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The solution of kinetic equation for the quantum and classical gases
with diffusion boundary conditions has been obtained for an arbitrary
capillary width d-to-mean free path [ ratio. This solution allowed us
to obtain analytical expressions describing both the stationary states
of the gas filling in two containers connected by a capillary and the
thermal slippage effect. The relations obtained have made it possible
to observe the transition from the Knudsen regime (d < [) to the

hydrodynamic one (d >> [). This results take into account the influence
of statistics and geometry of the capillary as well.

Non-equilibrium stationary states of the gas [1] filling in the two vessels
connected by the channels with a small ratio of its width d to the mean
free path Iz (Knudsen effect) is used for the investigation of the classical
kinetics of the high rarefied gas. As far as we know the Knudsen effect has
been investigated for the classical gases experimentally and theoretically in
the limit I > d only [1].

The present paper continues the investigations started in [2] and here
we shall consider the Knudsen effect observed in the quantum gas of the
impuritons of the superfluid mixtures of helium isotopes. Non-equilibrium
stationary states of the classical and quantum gases with the arbitrary ratio
of l7/d and various geometry is investigated theoretically in this paper.

The explicit expressions are obtained for the distribution function of the
particles without any restrictions in the statistics both for the cylindrical
and plane-parallel capillaries of various cross-section. Proceeding from the
expression for the distribution function one can calculate all significant val-
ues for the gas flow in the capillary . In this way the relations between
gradients of the temperature and concentration were obtained. This results
made it possible to obtain both the stationarity condition for the gas flow
analytically and a explicit expression for the thermal slippage coefficient.
The above expressions being essentially different for the classical and quan-
tum gases.

A conventional device for the quasiparticles osmotic pressure measure-
ments consists of two vessels filled with superfluid *He-*He mixtures. This
vessels are connected by the Vicor glass superleak [3]. The values of con-
centration n; and temperature 7' may be different in these containers . The
state with the constant value of the *He chemical potential (u, =const) is
reached by the overflowing of the superfluid component through the super-
leak relatively fast. As we know this state was studied both theoretically
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and experimentally. Otherwise this state is not stationary one and it should
be considered since a quasistationary one as the gas of impuritons can flow
through the superleak representing a set of channels with the finite cross-
section. In consequence of the impuritons overflow a real stationary state is
established. In this state the flow velocity of impuritons [3] must be equal
to zero.

The condition of stationarity can be written as follows [1]:

/dSH/dF des  _ (1)
dp.

Here dSt is the cross-section element, dI' is the momentum space ele-
ment, axis z lies along the flow, p, is z-th component of momentum, e; is
the energy of impuriton; g = f — fq is the nonequilibrium term adding to
the local-equilibrium function fy. It should be noted that the left-hand part
of equation (1) represents the macroscopic velocity of impuriton gas

d€3
¥ = | dIl’ . 2
/ o 2)

which is averaged over the cross-section of a capillary.

Relation (1) makes it possible to determine the values of the tempera-
ture and concentration in each of the vessels connected by a capillary in the
stationary state. This values must be different essentially in the quasista-
tionary state. The situation when the inequality I > d is not fulfilled can
be observed in a number of experiments (see for example [4]). In this con-
nection the theoretical investigations of the Knudsen effect with an arbitrary
ratio of 1 /d are of great interest.

To investigate the relation of stationarity (1) which is valid for the cap-
illary of an arbitrary cross-section, one has to solve the kinetic equation for
the gas of the quasiparticles filling in this capillary with respective bound-
ary condition. The length of the capillary is supposed to be much greater
than all typical lengths (mean free paths, width of the capillary). This
assumption allows us to consider only slow changes of pressure and temper-
ature along the z-axis of the capillary and to linearize the kinetic equation
with respect to the small deviation g from the local equilibrium distribution
function fo.

The kinetic equation should be completed with the boundary conditions.
The latter describes the type of interaction between the quasiparticles and
the capillary walls. In the case of diffusive reflection this conditions may be

written as
gl(z;y) € S (p;7) > 0] =0, (3)

where S are the points of the capillary surface, and 7 is positive normal to
S.

Let us consider the flow of quasiparticles gas in a cylindrical capillary of
radius R by using the BG K-approximation for the collision integral [5]. In
this case the kinetic equation gives

dg df p-f
sy costip =) +5. 50 = —g+ 222 [arpg. )

Here we use the cylindrical coordinate system. The location and the mo-
mentum of the particles are defined by the vectors ¥ = 7(p,,z) and
P = p(p,, 1, p.) respectively; § = 7p/m; and Pp is the pressure of the ideal
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Fermi-gas. The general solution of equation (4) with diffusion boundary
condition (3) may be found as the sum

9=23§+gn (5)

The first term in (5) defines the kinetics of the quasiparticles gas in the
vicinity of the capillary walls inside the layer of typical width of mean free
path. This term represents the exact solution of the Cauchy-problem.

dg dfo | .
sdeOS(w $) + s+ g =0, (6)

9(p = R; (p,7i) = 0) = 0. (7)

It respects to the usual T-approximation and diffusive reflection on the cap-
illary walls.
The second term in (5) is the solution of equation

d E
50 0 costp = )+ g = 240 [ AT .-+ gu) ®)
with the boundary condition (3). As it will be shown later this term should

be considered in hydrodynamic flow of quasiparticles.
The problem (6)-(7) has the only solution

_Sz% [1 — exp (—% lcos(@ — 1) + \/(%)2 — sin®(p — 1/))‘ )] .

(9)

Here the term with the exponent defines the interaction of quasiparticles
with the walls. It differs from zero in the vicinity of the capillary walls.

The expression for the deviation g is obtained from the equation (8)

which describes the motion of the quasiparticles gas at a distant from the

capillary walls (hydrodynamical flow). The asymptotic expression for the

deviation of gy with respect to the small parameter I7/p (Ir = 7/2T /m)
can be written as

N
Il

5FS/Q Tp.VPp 2 2 P fo _Q
— 40 1— VT, 10
on = SR $+ Ll e, (10)
_ R2 — p2sin’(¢ —
where O — pcos(p — 1) N \/ P (¢ T/))’
S, S,
5T F3/2 7F5/2 5 F3/2 ? 3 FQ 3 FQ 5F3/2F1 (11)
o= ZmF5/2 15F1/2 9 F1/2 8F3/2 4F1/2 6 F12/2
1 7 il
and Fermi-function F, = o de 6_ T
2h J 1+ exp (E— L&)

The coefficient p (11) is the coefficient of thermal slippage. It was in-
troduced phenomenologically for the classical gases [1].
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From (11) we have

M—L<1+%>§, u=3T£ (12)

T om mTp

for the cases of classical (T' > Tr) and degenerate (T' < Tr) gases, respec-
tively.
The same calculations for the plane-parallel capillary give

9= gn + gun, (13)

g}[:—sZ%[l—exp< i—iﬂ. (14)

dz Csa | s

The z-axis is perpendicular to the walls of the capillary and z-axis coincides
with the direction of the gradient

5F3/2 TP 2 2 P fo _A
=————[z"—d —2A P —(1 - T 1

where A = d/| s, | + x/s..

Relations (9), (10), (14), (15) completely define the flow of the gas with-
out any restriction on statistics of the gas in both cylindrical and plane-
parallel capillaries with an arbitrary cross-section. The substitution of this
relations in (1) determines, in general case, the relation between the gradi-
ents of temperature and concentration that makes the state stationary but
non-equilibrium.

The general relations will not be written here since they are too cum-
bersome. The expressions for the limiting cases of both relatively wide and
narrow capillary will be presented.

Proceeding from both the expressions for nonequilibrium term g (8)-(10),
(13)-(15) and stationarity condition (1) we have for the wide plane-parallel
capillary (d/lr > 1)

3F5/2 l%« mnsp 9lTF2
VP =22 Tl () T ) gp 16
F 5F3/2 d? T 8dF3/2 ( )

and for the cylindrical one (Ry/ly > 1):

8F5/2 l% mnsu 3lTF2
VPp=—""~——""|1———|VT. 17
P bR, R T RF;), (a7)
In classical region of temperatures (T' > Tr) relations (16) and (17) give
312 1 3l
Ty=22 (142 (1o 2 T 1
VouT) = 3o (1+7) (1= 25 ) ne¥ (18)
and 212 1 81
T T

respectively.
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If the gas of impuritons becomes degenerate (for the temperatures T <
Tr), relations (16), (17) may be written as

913 15lp\ T
Pp=_-Lt(1-"2) —nyVT 2
VEr 7d2< 16d>:rF”3V ’ (20)
24 13 5lp\ T
Pp="L(1-") --n,VT. 21
VEr 7R2< 2R> 7" 21

Here [y = 71/2Tr /m. Expressions (16)-(21) show that the constant differ-
ence of temperatures 01" = Ty, — T} at the ends of a wide capillary is, in a
long run, compensated by the constant difference of pressures 0P = P, — P,

SO
P 26T
P ATy
In this case the gas of impuritons flows along the temperature gradient
direction near the axis of the capillary and it flows in the opposite direction
in the vicinity of the capillary walls making the complete mass flow be equal
to zero. This result coincide with the result of [1].

Now let us consider the stationary non-equilibrium state of *He-*He mix-
ture filling in the vessels connected by a narrow capillary (d/lr < 1, R/lr <
1) with constant values of temperature at its ends [2]. This situation is
similar to the stationary state of the system of the gas filling in the volumes
separated by means of the thin walls with the pores of size much less than
mean free path of the particle of the gas (Knudsen effect [1]).

Proceeding from condition (1) and expressions (8)-(10), (13)-(15) with
reference to the limit considered one can find that the stationary state is
determined by the fact that the function ¥ must be constant along the
capillary axis

V\I/@;H = 0. (22)

In classical range of temperatures (T' > Tr) the asymptotic expression for

the function ¥ with respect to the small parameter a = 2d/lr < 1 may be
written as

Upi(a) = ngT [%a (1 R %) + “;] (23)

for the plane-parallel capillary (R = 0.577... — is the Eiler‘s constant), and

m1 8R
\Il@(a) = N3\ — (24)
2 37
for the cylindrical one.
In the region of the degeneracy T' < T one can obtain
15 3 w2 T2 1
Uy =——apPr |l R——||1l———= 14+ — 25
L T 4“ 4T1%< +61nap> ()

for the plane-parallel capillaryand

[1 w2 T? <1 4 1 )] 2d ™m
- - n . e -
AT2 g T ar J|sar

5
—ap — ga% lnaF

Yo =Pr |4
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for the cylindrical one.

It should be noted that there is essential difference between asymptotic
relations (23), (24) for the plane-parallel capillary and for the cylindrical
one, respectively. The main term in the asymptotic derivation (23) of the
function W for the case of the plane-parallel capillary is a-Ina. As to the case
with the cylindrical capillary the main term in expression (24) is linear ~ a.
This result corresponds to the well-known formula of Knudsen describing
the establishment of the equilibrium state in the above mentioned classical
system of the gas filling in two volumes separated by the porous wall. In
this case the mechanical equilibrium is determined by the following equality
between temperatures and pressures of the gas filling in the vessels

P1/ﬁ:P2/\/jT2- (27)

This relations may be considered as a requirement for the function ¥ (24)
to be constant along the capillary axis . For the plane-parallel capillary the
stationarity requires the fulfillment of the another condition

g (g () = (g () e

This difference is caused by the fact that when the walls of the plane-
parallel capillary approach each another we have hydrodynamical regime in
each plane parallel to walls. When the radius R of the cylindrical capillary
tends to zero the hydrodynamical regime is retained along the direction of
the capillary axis only.
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TEIIJIOIIPOBIITHICTBH TA IN®Y 314
Y BATATOKOMIIOHEHTHNX KJIACUUYHUX
TA KBAHTOBMX CUCTEMAX

I.M.Apamernko, K.E.Hemuenko

OnepxkaHo po3B’A30K KIHETUYHOTO PIBHAHHSA 3 IU(Y3HUMU YMO-
BaMU HA MEXKi /i KBAHTOBUX 1 KJIACUYHUX I'a3iB IpU JOBIILHUX Bil-
HOIIEHHAX MiXK IMUPUHOIO KaMmiaapa d i CepenHnLoI0 TOBXKUHOIO Bijbh-
moro npobiry [. Ileit po3s’sa30k 003BOJAI micTATW BUPA3U IJISA Te-
TIJIOBOTO KOB3aHHA 1 JOCTIMXKYBATU CTAIOHAPHI CTAHU Ta3y, O IIe-
pebyBae y IByX KOHTEHEpPaX, AKi 3’€qHAH] MiK CODOI0 KAmIgpOM.
OTrpuMani CHIBBITHONIEHHA NO3BOJAITL MPOCTEXKUTU MEpexXim Bim
pexumy Knyncena (d < 1) no rizpogunamivnoro pexumy (d > 1) i
BU3HAYUTHU BIIJIUB CTATUCTUKU i reOMeTpPii Kamiaapy.



