

operating, a threshold is set to determine if the maximum is a valid or spurious

maximum. So not only does the maximum have to be determined, it then has to be

compared to a threshold to determine its validity. The discussion and calculation of

threshold is beyond the scope of this paper, but it is important to be aware that generating

a maximum is not sufficient for determining if acquisition is successful.

33

4 ARCHITECTURE AND DESIGN CONSIDERATIONS

The FFT based C/A code lock algorithm chapter was written in first in MATLAB to

demonstrate proof of concept and then was implemented in VHDL code targeted to a

Xilinx Virtex II-Pro FPGA. There are numerous choices an engineer must make when

translating from high level code such as MATLAB, to more hardware-faithful code such

as VHDL. This section highlights some of the design choices that were made to

implement the design efficiently in digital FPGA hardware.

4.1 Design Choices

4.1.1 Buffering

An effective architecture will require that while the first 10 ms of data are being

processed; the second 10 ms worth of data is being buffered. The 10 ms worth of data is

equal to 50,000 samples. This leads to a decision of designing a 2-port RAM of depth

100,000 to read from and write to the buffer at the same time. The designed 2-port RAM

is more effective than the FIFO generated by the Xilinx core generator for two reasons:

1. Xilinx Intellectual Property (IP) cores only generate FIFOs with memory size of

radix-2, so the closest size to 100,000 is around 131,072 leading to a waste of

resources.

2. The FIFO has a “quirk” called first-word-fall-through after reset, which would

cause errors and requires extra hardware for the control logic.

34

4.1.2 Sample Rate Conversion

 Another design challenge was the generation of the C/A code samples. The code

samples correspond to the code that is generated at 1.023 MHz and sampled at 5 MHz.

One could generate a 1.023 MHz clock for a LFSR that generates the code, and then use

a separate 5 MHz clock for the sampling circuit. This however would lead to a

synchronization issue between the two clock domains. Both clocks would have to be

rising at exactly the same time to ensure alignment of the code samples with the

originally generated code. Even if this issue could be overcome, there is yet another

challenge to design FPGA circuits that can produce a 1.023 MHz clock from the existing

crystal-generated on-chip clock. The ratio of 5 to 1.023 is not a rational number and

hence cannot be used as an input to the delay locked loop (DLL) that is used to generate

the clocks of desired frequency.

 The solution that was arrived at (with assistance from some Air Force Engineers)

is as shown in figure 4.1: A counter is set to increment by multiples of 1,023, and 5,000

is subtracted from the count every time the count exceeds 5,000. So basically we are

dividing 5,000 by 1,023 and only keeping the remainder. This cycle repeats indefinitely.

An output is enabled for one clock every time the count exceeds 5,000. This signal

enables the shift logic of the code generator, advancing it by one state. To the outside

world it then appears that the 1.023 MHz code is being sampled at 5 MHz.

A check with the MATLAB generated and sampled C/A code reveals identical

sequences.

35

Figure 4.1. Count sequence of LFSR_enable module showing enable signal

38

Cyprian Sajabi

C/A CODE GENERATOR SHOWING

SAMPLE RATE CONVERSION

MATLAB SAMPLE SEQUENCE: 0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1. . . .

Figure 4.2. C/A code generator showing sample rate conversion

4.1.3 Mapping 5,000 Point DFT To Hardware

The major obstacle to be overcome with this design was the mapping of a 5,000

point DFT from the MATLAB onto the hardware. In the MATLAB model, the input

36

data is processed in frames of 5,000. A 5,000 point DFT is straightforward in MATLAB

because of the use of floating point calculations. In fixed-point hardware, this is a

challenge. All hardware implemented DFTs are radix-2 or radix-4 FFTs because they

need to be completed in real-time. The closest hardware implementation of a 5,000-point

DFT is a 4,096 point FFT. Therefore, there needs to be a way to convert the 5,000

samples to 4,096 samples. One choice explored was the averaging correlation technique

[27]. In this technique, the 5,000 samples would be averaged to 4,096 samples prior to

application of the FFT. Although there has been success using the averaging correlation

method [27, 28], it is relatively hardware and time-intensive. It seems to work well for a

1 ms acquisition, but for a 10 ms acquisition, it would prove too cumbersome. In the

interest of hardware simplicity a pseudo-random sampling technique is proposed instead.

If a pseudo-random scheme is used, then the data set retains most of its autocorrelation

properties as shown in Figure 4.2. These autocorrelation properties are important for

direct sequence spread spectrum acquisition [29].

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-1000

0

1000

2000

3000

4000

5000

Figure 4.3 Autocorrelation properties of C/A code before and after “subsampling.”

After experimenting with a few “sub-sampling” algorithms, an effective algorithm was

proposed by D. Lin of WPAB, which proves to give the desired results. The algorithm is

described below:

37

1) Out of every 11 samples, the 5th and 11th samples are dropped. This procedure is

repeated 90 times. We would have now processed 900 input samples and stored 810

samples and dropped 90 samples.

2) For the 91st set of 11, only the 5th sample is dropped. We have now processed 1,000

samples and having stored 819 samples and discarded 181 samples.

3) Steps 1 and 2 are repeated 5 times for each set of 1,000 input samples to yield 4,095

stored samples. The 4,096th stored sample is always a zero. Now there are a total of

4,096 samples for further possessing. This “sub-sampling” technique is applied to both

the C/A code and the downconverted data preserve the relative sample position of the

code to the incoming data.

4.1.4 Direct Digital Synthesizer (DDS) Challenges

Another challenge was the generation of the complex RF sinusoids used for

downconversion. In MATLAB, one can generate any arbitrary frequency and sample it

at any other arbitrary frequency as long as the Nyquist criterion is met, i.e. the sampling

frequency must be at least twice the bandwidth of the signal being sampled. In hardware,

the RF signal is generated by a Direct Digital Synthesizer or DDS. The frequencies

generated by the DDS are constrained by the input clock frequency. The DDS is required

to generate the equivalent of complex sinusoids ranging in frequency from (1.25MHz - 4

KHz) to (1.25 MHz + 5 KHz), and sampled at 5 MHz. However, the rest of the system is

configured to run at 100 MHz, so the DDS must be configured to produce frequencies 20

times (100/5) the actual value stated. For example a 25 MHz RF signal sampled at 100

MHz would generate the same sample set as 1.25 MHz sampled at 5 MHz.

38

5 GLOBAL VIEW OF DATAFLOW THROUGH THE SYSTEM

The dataflow is partitioned into 4 functional domains: 1) Data Capture Domain; 2)

4,096 FFT domain; 3) 2,048 IFFT domain; and 4) 10 point DFT / Sorting Domain.

Considering these breakdowns, each functional domain will discussed as follows.

5.1 Data Capture Domain.

This domain functions to capture the data that is streaming in at 5 MHz,

downconvert it to baseband, “subsample” it, and stream it to the 4,096 FFT at 100 MHz.

It also regulates the generation and storage of the C/A code. The Data Capture Domain

consists of two dual-port RAMs, a Direct Digital Synthesizer, the C/A code generator, a

complex multiplier, counters, and some multiplexing ability to allow reuse of hardware.

The block diagram is shown in figure 5.1.

Dual Port
RAM 0

DDS for
I and Q
channels

Write and
read
Address
generation

(counters)

Dual Port
RAM 1

(complex)

2-1
Multiplexer
(complex)

Write and
read
Address
generation

(counters)

Synchronization and
Control includes FSMs

C/A code
Generator

Control Data Address

y(n) y(n) d_c(n)

c_e(n)
c_a(n)

c_a(n)
or
d_c(n)

c_a(n)
or
d_c(n)

Key:

cplx mult

next stage control

Figure 5.1. The Data Capture Domain

39

5.1.1 Details of Datapaths In The Data Capture Domain

5.1.1.1 The Dual Port RAMs

Each dual-port RAM has two address ports, one read port and one write port, and

allows data to be written to it from one port, while data is being read from it via a

different port. The ports can operate on different clock domains.

As shown in Figure 5.1 the Dual Port RAM 0 is of width 8 bits and depth of

100,000, and is configured as a circular buffer that continuously reads in the data at 5

MHz. Dual Port RAM 0 buffers the incoming 5 MHz data streams. When this RAM is

about 39,000 full, or 89,000 full, we start to read from it at 100 MHz for further

processing. There is control so that when we finish reading the first 50,000 samples,

we wait until the buffer is 89,000 samples full again before we read from it again. This is

done continuously as long as the system is running. Once Dual Port RAM 0 is almost

full (39,000 or 89,000), the buffered data is then complex multiplied at 100 MHz. The

50,000 block of data is read from Dual Port RAM using two counters; a 0 to 50,000 and a

50,000 to 100,000 counter each running at 100MHz. The counters are enabled as needed.

The Dual Port RAM 1 is actually two dual port RAMs, each of depth 40,960 and width

16 bits. They store the real and imaginary “subsampled” downconverted data for

streaming to the FFT module. When the system is initialized for given satellite, the

Dual Port RAM 1 stores the “subsampled” C/A code (which is all real) hence the need

for a multiplexer. This C/A code is streamed to the 4,096 FFT for further processing

before the primary data is written to Dual Port RAM 1. This initialization process occurs

very early on in the cycle and is complete within about 95 µs of asserting global start.

40

Figure 5.2 Dual Port RAM used in Data Capture Domain

5.1.1.2 Counters

1. Counter_99999 is configured to count to 99,999 and asserts two terminal count

signals, tc_0 when its count reaches 48,000 and tc_1 when the count reaches

98,000. When the count reaches 99,999, it rolls over to 0 and restarts its count. This

counter resets to 0 and needs an enable signal to increment. This counter generates

the write address to the Dual Port RAM 0 to collect the streaming 5 MHz input.

2. Counter_50000 asserts its terminal count, tc_0 signal when it reaches 50,000. This

counter generates the read address for read operations from the bottom half of the

Dual Port RAM 0.

3. Counter 50000_100000 counts from 50,000 to 100,000 and asserts its terminal

count signal when it reaches 100,000. This counter generates the read address for

read operations from the top half of Dual Port RAM 0.

4. There are two instances of Counter_40960, which has a terminal count of 40,960.

It asserts tc_0 when the count reaches 31,000 and tc_1 when the count reaches

40,960. These counters are used to control the write and read address respectively

of the Dual -port RAM 1. The one that controls the write address is designated as

Counter_40960_w, and the one that controls the read as Counter_40960_r.

41

5. Counter_4096 asserts its terminal count signal, tc_0 at its terminal count of 4,096.

This count is used to control the asserting of the start signal for the FFT module

every 4,096 clocks.

6. There are also two counters with a terminal count of 4 and 5 respectively. These

counters are used to control which data points are “dropped” during “subsampling”

via the manipulation of the write signal to Dual Port RAM 1.

5.1.1.3 The Direct Digital Synthesizer (DDS)

The DDS is responsible for generation of the complex RF signal. It is generated

by the Xilinx Logicore IP generator. The DDS has a large number of active high inputs.

The relevant ones are as follows: 28 bit data for programming new frequencies,

write_enable for clocking in the new frequency, and clock_enable for enabling the

generation of outputs. When programming in a new frequency, the clock_enable is

deasserted while the write_enable is asserted for one clock.

The relevant outputs from the DDS are the 9-bit sine and cosine outputs, which

are out of phase by π/2, and the active high data_ready output, which indicates when the

outputs samples are available and valid. Figure 5.3 shows the DDS schematic symbol.

Figure 5.3 Schematic symbol of the Direct Digital Synthesizer

42

5.1.1.4 The C/A Code Generator (CCG)

The C/A code generator, cacode is a Gold code generation module, which consists of

a pair of Linear Feedback Shift Registers, a controller that schedules loading and shifting

the code generator, a ROM for the initial fills, and a clock division circuit for controlling

the generation of a sampled version of the code. This module, although clocked at 100

MHz, generates the equivalent of 5 MHz C/A code samples. The inputs to this, which are

self-explanatory are: enable, reset, and svnum, the satellite number. The enable input

needs to remain asserted for the code to be continuously generated. The relevant outputs

are the ss_ca, the code samples and data_ready, indicating the data output data are valid.

This module has to be reset before programming in a new satellite.

There are also a number of other output busses named peek, gold_number,and

gold_sample_number,which are used for synchronization and debugging.

Figure 5.4 Schematic Symbol of C/A code Generator

5.1.1.4 The Complex Multiplier

The Complex Multiplier (cplx_mult) is a combinational complex multiplier that

completes its multiply operation within the 10 ns window provided by the 100 MHz clock.

It serves to point multiply y (n) with the complex output c_e(n) of the DDS. Because

43

there is no imaginary component to y (n), there is no collection and addition of terms at its

output. Because of the simplicity of the operation, cplx_mult is implemented simply as a

pair of multipliers, one for the real (I) part of y (n) and one for the imaginary (Q) part. The

output of the multiplier is therefore complex. This multiplication is used to down-convert

the input sequence to a base band signal. The complex data from the multiplier are

subsequently “subsampled” and stored in the Dual Port RAM 1.

5.1.1.5 Complex Multiplexor (CM)

This multiplexer selects between c_a(n) and d_c(n). Once the C/A code has been

generated and stored in Dual Port RAM 1, it selects d_c(n) as its input source and remains

in this state until a new satellite is programmed in.

5.1.2 Controllers in the Data Capture Domain.

This is an overview of the controllers in the data capture domain and their role in

controlling the components in this domain. The control in this domain serves to: 1)

prevent “collisions” i.e. trying to read from and write to the same memory location and 2)

synchronize the timing of the write and read operations to minimize time wastage.

5.1.2.1 Front_dual_port_control (FDPC)

FDPC controls the write to the Dual Port RAM 0. FDPC is in the 5 MHz clock

domain and has a start and reset input. Its outputs are an write_enable for Dual Port

RAM 0, and an enable and reset for counter_99999. When start is asserted, on the next

44

rising clock edge, counter_99999 is enabled and it begins counting. This counter remains

enabled until the system is reset.

5.1.2.2 DDS / Data Controller (DDC)

DDC serves two purposes:

1. To ensure that the proper down conversion frequencies are generated from the

DDS at the correct time

2. To synchronize the input data samples, y (n) with the sinusoid samples c_e(n)

during point multiplication.

This controller has control and feedback loops with the DDS and all the counters

described previously. For the sake of simplicity the names of the inputs and outputs will

not be mentioned here. When started, DDC activates the DDS using the clock_enable

input in its default setting and when the DDS begins to generate valid c_e (n) samples.

The DDS needs to be enabled for all the data streaming in from Dual Port RAM 0, and

is idle for one clock while the DDS frequency is being changed. There are no data being

read from Dual Port RAM 0 when the DDS frequency is being changed. DDC also

initiates the reading of y(n) samples from Dual RAM input 0. The read address for Dual

RAM 0 is generated via counter Counter_50000 or Counter_50000_10000, which are

both under the control of DDC. The DDS output c_e(n) and the primary data samples,

y(n) are piped into cpx_mult where a point multiplication occurs to generate the

downconverted signal d_c(n) When the read address counters reach their terminal

counts, they signal DDC, which then controls the loading of a new down conversion

frequency into the DDS via the write_enable pin and restarts the multiplication of the

45

new c_e(n) with the same y(n). This process is repeated 10 times until all

downconversion frequencies have been covered. This is a total of 500,000

multiplications. 10 batches of d_c(n) are generated in this fashion. Each batch is 50,000

samples long. The batches are then processed in frames of 5,000 samples. After all 10

downconversion frequencies have been covered DDC goes back to the init state and waits

until either of the terminal count signals from the 5 MHz counter_99999.

5.1.2.3 Supplementary Control for Subsampling (SCS)

For each of the of d_c(n) frames of 5,000, SCS initiates and controls the

“subsampling” and storage of the 4,096 samples in Dual RAM 1. The subsampling is

mediated by a series of nested loops as described in the following sequence of events.

The subsampling process is mediated via Counter_4, Counter_5 and internal counters

Counter_91, Counter_5 and Counter_10. The data is processed in batches of 11. For

each set of 11 input samples, SCS causes the write signal to be asserted for 4 clocks, low

for 1 clock, high for 5, and low for 1 and repeats this sequence 90 times. For the 91st

iteration, the write signal remains high for all the final 6 of the 11 samples. This process

is repeated 5 times (mediated by counter_5) for a total of 5,000 input samples. At this

point 4,095 samples have been written to the RAM, so a zero is padded onto the data.

There is a further layer of this loop, mediated by counter_10 that allows 50,000 samples

to be processed. This cycle repeats 10 times (i.e. once for each down conversion

frequency.) After the 10th frequency has been completed, SCS goes back to an init state

and waits for the next flag from the dds_rdy signal.

46

5.1.2.4 Pre FFT Control (PFC)

PFC has two inputs: count_4096_tc, count_40960_pre_done, which are connected

to tc_0 of counter_4096 and tc_0 output of counter_40960_w respectively. The PFC

outputs are: count_reset_4096, count_enable_4096, count_reset_40960,

count_enable_40960, and fft_start. These outputs are connected to counter_4096,

counter_40960_r, and FFT_ 4096 respectively. The names are self explanatory.

Using the counters mentioned above, this controller serves to synchronize the data

samples coming out of Dual Port RAM 1 with the 4,096 point FFT module as well as to

initiate the processing of each frame of 4,096 data samples. The read address for

streaming the data out of Dual Port RAM 1 is supplied by counter_40960_r. PFC is

configured to start streaming data to the FFT from Dual Port RAM 1 when about 31,000

d_c(n) samples (when tc_0 from counter_40960_w goes high) have been written to Dual

Port RAM 1. This number was arrived at after careful analysis of preliminary

simulation results. The purpose is to allow a minimum of time wastage in between

downconversion frequencies, but still keep collisions from occurring, i.e. trying to write

to and read from the same memory location. Because the 4,096 point FFT module can

only process data in frames of 4,096, the fft_start signal must be pulsed once every 4,096

clocks a total of ten times to process 40,960 samples. The synchronization of these

pulses is achieved via a feedback loop with counter_4096.

5.1.2.5 C/A Code Control (CCC)

This controller is designed to enable the generation and storage of the PN code by

the C/A code generator as well as initiate the FFT of the C/A code to yield the C_A (F)

47

samples. It is necessary to subsample the C/A code in order to preserve autocorrelation

relationships between c_a(n) and d_c(n).

 This controller works only once for each satellite programmed into the system,

and it completes its task early on in the acquisition process-within about 90 µs of the

initiation of the start signal. The relevant inputs are enable, and tc_4096 from

counter_4096. The relevant outputs are start_pre_fft_cont, reset_pre_fft_cont,

mux_sel_cacode, start_cacode, cacode_reset, start_supp, and reset_supp. These outputs

connect to PFC, CM, CCG, and DDC respectively. At the start of an acquisition cycle

for a given satellite, when system enable is pulsed, the CCC module sends a start signal

to the CCG to start generating C/A code. At the same time it sends a start signal to the

DDC to start “subsampling” the code and storing it in Dual Port RAM 1. When the

tc_4096 input goes high, this means that 5,000 c_a(n) samples have been generated and

4,096 of these have been subsampled and stored in Dual Port RAM 1. CCC now switches

CM to the d_c(n) input once this initialization is complete. To complete its function,

CCC triggers PFC to carry out one 4,096 FFT of the C/A code samples and resets PFC

once tc_4096 goes high. CCC resets CCG and DDC once it has initiated the FFT.

These modules all sit idle until the first 31,000 data samples are written into Dual Port

RAM 0. CCC allows reuse of the Dual Port RAM 1, the “subsampling” circuitry, and

the 4,096 point FFT.

The system described in this chapter functions continuously on each unit of 50,000

samples until a new satellite is selected.

5.1.2.6 Some Observations and Notes on Synchronization:

48

The DDS only needs one clock to write in a new frequency and at the next clock

it starts showing the new samples on its output. Because of this we are able to

incorporate an extra count cycle into the counter_50000 and counter_50000_100000 to

take care of this extra clock cycle. This saves coding an extra state in DDC. This is only

true of the DDS when zero cycle latency is selected for the DDS at the Xilinx Logicore

GUI. The dds_rdy signal is always high in this setting unless the core is reset.

In the MATLAB code the C/A code samples were represented by -1 and 1 instead

of 1 and 0 as in hardware. This format largely eliminates DC bias and keeps the dynamic

range of the C_A (F) signal much lower than in the latter case. In order to exploit these

benefits in hardware, a special combinational module was added to the output of the C/A

code generator. This module converts outputs of ‘1’ to -8192 in 2’s complement and

converts ‘0’ outputs to 8192(all ‘0’ followed by a ‘1’). The reason for using

instead of is because the round off noise inside the FFT core will drown out really

small magnitude numbers, leading to highly inaccurate results. This architecture also

protects the FFT core from overflow and allows considerably fewer bits to accurately and

completely represent C_A(F).

8192±

1±

5.2 FFT 4,096 Domain

5.2.1 Overview of Operations in the FFT 4,096 Domain.

As shown in figure 5.5, this FFT 4,096 Domain serves to: 1) regulate the storage of the

FFT of the C/A code (C_A(F)) and 2) synchronize the C_A(F) signal with the FFT of the

down converted data (D_C(F)).

49

The first 2,048 samples of 4,096 C_A(F) samples are stored in 2048_RAM via the

demux, and within 155 µs of asserting global start, the 2,048 FFT output samples from

these data are stored and ready for use. The demux then switches to the alternate (lower)

output and stays in this mode for the remainder of the acquisition process until a new

satellite is selected.

As shown in Figure 5.5, the Complex Multiplier (cplx mult) multiplies D_C(F) and

C_A(F) and generates the output D_S(F). This multiplication is a point multiplication

equivalent to circular correlation of the base band y (n) and c_a (n) in the time domain.

The actual conversion of D_C(F) to complex conjugate takes place in the complex

multiplier. The multiplier is modified so the subtraction and addition operations are

reversed after operands are collected. If the two operands are (a+jb) and (c+jd), then a

straightforward complex multiplier would yield: (ac-bd) for the real and (bc+ad) for the

imaginary. If the second operand is the complex conjugate of the first, i.e. (c-jd), then the

result is (ac+bd) and j(bc-ad).

50

4096
FFT

2048
RAM 1-2

Demux
(cplx)

Synchronization and
Control

Control Data Address

c_a(n)
or
d_c(n)

Key:

cplx multC_A(F)
or
D_C(F) C_A(F) C_A(F)

Write and Read Address
generation

(counter_2048)

D_S(F)

next stage control

previous
stage control

D_C(F)

Figure. 5.5. Block diagram of 4,096 FFT domain

51

5.2.2 Datapath And Control Operations In The FFT 4,096 Domain

5.2.2.1 FFT_4096

The FFT_4096 module is a pipelined streaming I/O 4,096 point FFT engine

generated by the Xilinx Logicore Software. The core can, “simultaneously perform

transform calculations on the current frame of data, load input data for the next frame of

data, and unload the results of the previous frame of data. The user can stream in input

data and, after the calculation latency, can continuously unload the results” [30]. The

core is designed to stream in both real and imaginary inputs and stream out complex

outputs after a 4,096 clock latency. This IP core is unscaled, meaning that for each

butterfly stage, more bits are added to the datapath. This means that for this particular

implementation the output width is 13 bits greater than the input width. The reason for

this choice of implementation is based on the MATLAB simulations.

The input and output are serial, and once the module is started, it will continuously

compute FFTs of data in 4,096 frames. The only control required is to activate the core

for each new 4,096 frame of d_c(n). This control comes from the previous stage. The

algorithm requires only the first half of the output D_C (F) for use in the next stage, but

the core needs to output the results of the entire transform before the next frame output can

be accessed. This causes an unavoidable delay. Because one processing unit is effectively

4,096 * 10 samples long, the 4,096 FFT must process the unit in 10 frames.

The FFT_4096 module is a Xilinx generated IP core, version v3.2. It has a large

number of inputs and outputs, but the ones relevant to the design are as follows; Inputs:

xn_re, xn_im, and fft_start. Outputs: fft_done, overflow (optional), xk_re, and xk_im.

The xn_re and xn_im are the 15-bit real and imaginary streaming inputs. For continuous

52

data processing, the fft_start can either be held high or pulsed every 4,096 cycles. This

will result in processing the data in frames of 4,096 [31]. The instructions given on the

datasheet read, “Simply assert START at any time to begin data loading. After the data

frame is loaded, the core will proceed to calculate the transform and then output the

results... Input data (xn_re, xn_im) corresponding to a certain XN_INDEX should arrive

three clock cycles later than the XN_INDEX it matches. In this way, XN_INDEX can be

used to address external memory or a frame buffer storing the input data.” [32] Figure 5.6

shows the timing described in the previous instructions. Note that when the first input

data samples are launched, the index is at 03, or on the 4th clock if start is launched on the

0th clock.

Figure 5.6: Synchronization of Beginning of Data Frame with index for FFT.

53

Figure 5.7 is a schematic symbol of the 4,096 FFT module showing the core pinout.

Figure 5.7 FFT_4096 symbol (overflow not shown)

After a latency of 4,096 clocks, FFT results begin to stream out from the core. As

shown in figure 25, at this point the fft_done signal goes high one cycle before the core

starts unloading. The fft_done signal then goes low and stays low until the next frame is

completed (not shown).

Figure 5.8, Unloading results after fft_done has pulsed

If an overflow had occurred during the processing of data, the overflow signal

would go high and the user could then decide what to do with the output xk_re and xk_im

samples. Because there is no scaling selected for this IP core, The xk_re and xk_im

samples are 13 bits wider than the xn_re and xn_im samples in order to accommodate

growth of the datapath within the core. Because of the allowance of datapath growth,

there is no need for an overflow pin.

54

5.2.2.2 Counter_2048

This counter has an enable input and two outputs: a terminal count flag, tc_0,

he counter reaches a terminal count of 2,048, and a 12-bit

count_o

AM

048

This RAM is actually a pair of RAMs configured to act as one complex RAM to

ary data. It serves to store the first half of the complex C_A(F)

output

This Complex multiplier has a modified function relative to a standard complex

 complex conjugate multiplication instead of regular complex

multipl

L

which goes high when t

ut. The counter does not roll over and needs to be reset when it reaches its

terminal count. This counter provides the write and read address for the complex R

in this domain.

5.2.2.3 RAM_2

store real and imagin

from the 4,096 FFT. The RAM is 2,048 deep and 9 bits wide.

5.2.2.4 Cplx_mult_1

multiplier. It performs

ication. The working of this multiplier was explained earlier in this section. The

real and imaginary inputs of this multiplier are ar, br, ai, and bi. It is written in VHD

using generics so that the operands have independent and variable widths. The real and

imaginary outputs are termed pr and, pi respectively. This multiplier performs the

complex multiplication in one clock, but can be modified for further pipelining using

Attributes in the User Constraints File or in the VHDL code itself.

55

Figure 5.9 Complex multiplier Schematic

5.2.2.5 Demultiplexer_2 (DEMUX 1_2)

This complex demultiplexer is conne xk_re and xk_im outputs of the

 data from the FFT either to the 2048 RAM

for C_A

4096 Domain

.2.3.1 IFFT_Cont (IC)

 storage of the first 2,048 C_A(F)

 also controlling the multiplication of the stored C_A(F)

sample

al

cted to the

FFT_4096 module and is used to route the

(F) storage or to the CPLX_MULT_1 for the complex conjugate multiplication

operation of C_A(F) and D_C(F)*.

5.2.3 Controllers in the FFT_

5

This controller is concerned with regulating the

samples in RAM 2048 and

s with the D_C(F) samples that will eventually stream out of the FFT_4096. This

module also initiates the start of each frame of 2,048 IFFTs. When the fft_done sign

goes high, it does so one clock before the valid output begins. If this is the first high

signal of fft_done, the controller will then signal on the next clock for the 2,048 counter

to be enabled as well as for the write enable to go high for writing to the 2,048 RAM.

2,048 samples of data can then stream into the RAM. We are only going to use the first

half of the FFT output for further processing. Once the count reaches 2,047, the we for

the RAM is disabled and the rest of the FFT data is “lost”.

56

 IC’s control inputs are fft_done and ter_count_2048. IC’s control outputs are start_ifft

start_counter_2048, reset_counter, we_ca_ram, and ca_vs_d

,

c_sel.

 it triggers

counte

s high,

_sel

ts

 as

 generation of the read address for the RAM_2048. At

this po

 first

 count

If fft_done goes high for the first time, then the module interprets this to mean

that the FFT of the C/A code is complete and via start_counter_2048,

r_2048 to start generating the write address for RAM 2048. At the same time

we_ca_ram goes high enabling the write to the RAM. When ter_count_2048 goe

then IC disables and resets the counter and disables the write to the RAM. The

ca_vs_dc_sel output controls whether the demux is steering data to the RAM or to the

multiplier. At the point that the counter reaches its terminal count, the ca_vs_dc

changes to a ‘1’ in preparation to steer the next set of streaming xk_re and xk_im outpu

from the FFT_4096 to the cplx_mult_1. From then on, all fft_done pulses are taken

a signal to complex conjugate multiply the D_C(F) and C_A(F) samples and stream the

results to the IFFT_2048 module.

The next time fft_done goes high, the module asserts the start_counter_2048

signal to the counter_2048 to start

int the xk_re and xk_im samples streaming from the FFT represent D_C(F)

samples. These samples are routed to the complex multiplier by the demux and point

multiplied with the prestored C_A(F) samples streaming from the RAM. Only the

2,048 samples of the D_C(F) samples from the FFT core are complex conjugate

multiplied with the stored data from the 2,048 RAM. These multiplication results are

buffered by 3 clocks and fed into the 2,048 IFFT core for further processing. If we

the clock on which ifft_start is clocked in as 0, then at clock 3, the first valid

57

multiplication results should be available at the ifft inputs. The need to buffer

data by 3 clocks is unavoidable because of the use of an IP core with this requirement.

The product of the the complex conjugate multiplication is termed D_S(F) accordin

the input

g

to th

.3 IFFT_2048 Domain.

e algorithm. The IC module also asserts start_ifft, causing the IFFT_2048 module

to begin processing of this D_S(F) frame. Once the counter reaches its terminal count of

2,048, the IC module resets the counter and goes to a predetermined state where it waits

for the next fft_done signal whereupon it repeats the procedure. This IC module is the

only control module required for this domain. It sends the ifft_start signal to the next

domain, the 2,048 IFFT domain to trigger its operations.

5

2048
IFFT

1-10
Demux
(cplx
data
and
write

enable
signal)

Synchronization
and Control

Control

D_S(F)

Key:

d_s(n)
d_s(n)

next stage control

d_s(n)

2048 FIFO_0

2048 FIFO_9

Data

d_s(n)

d_s(n)

read enable
to all FIFOs

* FIFO data
are complex

*

Next stage control

(FIFO empty signal)

previous
stage control

Figure 5.10 The IFFT_2048 Domain

58

5.3.1 Overview of Operations the IFFT_2048 Domain

rves to buffer the 2048 IFFT

output

.3.2 Details of Datapaths in the IFFT_2048 Domain

.3.2.1 IFFT_2048

x IP core very similar to the pipelined streaming FFT_4096 core

used in

g

As shown in Figure 5.10 this IFFT 2,048 domain se

samples d_s(n) in a series of 2,048 FIFOs and then feed the data in parallel to the

10 point DFT in the next domain. As referred to in the step 10 of the algorithm, there are

a total of 10 frames of 2,500 samples for each downconversion frequency used. These

data can be represented by a 10*2,048 d_s(n) matrix. This matrix is then accessed one

column at a time and a 10-point DFT is performed on each column.

5

5

This is a Xilin

 the previous domain. The main difference is that this one is scaled. The input that

controls the amount of scaling is a 12-bit bus called ifft_scale_sch. There are 11 butterfly

stages in a 2048 FFT, and for pipelined streaming architecture, the scaling schedule is

specified with two bits for every pair of radix-2 stages. For example, a scaling schedule

of N = 2048 could be [2 2 2 3 2 1]. [31] The last stage just has one bit for scaling because

2,048 is not a radix-4 number. Another difference between the 4,096 FFT and the 2,048

IFFT is that the scaled IFFT has the same number of bits for its xn inputs and xk outputs.

Because of this limited number of bits, the latter can overflow if not scaled properly.

There is therefore an ifft_ovflo flag that alerts the user that an overflow occurred durin

calculation of the IFFT. The user could then decide what to do with the output xk_re and

xk_im samples.

59

Figure 5.11 Schematic of IFFT_2048 module

The engineer therefore has to be judicious in picking a scaling schedule. If there

is not enough scaling, the core can overflow. If there is too much scaling, the xk outputs

may lose their numerical relation, making the output almost meaningless. MATLAB or

C simulations are one reliable way to test scaling or truncation schedules before they are

implemented in hardware. The MATLAB simulations show that after the generation of

D_S(F), the data path is less sensitive to scaling and truncation, allowing the user to scale

fairly aggressively towards the back end of the system.

5.3.2.2 FIFO_2048

At this point, a few words about FIFOs might be in order. The following is taken

from a digital design text [33]: “A FIFO (First In First Out) is a type of memory that is

commonly used to buffer data that is being transferred between different systems of

different parts of a system, which are operating at different speeds or with different

delays. The FIFO allows the transmitter to send data while the receiver is not ready. The

data then fills up the FIFO memory until the receiver begins unloading it”

This particular FIFO is a Xilinx IP core called Asynchronous FIFO v6.1. As

shown in figure 5.12, it has two independent clock domains, wr_clk for writing and

60

rd_clk for reading. There are a number of outputs also. The ones relative to this design

are the full and the empty flags. The full signal is used to signal to the control to disable

writing to the FIFO and the empty flag is used to signal to the control to stop reading

from the FIFO. In this thesis design there are 10 of these FIFOs (from 0 to 9), each of

depth 2,048. Each FIFO collects the 2,048 d_s(n) outputs for each 2,048 IFFT. Once

all FIFOs are full, the FIFO data are read out in parallel and fed to the next domain.

Figure 5.12 FIFO 2,048 IP Core

5.3.2.3 DEMUX 1_10

This demux serves to route of d_s(n) data and the wr_en signal to the appropriate

FIFO This FIFO has a 4-bit demux_select input and has a variable data path width based

on the amount of truncation post IFFT. Although the demux, can theoretically handle 16

different routes, only outputs 0 to 9 are used, so during synthesis the remaining 6 outputs

and their associated logic would not be implemented, leading to a conservation of FPGA

resources.. Since the wr_en is routed to the same FIFO as the d_s(n) data, there is no

need to have a separate 1 to 10 FIFO for wr_en and d_s(n)

61

5.3.3 Controllers in the IFFT_2048 Domain

5.3.3.1 IFFT_OP_CONT (IOC)

IFFT_OP_CONT (IOC) is the only control for this domain. Its relevant inputs are

ifft_done, ifft_dv and the relevant outputs are we_ifft_fifo, fifo_writes_done and a 4-bit

output ifft_demux_cont. The ifft_done input, which is actually an output from the IFFFT

2,048, triggers this controller to route the d_s(n) output and the we_ifft_fifo signal, a write

enable signal, to the appropriate FIFO via the demux. The we_ifft_fifo signal is kept

high as long as the ifft_dv input from the IFFT is high, ensuring that all d_s(n) samples

are written into the FIFO. The routing is controlled by the ifft_demux_cont value. Once

the ifft_dv flag goes low, the IOC changes state and increments ifft_demux_cont. IOC

then “waits” until ifft_done goes high again and then it regulates the writing of the next

2,048 samples of d_s(n) to the next FIFO in the bank. This process is repeated until the

10th state is reached, at which point the fifo_writes_done flag goes high, indicating to the

next domain that the 10 point DFTs can now start. IOC then goes back to its init state and

“waits” for the next set of IFFT outputs from the next downconversion frequency.

5.3.4 Timing Issues Post IFFT_2048

After the last fifo_2048 has been completely written to, at the front end, the initial

buffer has already gotten nearly 40,000 samples read from it for the next downconversion

frequency. An analysis of the time needed for complete sorting reveals that there is

already a 90 µs delay between completing a downconversion frequency and beginning a

new data stream to the FFT. There is also the built-in latency of 4,096 clocks for the FFT

input, 4,096 clocks for the output, and timing analysis and simulation, it is concluded that

62

there is sufficient time for the sorting algorithm to complete before new downconversion

data is written to the FIFOs. Figure 5.13 shows that the sorting in complete before the 5th

FIFO begins to take data from the 5th 4096 FFT.

Simulation showing that sorting is complete before next
frequency is completely written in.

Figure 5.13 Simulation showing that FIFO collisions are avoided.

5.4 The 10 Point DFT/ Sorting Domain

10
point
DFT

parallel to
serial bubble

sorting
module

max_ find_0

Synchronization
and Control

ControlKey:

Max find_1

Data

d_s(n)

d_s(n) D_S_P(F)

D_S_P(F)

previous
stage
control

D_S_P_MAX_0(F)
Max_find_2

D_S_P_MAX_1(F)

Final
Calculation

circuitry

C
ode phase

D
oppler shift

Indices

D
ata valid

Figure 5.14 Block Diagram of 10 Point DFT/Sorting Domain

63

5.4.1 Overview of Operations in the 10 Point DFT/ Sorting Domain.

Once all the FIFOs are full, as signaled by the fifo_writes_done signal from the

previous domain, this domain then proceeds to calculate a series of 10 point DFTs on the

synchronized parallel outputs of the FIFOs. A total of 2,048 ten-point DFTs are

calculated for each downconversion frequency. The result of these 10-point DFTs is

sorted to obtain the global maximum. The control circuitry of this domain ensures that:

1) the 10 point DFT starts after the FIFOs from the previous stage are filled and 2) the

bubble sorters are flushed after each batch of data

5.4.2 Details of Datapaths in The 10-Point DFT/Sorting Domain

5.4.2.1 DFT_10

This module has 10 variable width inputs named in0r, in1r , in2r, in3r ,in4r, in5r,

in6r, in7r, in8r, and in9r; it also has 10 variable width imaginary inputs named in0i ,in1i

,in2i ,in3i ,in4i, in5i, in6i ,in7i, in8i, and in9i. The outputs are: out0r, out1r, out2r, out3r,

out4r, out5r, out6r, out7r, out8r, out9r, out0i, out1i, out2i, out3i, out4i, out5i, out6i,

out7i, out8i, and out9i. The DFT is enabled via an enable input signal. The 10 point DFT

module also has a data_valid flag that goes high for one clock to indicate that the data on

the outputs is valid. The data_valid flag goes low until the next 10-point DFT is enabled

and subsequently calculated. This parallel/pipelined architecture allows rapid calculation

of the 10-point DFT, greatly speeding up the calculations relative to a purely serial

implementation. The price paid for such a rapid implementation is increased arithmetic

hardware. Below is the synthesis report for DFT_10, illustrating the resources used by

this module. As can be seen from the table, this design is very multiplier intensive.

64

Table 5.1 Synthesis Results of FFT_10 showing FPGA resources utilized

FPGA Resources # in design Total # on FPGA % of total

Number of Slices 5,498 13,696 40

Number of Slice Flip Flops 1,009 27,392 4

Number of 4 input LUTs 10,127 27,392 37

Number of MULT18X18 112 644 83

The 10 point DFT module carries out a discrete Fourier transform in 3 clocks. It

accepts 10 real and 10 imaginary inputs in parallel and after 3 clocks, presents the valid

10 point transform (10 real and 10 imaginary numbers) in parallel at its outputs. The

module performs a total of 2,048 10-point DFTs for each 50,000 input unit.

A 10-point DFT is very uncommon, since most DFTs are implemented as FFTs

and are thus commonly powers of 2. This DFT was hand-coded specifically for this

circuit. The Divide and Conquer DFT algorithm outlined earlier in the paper was

functionally decomposed into three pipelined modules and implemented in VHDL. This

design choice leads to the 9 clock latency. The simulation results for a sample run of the

DFT_10 module are shown in figure 5.15.

65

40

Cyprian Sajabi

10 POINT DFT SHOWING

LATENCY AND FIXED WORD LENGTH

SAMPLES

IN MATLAB:

out0r = -7

out0i = 22

out1r = -17.099

out1i = -40.307

out2r = -3.5344

out2i = -8.095

out3r = 40.05

out3i = 11.506

less than 10%
error

Figure 5.15 DFT_10 Module Sample Simulation

5.4.2.2 Max_find_0

This module has an enable input and 10 N-width real and imaginary inputs named

din0r, din1r, din2r, din3r, din4r, din5r, din6r, din7r, din8r, din9r, din0i, din1i, din2i,

din3i, din4i, din5i, din6i, din7i, din8i, and din9i. The outputs are a flag named

max_0_done, a four-bit vector named max_0_index, and a variable-width vector named

max_0. The width of max_0 vector is 2*N + 1 because it represents the sum of the squares

of the real and imaginary inputs.

The max_find_0 searches the outputs of the 10 point DFT to find the maximum

absolute value of each set of ten and presents this value (max_0) along with an associated

row index (max_0_index), ranging from 1 to 10 to the max_find_1 module. For each

down conversion frequency, the max_find_0 carries out a total of 2,048 bubble sorts to

66

give a total of 2,048 maxima. Within max_find_0 are a parallel to serial converter, a serial

bubble sorter and a control module. Max_find_0 requires 10 clocks to perform its

function. At this point the data have been converted to the unsigned 2*N +1 -bit

numbers.

5.4.2.3 Max_find_1

Max_find_1 serially sorts through the 2,048 outputs of max_find_0 to obtain a

local maximum for a given down conversion frequency. The inputs to max_find_1 are:

enable, d_in, a 2*N +1-bit input, and a 4-bit input row_index_in, connected directly to the

max_0_index output of the max_find_0 module. The outputs are a 2*N+1-bit output

max_out, a 4-bit max_out_row_indx and an 11-bit max_out_col_indx vector. Max_find_1

serially sorts through the d_in inputs by comparing the new d_in value with a current

maximum. The enable signal going high causes the module to perform a comparison of

the absolute value of its inputs with it currently stored maximum. If the new value is

greater than the current maximum, it swaps them and makes the new value the current

maximum. In addition, max_find_1 clocks in the value of row_index_in that is associated

with the new current maximum and presents this value on its output as

max_out_row_indx. Max_find_1 generates an additional column index

(max_out_col_indx) ranging from 1 to 2,048 to accompany the row index from

max_find_0. There is now a single unsigned 2*N +1 -bit number, a row index, and a

column index stored as a result of processing 50,000 points of input data. Max_find_1

continues this process for all 10 downconversion frequencies.

67

5.4.2.4 Max_find_2

Max_find_2 serially sorts through the 10 numbers from Max_find_1 to find a

global maximum, associating a third index, a stack index, with the final maximum.

Max_find_2 has an enable, a 2*N+1-bit input named d_in, a 4-bit input called

row_index_in, and an 11-bit input called col_index_in. The outputs are

max_out_2_row_indx (4-bits), max_out_2_col_indx(11 bits), max_out_2_stack_indx (4-

bits), and max_out_2 (2N+1-bits). As with max_find_1, when this module is enabled, it

performs a comparison of the value on its d_in input with the value stored in its register.

If the new value is greater than the stored value, it performs a swap of information,

presenting the associated column, row, and stack index of the new maximum. Otherwise

the old values remain on the outputs as the current maximum. Since there is no more

sorting to be done, the current maximum is not needed as an output, but is needed

internally for comparisons.

5.4.2.5 Final Calculation Circuitry

The Final Calculation Circuitry takes the three indices as inputs and via some

simple calculations decodes them to obtain the carrier frequency and the relative phase of

the C/A code of the incoming code. These data are continually fed into an Early Prompt

Late module that keeps the relative phase of code adjusted and keeps the down conversion

frequency as close to the Doppler shifted frequency as possible within the resolution limits

of the system. There are two functional modules within the final calculation circuitry:

Final_decision_module_0 (FDM_0) and Final_decision_module_1(FDM_1).

68

5.4.2.5.2 FDM_0

This module is used to calculate the Doppler shift of the carrier. The relevant

inputs are the max_find_1_done flag (taken from max_find_1), and the 4-bit inputs

row_index_in and stack_index_in (taken from max_find_2).

The outputs are the data_valid flag and the 14-bit output freq. Each time a down

conversion frequency’s outputs are completely sorted, the max_find_1_done flag pulses.

The FDM_0 module keeps a count of how many times max_find_1_done pulses, When

the count reaches 10, it means that sorting of all downconversion frequencies is complete,

and the final calculations can now proceed. The FDM_0 module performs some simple

signed integer arithmetic using row_index_in and stack_index_in to calculate freq. The

value of freq has a possible range of 5000± Hz, so it needs 14 bits to represent the

possible values it can take on. Simulations show that the entire acquisition cycle requires

about 5.5 ms at 100 MHz.

5.4.2.5.2 FDM_1

This module is used to calculate the code phase. The relevant inputs are the

max_find_1_done flag (taken from max_find_1), and the 11-bit input col_index_in and

stack_index_in (taken from max_find_2).

The outputs are the data_valid flag and the 13-bit output ini_ca. The FDM_1

module calculates its numerical output value at the same time the FDM_0 module

calculates its numerical output value. The FDM_1 module performs some simple

unsigned integer arithmetic using col_index_in to calculate ini_ca. The value of ini_ca has

69

a possible range of samples, so it needs 13 bits to represent the possible values it

can take on.

4096±

5.4.3 Controllers in the DFT_10/Sorting Domain

5.4.3.1 Max_find_1 Control

This controller is responsible for a number of functions in this domain:

1. It enables max_find_1 for one clock after each column is sorted by max_find_0.

2. It controls the resetting of max_find_1 after each downconversion frequency is

completed.

3. It signals to the final calculation circuitry when each downconversion frequency is

completely sorted, allowing them to keep a count of how many frequencies are

completed.

Max_find_1 control has two control inputs named mx_0_done and

fifo_2048_empty. It has three control outputs called max_find_1_done,

max_find_1_enable, and max_find_1_reset.

When the mx_0_done input goes high, the max_find_1_enable output goes high

for one clock and triggers the max_find_1 module to perform a comparison operation.

This pattern continues until fifo_2048_empty goes high, at which point the max_find_1

controller resets max_find_1 via the max_find_1_reset signal. In this state the max_find_1

controller also pulses max_find_1_done for one clock, signaling to the final calculation

circuitry that a downconversion frequency is completed. The max_find_1_control then

goes back into its init state and waits for another pulse from mx_0_done.

70

5.4.3.1.2 Max_find_2_control

This module serves to reset the max_find_2 module after the data_valid flag goes

high on max_find_2. It creates a delay of 4 clocks after the data_valid signal goes high

so any downstream elements that require the phase and frequency data can have free

access to it within the 4 clock window. This time is arbitrary and may be increased or

decreased as needed. Max_find_2_control has one functional input called data_valid,

and an output called max_find_2_reset. When data_valid goes high, this control module

goes through a series of 4 Moore type state transitions, the last of which causes the

max_find_reset signal to go high. Subsequently, the controller goes into the init state and

“waits” for the next data_valid assertion.

5.5 Simulation results of the Processor

Figure 5.16 shows the simulation results of the entire acquisition process. The

highlighted signals are the signals of interest. A comparison with MATLAB shows a

match for both ini_ca and freq. As can be seen, the data_valid signal goes high when the

acquisition results are ready. This data_valid signal will be used by downstream tracking

elements to capture the acquisition results and use them in tracking the signal. The

results for the code phase, ini_ca are in unsigned format, whereas the results for the

Doppler shift, freq are in 2’s complement format. These results are ready within 5.6 ms

of the frontside buffer being filled up.

71

Figure 5.16 Behavioral simulation showing successful emulation of MATLAB code.

72

6 Finite Word-length Considerations.

6.1 Growth of the Bits in the Datapath Due to Addition and Multiplication

Discrete time systems are implemented in hardware or software, but in either case, finite-

word-length has to be taken into consideration. Even with the flexibility of software

based systems, there are limits on the size of numbers they can handle. The system used

in this thesis is a hardware fixed-point system, and finite-word-length is a major

consideration in the implementation.

In this section, we consider what happens when arithmetic takes place in a fixed-

point system. An example will illustrate some challenges faced by digital designers using

a fixed point system. We will assume that there is a basic understanding of unsigned

binary mathematics for this example:

Let’s say we want to add two 4-bit unsigned numbers. If the numbers are small

enough, the result can also be represented by 4-bits, and the datapath can keep its original

width. For example (6 + 4)10 = (0110 + 0100)2 = 10102. But the following sum cannot

be represented by the 4-bit datapath, and an extra bit needs to be added:

(8 + 9)10 = (1000 + 1001)2 = 100012. Because of this possibility, the datapath needs to

be expanded by one bit as we add numbers and move the data “downstream”. In fact,

the maximum expansion for addition datapaths is one bit.

Let us look at the case with multiplication: As an example (6 * 4)10 = (0110 *

0100)2 = 110002. The following sum cannot be represented by the 4-bit datapath, and an

extra bit needs to be added. In the boundary case of: (15 * 15)10 = (1111 * 1111)2 =

111000012., the required data path actually doubles in size. Because of this possibility,

the data path needs to be doubled in size as we multiply numbers and move the data

73

“downstream”. In fact, the expansion for multiplication datapaths is bounded by the

sum of the datawidths of the inputs.

It can then be seen that if we have a very long signal processing algorithm, the

data-path will keep growing without bounds. This is sometime referred to as data-path

“explosion”. There are a number of measures, such as rounding and truncation, that can

be taken to counteract this effect. In this thesis, truncation was used because of its

relative simplicity.

6.2 Effects of Truncation on the Datapath.

The following discussion will illuminate the topic of truncation and its effect on

the datapath. We usually need to quantize a number from a given level of precision to a

lower level in order to keep the datapath from “exploding”. Truncation introduces an

error whose value depends on the number of bits in the original number versus the

number of bits after truncation. In the two’s-complement representation, the negative of

a number is obtained by subtracting the corresponding positive number from 2. Let us

consider a fixed-point representation in which a two’s complement number x is

quantized from bu bits to b bits. Thus the number

x =
48476 ub

1...1011.0

represented with bu bits prior to quantization is represented as

x =
48476 b

1...1011.0

74

after quantization, where b < bu. If x represents a sample of an analog signal, the bu may

be taken as infinite [34]. The value of x would then be truncated, and the truncation error

is defined as

 Et = Qt (x) – x (6.1)

The effect of truncation by one bit on a two’s complement number is to decrease

the magnitude of the number by a factor of 2 for radix 2 numbers. For non radix-2

numbers, truncation by one bit leaves a result that is equivalent of dividing by 2 and

rounding down to the nearest integer. For negative numbers, the result depends on the

numbers used, but is bounded by half the magnitude of the number . The following

examples illustrate a few cases of truncation of 6-bit two’s complement numbers by one

bit:

1±

Table 6.1 Examples of Truncation Error for positive and negative numbers

Decimal (x) Two’s

complement

Truncated

by one bit

New Decimal

Qt (x)

Truncation Error

Qt (x) – x

20 010100 01010 10 -10

19 010011 01001 9 -10

-20 101100 10110 -9 11

-19 101101 10110 -9 10

The above table suggests that truncation error for two’s complement

representation is essentially symmetric about zero, which is desirable to minimize D.C

bias in the results. Another important point about truncation is that if the initial numbers

75

are very small, then truncation can lead to results that are ambiguous. Truncation is

acceptable if it preserves the ratios of the signal values within the noise limits of the

system in question. One can therefore test the effects of truncation by simulation before

implementing it in hardware.

6.3 Resizing without changing value.

In some cases, it is possible to change the size of the datapath without changing the

signal values. This happens when there are many more bits than are needed to represent

the possible range of numbers on a bus. For example, an 11-bit bus can represent

numbers from -1024 up to 1023 in two’s complement. However, if it is known apriori,

that the range of numbers on a bus will be 100± , then an 8-bit bus is sufficient to

represent the numbers with full precision. In this case, another method of reducing the

bus width, called resizing can be used, and we can still keep the complete accuracy of the

numbers. A VHDL function called std_resize was written to carry out bus resizing to a

smaller size. Figure 6.1 illustrates the action of std_resize.

msb lsb

sign

Figure 6.1 Action of std_resize to smaller size

6.4 Truncation and resizing schedule for C/A processor

Table 6.2 illustrates a possible truncation and resizing schedule for the C/A code

processor based on MATLAB simulations.

76

Table 6.2 Theoretical versus implemented truncation and resizing schedule

Signal Max Val/Bits
Theoretical
Truncated
Range/Bits

Implemented
Truncated
Range/Bits

Name In
Algorithm
(If Applicable)

primary input
bits +-84/8 +-42/7 +-42/7 y(n)

bits from cplx
exp +- 256/9 +-64/7 +- 256/9 c_e(n)

bits into 1st
cplx mult 9 and 8 7 and 7 bits 7 and 9 bits y(n)*c_e(n)

bits out of of 1st
cplx mult +-10752/16 +-2624/14 +-5248/15 d_c(n)

bits of C/A
FFT +-280/10 +-140/9 +-280/10 C_A(F)

bits to 2048
ram +-280/10 +-140/9 +-280/10 C_A(F)

40,960 ram bits +-10,752/16 +-2,624/14 +-5,248/15 d_c(n)
bits to 4,096
FFT +-10,752/16 +-2,624/14 +-5,248/15 d_c(n)

bits out of
4,096 FFT +-852,910/21 +-30/6 +-200/9 D_C(F)

demux bits +-10,752/21 +-2624/14 +-200/9
D_C(F) or
C_A(F)

bits into 2nd
cplx mult 10 and 21 6 and 9 10 and 9 bits C_A(F) * D_C(F)

bits out of 2nd
cplx multiplier

+-
113,986,498/28 +-882/12 +-32,000/17 D_S(F)

Bits out of
2,048 IFFT +- 1024901/21 +-7/4 +-16/10 d_s(n)

bits of 2,048
FIFO +- 1024901/21 +-7/4 +-16/10 d_s(n)

bits to 10 pt
FFT +- 1024901/21 +-7/4 +-16/10 d_s(n)

bits from 10-pt
FFT +- 9377207/24 +-9/5 +-22/30 D_S_P(F)

bits of sorting
algorithm +- 1024901/21

+162/8
(only
positive)

+400/25
(only
positive)

D_S_P_MAX(F)

77

Implemented truncation and resizing detailed summary:

• y(n) 7-bits (truncated from 8 to 7 bits)
• c_e(n) 9-bits(no truncation)
• y(n) 7-bits * c_e(n) 9-bit inputs to multiplier
• 16 bit multiplier output d_c(n) (truncated to 15 bits)
• 15-bit 40,960 ram stores d_c(n)
• 15-bit FFT_4096 input d_c(n)
• 28-bit FFT output for either D_C(F) or C_A(F)
• 28-bit FFT resized to 10 bits for C_A(F)
• 28 bit FFToutput truncated to 17 bits for tmp1f, then resized to 9 bits for

D_C(F)
• 9-bit 2,048 RAM
• 9-bit D_C(F) * 10-bit C_A(F) input to complex conjugate multiplier
• multiplier output D_S(F) of 21 bits truncated to 17 bits
• 17-bit ifft output d_s(n) resized to 10 bits for 10-pt FFT
• 10(*2)-bit 2048 fifo for d_s(n)
• 10-bit 10-point FFT input d_s(n)
• 30-bit fft_10 output D_S_P(F) truncated to 12 bits
• 25-bit comparison circuits to find D_S_P_MAX(F)

The truncation schedules given above are by no means final. They are simply one of
many possible configurations that gave the required accuracy for this algorithm.

78

7 HARDWARE REQUIREMENTS FROM XILINX REPORTS

From the Xilinx XST Synthesis Reports, the table below shows the hardware

requirements for the major components in the processor. The selected device is the

Virtex-II Pro type 2vp70ff1152-6. Below is a summary of the resources available on this

FPGA and the percentage used by the processor:

Table 7.1 Overall Virtex-II Pro 70 FPGA Resource Usage of Processor
Resource Total In design Percentage

usage
 Slices 33,088 7,149 21%

Slice Registers 66,176 11,915 16%

4 input LUTs 66,176 12,233 18 %
Bonded IOBs 644 35 3%
BRAMs: 328 50 48%
GCLKs 16 6 37%
MULT18X18 328 160 49%

After Synthesis, the maximum clock rate of the design was 140.174 MHz. Resource

sharing was enabled during the synthesis run. This resource sharing for some arithmetic

operations slowed down the maximum clock frequency, but allowed reduced device

utilization. For improved clock frequency resource sharing could be disabled. After

Place and Route, the maximum clock frequency was 105 MHz. As seen in table 7.2, the

10-point DFT consumes the most multiplier resources at 112, whereas Dual-Port RAM1

consumes the most memory resources. The IFFT_2048 and FFT_4096 consume the

most slices, LUTs and flip-flops.

79

Table 7.2 Analysis of Individual Synthesis Results of Major Components

Component Number
of Slices

Slice flip
flops

4-input
LUTs

Block
RAMs MULT18X18

FIFO_2048 (written
in VHDL) 45 36 83 3 0

IP core generated
FIFO_4095 45 88 106 5 0

DFT_10 2,976 3,439 5,245 0 112

Dual Port RAM 0 27 0 0 49 0

Dual Port RAM 1 21 0 0 96 0

FFT_4096 5,227 7,703 6,977 39 27

IFFT_2048 4,477 7,736 6,286 17 40

DDS 43 57 61 0 0

These figures give some ideas of areas for further size optimization. A word of

caution: the synthesis results cannot be totaled up to give the complete synthesis figures

because many each slice may “donate” resources to more than one module in the overall

design. For example, a slice may “donate” a register to one entity and a 4-input LUT to

another entity. This is one reason why the total slice count from the synthesis of the

whole design in table 7.1 is less than what would be obtained by summing up the slice

count from the individual synthesis results in table 7.2. Another reason the slice count

changes is that unused outputs are “ripped” out by the translation and mapping

algorithms, leading to a greatly reduced design in terms of resource usage.

80

8. COMPARISONS WITH CURRENT DESIGNS

Below is table 8.1 showing a comparison with some current designs in terms of

Signal-to-noise ratio and acquisition times. It is difficult to make meaningful

comparisons among all systems because they may use different technology, units of

measure and testing conditions. To the extent possible, a comparison between the

different systems and the one implemented in this paper has been attempted. As it can be

seen, the acquisition times range from 5.6 ms on the AFRL design to 2 seconds on the

Trimble Resolution T Receiver. Sensitivity ranges from -140dBm with the Teletype GPS

CF v3.0 Receiver to 40 dB in work done by P. Rinder and N Bertelsen. Two caveats are

in order here: firstly, the term “acquisition” may carry different meanings to different

systems and secondly that comparing hardware and software approaches is often fraught

with risk. At any rate, the AFRL GPS processor seems to be the fastest in acquisition

time and in the top three in terms of sensitivity, making it an attractive design. The

FPGA implementation gives a flexibility not given by an ASIC and approaching that of a

general purpose processor. Another point to note is that the AFRL processor also is well

positioned for future work with P and M code because it is designed for 10 ms data

records.

81

Table 8.1 Comparisons with some Current GPS Receivers

47

Cyprian Sajabi

COMPARISONS WITH SOME

CURRENT GPS RECEIVERS

Massively
Parallel
Correlator
Bank

1ms~5 seconds
indoors
100 ms outdoors

~40 dB outdoors
-125 dBm indoors

Van Diggelen , F.

Abraham, C.
GPSWorld,

DSP chip1 ms1 ms outdoors
100 ms indoors

~40 dB outdoors
-125 dBm indoors

High-Performance
GPS (HPGPS),
STMicroelectronics

DSP chipN/A2,000 ms-136 dBmTrimble Resolution
T Receiver

FPGA10 ms5.6 ms-135 dBmAFRL 2006

Software
On a Laptop

1 ms100 ms~40dB(outdoors)Rinder, P.
Bertelsen, N.
2004

ASICN/A100 ms-140 dBmTeleType GPS CF
v3.0 Receiver

ApproachData LengthAcquisition
time

SensitivityReference/
Product

82

9. CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

 Acquisition is the most important step to a GPS receiver because one must lock onto

the C/A code in order to despread the GPS signal. The acquisition generates two

important parameters: the carrier frequency and the initial phase of the C/A code. In

general, acquisition performed on long data will increase the receiver sensitivity. This

thesis describes the implementation of a weak signal C/A code acquisition circuit that uses

10 ms of data to perform a frequency domain based operation to realize its function. The

novel “subsampling” technique demonstrated in this paper is an alternative to averaging

correlation as a way to map an ideal software approach acquisition to hardware.

In this thesis, a C/A code processor was designed and simulated successfully. It is found

to work at the required 100 MHz clock frequency and acquires the C/A code and Doppler

shift in 5.5 ms. Truncation and data-path resizing were effectively used to keep the

datapath from “exploding”. The design was synthesized and projected to fit onto the

Virtex-II pro 70 FPGA.

9.2 Future Work

 The limitations of this system lie primarily in the massive hardware requirements.

In synthesis, the processor maps onto the Virtex-II pro 70 FPGA. The algorithm itself is

highly efficient relative to the purely time-domain approach. The places where hardware

could be minimized are the FFT modules (especially FFT_10) ,and the FIFOs, because

the design uses 10 FIFOs. IFFT_2048 and FFT_4096 are Xilinx IP core “black boxes”,

so the only changes that can be made here is to change the architecture to Burst mode,

83

which will cut down on the resource usage. Such architecture changes in FFT_4096 and

IFFT_2048 are not trivial, because they would necessitate further changes in the overall

timing and scheduling of the processor.

In addition, major re-engineering would need to be carried out to have a design that does

not use Dual Port RAM 1, but if this could be done, the design would use about 96 less

block rams and could conceivably fit in a Virtex-II pro 30 part. The use of shift and add

architecture rather than dedicated multipliers would reduce the number of MULT18x18

used and allow the design to fit on the Virtex-II pro 30 part. The amount of truncation

and resizing, especially early on in the algorithm, will determine the datapath width of the

size of the downstream components. Further studies need to be carried out to determine

the optimal truncation schedule for this particular architecture, while maintaining the -20

dB signal-to-noise ratio.

84

APPENDIX

A.1 MATLAB CODE FOR C/A PROCESSOR BLOCKS

The MATLAB code for the processor is broken up into a number of functions. This

appendix contains the basic blocks and their basic functional description within the

design. All code was provided courtesy of Air Force Research Lab(AFRL)

A.1.1 C/A Code Generation

This function, called “cacode” is responsible for generation of the reference C/A code,

which is the Pseudo Noise (PN) sequence that will be used as a template to match the

incoming signal. The function takes one parameter, the satellite number, and generates a

unique PN sequence for each satellite number input. This PN sequence is a series of -1

and 1 in MATLAB that map onto 1 and 0 in hardware. The code is generated at 1.023

MHz in hardware, corresponding to one sample per generator clock. The MATLAB

function is given below:

function [ss_ca]=cacode_1(svnum);
% modified by JT May 8 02 to generate satellite ca this program contains WASP
%function ca=cacode2(svnum,fs,numsamp);
% function to generate any of the 32 GPS C/A codes at a user
% specified sampling frequency.
% Input Arguments:
% svnum - the Satellite's PRN number
% 1-32 is traditional GPS PRN numbers
% 38 is PRN for WAAS INMARSAT AOR-E (refer to WAAS MOPS for shift)
% 39 is PRN for WAAS INMARSAT AOR-W
% 40 is PRN for WAAS INMARSAT Reserved
% 41 is PRN for WAAS INMARSAT IOR
% 42 is PRN for WAAS INMARSAT POR
%
% fs - desired sampling frequency
% numsamp - number of samples to generate
% (sequence can extend for longer than a single code period (1 ms)
% Output Argument
% ca - a vector containing the desired output sequence
% D. Akos - WPAFB AAWP-1
%this start the sequence one sample into the first chip (not at leading edge of first chip)!
%dma comment 17-5-00
%this has been fixed as of 9-Dec-2000 but not fully completely tested, but the first sample in the code should
correspond to the first chip now!!! Also added the ability to find the GEO for WAAS by using PRN numbers above 32
%dma comment 9-Dec-2000
% Constants
%svnum=26;

85

coderate=1.023e6; %no consider given to the neglible Doppler effect on code

% the g2s vector holds the appropriate shift of the g2 code to generate
% the C/A code (ex. for SV#19 - use a G2 shift of g2shift(19,1)=471)
g2s = [5;6;7;8;17;18;139;140;141;251;252;254;255;256;257;258;469;470;471; ...
 472;473;474;509;512;513;514;515;516;859;860;861;862;863;950;947;948;950; ...
 145;52;886;1012;130];
g2shift=g2s(svnum,1);
% Generate G1 code
 % load shift register
 reg = -1*ones(1,10);%-1 corresponds to 1
 for i = 1:1023,
 g1(i) = reg(10);
 save1 = reg(3)*reg(10);%xor
 reg(1,2:10) = reg(1:1:9);
 reg(1) = save1;
 end,
 % Generate G2 code
 % load shift register
 reg = -1*ones(1,10); %-1 corresponds to 1
 for i = 1:1023 ; %start in state 1 and add 1023 to end up in state 1
 g2(i) = reg(10) ;% first is state 0
 g2_rows(i,:) = reg;% addded by cyprian sajabi
 save2 = reg(2)*reg(3)*reg(6)*reg(8)*reg(9)*reg(10);%xors
 reg(1,2:10) = reg(1:1:9);
 reg(1) = save2;
 end
 % Shift G2 code
 g2tmp(1,1:g2shift)=g2(1,1023-g2shift+1:1023);
 g2tmp(1,g2shift+1:1023)=g2(1,1:1023-g2shift);
% Form single sample C/A code by multiplying G1 and G2
ss_ca = -g1.*g2tmp; %xnor operation

A.1.2 C/A Code Sampling

This function, called “digold_trk” is responsible for simulating the sampling of the

reference C/A code, at a sampling frequency specified by the design. In this case, the

sampling frequency is 5 Mhz. The arguments for this function are: the number of

samples to generate, sampling frequency, Doppler shift, time offset, and satellite number.

Digold_trk calls the “cacode” to generate the one-sample-per chip PN sequence, which is

then sampled by the next lines of the function to return 5,000 PN code samples.

function code2 = digold_trk(n,fs,fd,offset,sat);
% code - gold code
% n - number of samples
% fs - sample frequency in Hz;
% offset - delay time in ns second must be less than 1/fs can not shift left
% sat - satellite number;

gold_rate = 1.023e6; %gold code clock rate in Hz.

86

f1=1575.42e6;
fs=fs*(f1-fd)/f1;
ts=1/fs;
tc=1/gold_rate;
code_in = cacode(sat); %generate C/A code
offset=offset*f1/(f1-fd);
b = 1:n;
if(offset<0)
tmp=(ts*b+offset);
 tmp(1)=4999*ts;
 tmp(2)=ts;
else
 offset=rem(offset,1e-3);
 tmp=(ts*b+offset);
 end
c = ceil(tmp/tc);
c=rem((c-1),1023)+1;
code2 =code_in(c);

A.1.3 Generation of real-world data.

The file, called “main” prompts the user to input a satellite number, the amount of offset

into the data required, and the required signal to noise ratio. The file then opens and

reads a data file taken from sampled and quantized real-world data. The file takes in

50,000 data samples and based on the signal-to-noise ratio entered by the user, it will add

the required white noise to the signal. The “main” program then calls a function called

“acq10ms”, passing to it the noisy signal, the satellite number, and the number of

Doppler frequencies to be used. The MATLAB code for “main” is given below.

clear all; close all; clc
global fs n nn ts fc nsat x thresh thresh_flag srchbnr blknbr blksz readnbr vec;%fcode fdata;
sat=input('enter satellite number [a b c ..] = ');
intodat=input('enter initial point into data (should be mult of n) = ');
db=-input('enter S/N in db = ');
nsat=length(sat); %*** total # of satellites
fs=5e6; ts=1/fs; nn=[0:n-1]; fc=1.25e6;
offset=0;
filename ='drm10062.dat';% sat 23 Data taken from the east side of the bridge near the window
fid=fopen(filename,'r');
fseek(fid,intodat,'bof');
ferror(fid)
readnbr=50000;
 [x,readnbr] = fread(fid,readnbr,'schar');
mn=mean(x)
std=sqrt(mean((x-mn).^2))
x=x/std;
std=sqrt(mean((x-mn).^2))
mn=(10^(db/20))*std
no_frq=10;

87

%randn('seed',1234599753);
%x=x/mn+randn(1,length(x))';--courtesy of David Lin
x=x/mn;%no noise added
status = fclose(fid);
%[ini_ca,freq]=acq10ms_clean_dav_trunc(x,no_frq,sat)
%[ini_ca, freq]=acq10ms(x,no_frq,sat)

A.1.4 C/A code acquisition function.

The function called “acq10ms” is called by “main” and it in turn calls “digold_trk” to

generate the sampled PN sequence. This function performs acquisition on the noisy

signal from “main” using the PN template from “digold_trk” and returns the C/A code

phase and Doppler frequency. There are also a number of truncation constants in this

function that can be used to emulate what would happen during truncation in hardware.

The MATLAB code for “acq10ms” is given below.

% Take 10 ms data to perform coherent acq
%function [timefrq]=acq10ms(sat,no_frq,xin);
% sat: sat number
%no_frq: no. of frq used to down convert each one separates by 1 KHz
%xin: input data 10 ms
%function [ini_ca, freq]=acq10ms_clean_dav_trunc(xin,no_frq,sat);
close all
clc
xin = x;
%truncation schedules
xin_t= 2;%input data 2 7 bits
rf_t =1;%sinusoid1 7 bits
sig1_t = 2;%2 downconverted signal1 4 bits(9 bits min),2
caf_t =8192;% 1 fft of cacode, not scaled in hardware2 (needs 9 bits)
tmp1f_t = 2048;%post fft 2048,8192 7 bits
prodf_t = 16;%16%after complex multiply before ifft16 16 bits
out_t = 1;%after ifft1 16 bits
outf_t =4;% 4after 10 point fft4
zero_pad = zeros(1,1596);
fs=5e6;
ts=1/fs;
fo=1.25e6;
%n=fs/1000;
n = 4096;%for our hardware purposes
n10=10*5000;
nn=[0:n10-1];
frq_corse=1000;
ca = digold_trk(5000,fs,0,0,sat); % ref signal no Doppler 1 ms data
ca = ca*8192;
%ca = (ca*-0.5)+ 0.5;% convert back to '1' and '0' does not work.
% ca_rnd = half(ca);
% ca_rnd = [ca_rnd zero_pad];
ca_rnd = random_5000to4096_dav(ca);
%ca_rnd = 8192*ca_rnd;% scale so FFT rounding is negligible
caf=fft(ca_rnd);

88

caf=(caf(1:2048));
caf = floor(caf/caf_t);%truncation of fft of c/a code
foo=fo-no_frq/2*frq_corse;
xin = floor(xin/xin_t);%truncation of primary input unavoidable
%for jj=1:no_frq; % no of 1KHz down conversion, 10 in our case
for jj=1:4; % no of 1KHz down conversion, 10 in our case
 foo=foo+1000;
 rf=exp(j*2*pi*foo*ts*nn)*256;
 rf= floor(rf/rf_t);%truncation of sinusoid
 sig1=rf.*xin'; %down converted signal
 sig1 = floor(sig1/sig1_t);%truncation of downconverted signal
 tmp1=reshape(sig1,5000,length(sig1)/5000);%break signal into 10 columns
 %tmp4 = zeros(4096,10);
 tmp4 = zeros(4096,10);
 for i = 1:10;%columnwise conversions
 tmp2 = tmp1(:,i)'; %convert to row
 %tmp2 = half(tmp2);% average to 2500 samples
 %tmp2 = [tmp2 zero_pad];
 tmp2 = random_5000to4096_dav(tmp2);%take 4096 "random" samples
 tmp4(:,i)= tmp2';%convert to column
 end
 %tmp1 = zeros(4096,10);tmp1 = tmp4;
 tmp1 = zeros(4096,10);tmp1 = tmp4;
tmp1f=fft(tmp1);%fft on each column with zero padding to 4096
tmp1f=floor(tmp1f/tmp1f_t);% truncation before ifft
out=[];out_pre_ifft_matrix=[];
 for ii=1:10; % ***** convolution approx 10 ms columns
 %tmp1f_t = tmp1f';%transpose
 tmp2=tmp1f(1:2048,ii)';% take 1st half fft of each column then transpose
 prodf = (tmp2.*caf);%complex conjugate
 prodf = floor(prodf/prodf_t);
 tmp3=ifft(prodf);
 out_pre_ifft =(tmp2.*caf);
 out_pre_ifft_matrix=[out_pre_ifft_matrix;out_pre_ifft];% just for VHDL testing purposes
 out=[out;tmp3];%from tmp3
 end
 out = floor(out/out_t);%truncation after ifft
 outf(:,:,jj)=fft(out);% fine frq ,% ten point dft
end
outf = floor(outf/outf_t);%truncation after 10 point fft
clc
[mxamp,mxcoarse]=max(max(max(outf)))%mxcoarse is the stack index
[mxamp,init_ca]=max(max(outf(:,:,mxcoarse)))
[mxamp,mxfine]=max(outf(:,init_ca,mxcoarse))%mxfine is the row index
init_ca%column index
init_ca=(2048-init_ca)*2*(5000/4096)
%init_ca = init_ca*2*(4096/5000)% correction factor
%ini_ca=(2048-init_ca)*2*(5000/4096)
% init_ca = (2048-init_ca)*2*(5000/4096)
% ini_ca = init_ca*2
if(mxfine <= 5)
 freq=(mxcoarse-no_frq/2)*1000+(mxfine-1)*100
else
 freq=((mxcoarse-no_frq/2)*1000)+((mxfine-11)*100)
end
plot(abs(outf(:,:,mxcoarse)'));
figure
plot(abs(outf(mxfine,:,mxcoarse)));

89

A.1.5 Subsampling Matlab Function.

The function called “random_5000to4096” is called by “acqu10ms” This function

performs subsampling on 5,000 input samples and returns 4,096 samples. It uses a series

of nested loops to extract the required samples in a manner that retains the autocorrelation

properties of the C/A code. The MATLAB code for “random_5000to4096” is given

below.

 function [tem]=random_5000to4096_dav(xin);
tem=[];
 i=1;
 for k=1:5;
for j=1:91;
 tem=[tem xin(i:i+3)]; %4 samples i = 1
 i=i+5; %skip 1 i = 7
 tem=[tem xin(i:i+4)];%5 samples i=7
 i=i+6; %skip 1, i=12
end
i=i-1;% retard by 1, i = 1001
end
 tem=[tem 0];% zero pad with one zero

90

REFERENCES
[1] Lathi, B.P. “Modern Digital and Analog Communication Systems-Third Edition.” pp.

413 - 417. Oxford University Press. 1998.

[2] http://www.losangeles.af.mil/smc/pa/fact_sheets/gps_fs.htm

[3] D. Lin and J.B.Y Tsui “A Software GPS Reciver for Weak Signals,” IEEE MTT-S

Digest 2001

[4] http://en.wikipedia.org/wiki/Spread_spectrum

[5] Dixon, R.C. “Spread Spectrum Systems with Commercial Applications Third

Edition” pp 6-12, Wiley Inter-Science, 1994.

[6] Proakis, J.G. and Manolakis, D.G, “Digital Signal Processing, Principles, Algorithms

and Applications,” P 443, Prentice Hall 1996.

[7] Proakis, J.G. and Manolakis, D.G, “Digital Signal Processing, Principles, Algorithms

and Applications,” P 449-450, Prentice Hall 1996.

[8] Proakis, J.G. and Manolakis, D.G, “Digital Signal Processing, Principles, Algorithms

and Applications,” P 460, Prentice Hall 1996.

[9] Xilinx Virtex-II-Pro Datasheet, page 3

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex_ii_pro_fpgas/ca

pabilities/index.htm

[10] Elbirt. A.J. & Paar. C “An FPGA Implementation and Performance Evaluation of the

Serpent Block Cipher” ACM/SIGDA International Symposium on FPGAs, 33-40.

[11] Lin, D. M. and Tsui, J. B.-Y. “Acquisitions Schemes for Software GPS Reciever,”

Proceedings of ION GPS 98, Part 1, pp. 317-326, September 1998.

[12] Lin, D.M., Tsui, J.B.Y. “A Software GPS Receiver for Weak Signals” IEEE MTT-S

Digest 2001.

91

[13] Lee, B.H, & Kuo, S.M. “Real Time Digital Signal Processing, Implementations,

Applications and Experiments with the TMS320C55x” John Wiley & Sons LTD,

(New York) 2001 p. 330

[14] Proakis, J.G. and Manolakis, D.G, “Digital Signal Processing, Principles, Algorithms

and Applications,” P 423, Prentice Hall 1996.

[15] Manandhar, D., Suh, Y. & Shibasaki, R. “GPS Signal Acquisition and Tracking- An

Approach towards Development of Software-based GPS Receiver.” p. 2. The Institute

of Electronics, Technical Report of IEICE. 2004.

[16] Psiaki, M.L. “Block Acquisition of Weak GPS Signals in a Software Receiver.” p. 1

Princeton University Research Project Funded by NASA under cooperative

agreement number NCC5-563 . Upublished.

[17] Tsui, J.B.Y. “Fundamentals of Global Positioning System Receivers, A Software

Approach,” J. Wiley & Sons, (New York, 2000), p. 4.

[18] Tsui, J.B.Y. “Fundamentals of Global Positioning System Receivers, A Software

Approach,” J. Wiley & Sons, (New York, 2000), pp. 73-75.

[19] Tsui, J.B.Y. “Fundamentals of Global Positioning System Receivers, A Software

Approach,” J. Wiley & Sons, (New York, 2000), p. 39

[20] Tsui, J.B.Y. “Fundamentals of Global Positioning System Receivers, A Software

Approach,” J. Wiley & Sons, (New York, 2000), p. 85, p.135.

[21] Tsui, J.B.Y. “Fundamentals of Global Positioning System Receivers, A Software

Approach,” J. Wiley & Sons, (New York, 2000), p. 136

[22] P.E Howland, D Maksimiuk and G Reitsma, IEEE Proc.-Radar Sonar Navigation Vol

152, No. 3, June 2005

92

[23] Tsui, J.B.Y. “Fundamentals of Global Positioning System Receivers, A Software

Approach,” J. Wiley & Sons, (New York, 2000), p. 113

[24] Tsui, J.B.Y. “Fundamentals of Global Positioning System Receivers, A Software

Approach,” J. Wiley & Sons, (New York, 2000), p. 111

[25] http://www.electronicproducts.com/ShowPage.asp?FileName=maxim.feb2006.html

[26] Dixon, R.C. “Spread Spectrum Systems with Commercial Applications Third

Edition” pp. 327-330, Wiley Inter-Science, 1994.

[27] Van Nee, D., Coenen, A., “A New fast GPS code acquisition technique using FFT,”

Electronic Letters, vol 27, pp. 158-160, January 17, 1991.

[28] J. Starzyk and Z. Zhu, “Averaging Correlation for C/A Code Acquisition and

Tracking in Frequency Domain,” MWSCS Conference, Fairborn, OH, August 2001.

[29] A. Alqeeli Abdulqadir, “Global Positioning System Signal Acquisition and Tracking

Using Field Programmable Gate Arrays, “ doctoral Dissertation, Ohio University,

Athens, OH, November 2002.

[30] Dixon, R.C. “Spread Spectrum Systems with Commercial Applications Third

Edition” Pp 160-166, Wiley Inter-Science, 1994.

[31] Xilinx FFT IP core DataSheet, page 18

http://www.xilinx.com/ipcenter/catalog/logicore/docs/xfft.pdf#search='xilinx%20fft%

202005

[32] Xilinx FFT IP core DataSheet, page 9

http://www.xilinx.com/ipcenter/catalog/logicore/docs/xfft.pdf#search='xilinx%20fft%

202005

[33] Ziedman, B 1999 Prentice Hall “Verilog Designer’s Library” p239

93

[34] Proakis, J.G. and Manolakis, D.G, “Digital Signal Processing, Principles, Algorithms

and Applications,” pp 555-556, Prentice Hall 1996.

94

	Wright State University
	CORE Scholar
	2006

	FPGA Frequency Domain Based Gps Coarse Acquisition Processor using FFT
	Cyprian D. Sajabi
	Repository Citation

	Challenges

