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Summary  This paper explores the application of a machine learning technique in knowledge

support systems in civil engineering design. It presents a sequence-based prediction method for

engineering design and demonstrates its utility in the conceptual design of bridges. The basic idea of

sequence-based prediction is that the most recent numbers of similar design cases are used in predicting

the characteristics of the next design and more recent cases are given stronger influence on decision

making in the new design situation than older ones. This paper develops a model of sequence-based

prediction and carries out a number of experiments using it. It is then applide to a set of standard data

and the results of using a sequence-based prediction method are compared with other methods. The

empirical results show the potential applications of the method in engineering design. 

1. INTRODUCTION

Most of the current applications of machine learning techniques in knowledge-based

systems in design have focused on the acquisition and maintenance of design

knowledge in forms of empirical associations or mappings between different types of

design properties (Reich and Fenves, 1991; Wang and Gero, 1993). Although these

types of knowledge play important roles in various knowledge support systems in

engineering design, it seems impossible to capture design knowledge completely by

attribute-value pair or other fixed representation schemes (Coyne and Snodgrass,

1993) due to the dynamic nature of design. New technologies and materials are

frequently introduced, existing codes or standards are frequently modified, domain

theories are extended or replaced, and social preferences are constantly shifting. A new

design can be heavily influenced by the current design practise as well as the
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designer’s previous experiences. It is the authors’ conjecture that the chronological

sequence of design cases in a domain might hide important information which could

reflect the progressive changing of materials, technology, design methods, standards,

social preferences, etc. The knowledge hidden in the chronological sequence of design

cases could play the same role as empirical associations or mappings between different

types of design properties do in the conceptual formulation of new design solutions. 

This paper explores the acquisition and application of such knowledge, presents a

sequence-based prediction method, and demonstrates its prediction capabilities in the

conceptual design of bridges. The basic idea of this sequence-based prediction method

can be outlined as follows:  the most recent number of similar design cases are used to

predict the next design. The more recent design cases are given a stronger influence on

decision making in the new design situation. The underlying assumption is that the

more recent design experiences are likely to be more significant than older ones and are

more likely to be recalled by a designer to assist in a new design.  The method has

been tested with the Pittsburgh bridges design database obtained from the UCI

Repository of Machine Learning Databases and competitive performance results have

been achieved. 

In the remainder of this paper, Section 2 elaborates the sequence-based prediction

model;  Section 3 introduces a way to optimize the model by discovering the most

suitable parameters of the model; Section 4 demonstrates the application of the method

in the conceptual design of bridges; and Section 5 discusses the methods, advances

and limitations, related work, and the avenues of future research. 

2. SEQUENCE-BASED PREDICTION

The sequence-based prediction method introduced here is fundamentally different from

the traditional sequence-based prediction or part-to-whole learning (Michalski, 1987)

as well as time series prediction (Weigend and Gershenfeld, 1994). Its theoretical

foundation is built on the discoveries from psychological studies of human memory

(Ebbinghaus, 1885). According to Ebbinghaus’s discovery, the retention strength of

knowledge stored in memory decreases over time, but the forgetting rate slows down

according to a power function. The retention strengths of experiences in memory are

reduced by a decay rate or by the interference of storing other experiences (Anderson,

1985). The strength of an abstract concept is reinforced by rehearsal or repeating the

related experience (Loftus and Loftus, 1976).

To introduce the method, the concepts of window size and decay rate are

explained first with Figure 1. Design cases are identified by their position code in a

sequence. The oldest one is 1, the following one is 2, and so on. T is the current
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position in a sequence when the next case is processed;  t is the time passed since a

stimulus or case is received (also called retention interval by psychologists), and here it

is indicated by the number of cases processed since then. ‘Next case’ is the new

design case to be predicted, ‘older cases’ are the previous cases out of the window, the

degree of  greyness of each cell indicates the remaining strength, called retention

strength, of an old stimulus or case at time T. After the next case is processed, the

window slides to the right by one case along the chronological sequence of design

cases. 

     

 older cases i-4 i-3 i-2 i-1 next casei

window T

Figure 1.   A window slides along a chronological sequence of design cases. 

Some other preliminary concepts of the model as well as some useful symbols are

introduced as follows:

D decay rate, also called forgetting rate, which means that after a case is

incorporated into memory, the retention strength of any item in

memory will be reduced by a factor of D

Lv(i) (T - t) a logical function: if the value of related attribute of the case at the

position T-t matches that of the case at the position T (that is, v(i)),

the result is 1; otherwise, 0 

R retention rate, where R = 1 - D, which means that after a case is

incorporated into memory, the retention strength of any item in

memory will become the product of its old value times R  

sv(i)(t)   the retention strength of a stimulus, value v(i), after t  more cases are

incorporated into memory  

Sv(i) the accumulated retention strength of the stimulus, value v(i), which

is accumulated from all the occurrences of the stimulus so far

Sv(j)
m

 the strongest accumulated retention strength of alternative values

t the time passed since a stimulus or case is received; it is indicated by

the number of cases processed since then

T the current position in a sequence when the next case is processed,
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indicated by the position code of the next case to be processed  

v(i)   the ith value of an attribute

W the size of window which indicates the maximum number of items

which can be in a window

A computational model of the sequence-based prediction in design is formally defined

as follows:

Sv(i)   =  sv
t = 1

W

(i)(t-1)  Lv(i)(T-t)                 (1)

where

Lv(i)(T-t) = { 0 | otherwise
 1 | if the attribute value of the case at position T- t is v(i) 

 (2)

  

sv(i)(t)  =  sv(i)(t-1) * R (3)

sv(i)(t)  =  sv(i)(0) * Rt (4)

Let

sv(i)(0)  = 1 (5)

which means that every time when a new case arrives, the strength of the

corresponding attribute value will be increased to 1, and which also means that the

initial strength of each stimulus is assumed as 1; 

then

sv(i)(t)  =  Rt (6)

Equation (1) is simplified to

  Sv(i)   =  Rt-1

t = 1

W

  Lv(i)(T-t)               (7)

Let  Sv(j)
m

 represent the strongest accumulated retention strength of n values of an

attribute, which means that the jth value has the strongest retention strength

(accumulated from all its occurrences up to that time) among all the values of the

attribute,
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 Sv(j)
m  = Max [ Sv(1),  Sv(2), ... ,Sv(j), ...,  Sv(n) ] (8)

then, the predicted value (or default) for the attribute, Attr, is the one with the highest

frequency,

Predicted-value (Attr)  =  v(j) (9)

The following examples show how this model works. Suppose the window size, W,

equals 5, and there are two types of values A and B, see Figure 2. 

      

A

T

B

A
B

B

T-1T-2T-3T-4T-5

v(i)s

position in the sequence

Figure 2. A snapshot of the window with size 5 when processing the case at position T.

The horizontal axis indicates the positions of  the five cases in the window and the next

case to be predicted. The vertical axis indicates the retention strengths of these five

cases in the window. 

 According to Equation (1), the accumulated retention strength of each value is

Sv(i)   =  sv
t = 1

W

(i)(t-1)  Lv(i)(T-t)               

therefore, the accumulated retention strength of value A, 

SA  =   sA(1-1)*1 +  sA(2-1)*0 + sA(3-1)*0 + sA(4-1)*0 + sA(5-1)*1 

=   sA(0)  + sA(4) 

=   R0    +   R4 
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and the accumulated retention strength of value B,

SB =   sB(1-1)*0 +  sB(2-1)*1 + sB(3-1)*1 + sB(4-1)*1 + sB(5-1)*0

=   sB(1)  + sB(2)   +  sB(3)

=   R1    +   R2    +   R3

When R = 1,  

SA = 2

SB = 3

SB > SA

therefore, the predicted value for next case is B.

When R = 0.5,

SA =  0.50    +   0.54 

     =  1.0625

SB =  0.51    +   0.52    +   0.53   

=  0.875

SA > SB  

therefore, the predicted value for next case is A. This example demonstrates the effect

of changing the retention rate R.

Let us examine another example. The following subsequence is extracted from the

Pittsburgh bridges design dataset.

completed-date:   1914        1915          1915      1918        1920      1921    1923   1924 

type-of-bridge:    simple-t    simple-t      cont-t    simple-t   suspen     arch     arch    suspen

To predict the type of the next bridge design, the selection of a different window size

will give out different results as follows (suppose the retention rate = 1):

window size:        1              2              3            4                8

predicted type:      suspen     suspen       arch       suspen       simple-t         

 

These examples have shown that the predicted value, as well as the predictive

accuracy, is dependent on the size of window W and the value of retention rate R. 
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The implementation of this model of the sequence-based prediction method is

simple and the knowledge representation schema is shown in Figure 3. With this

knowledge representation, the model can be easily implemented for incremental

computation.

Schema for sequence prediction
		
Attr (1)	
				            value(1)          	S(1)		
				            value(2)		         S(2)		
						           ...		

Attr (2)	
				            value(1)         	S(1)		
				            value(2)		        S(2)		
			            	...		
		...

Attr (n)	
				            value(1)         S(1)		
				            value(2)		       S(2)		
				            ...		
	

    

    Figure 3  The representation for sequence-based prediction

When predicting the values of attributes of the next case, use Equations (8) and (9) to

select the value with the strongest accumulated retention strength Sv(j)
m  for each

attribute. When the next case is incorporated into the schema, update all the

accumulated retention strengths by multiplying each of them by the retention rate R.

Then, execute the following actions: first, further update the accumulated retention

strength of each value that matches the value of the corresponding attribute in the next

case (whether or not it is correctly predicted) by the following formula:

S’v(i) =  Sv(i) + 1       (10)

where Sv(i) is the old accumulated retention strength for v(i) and S’v(i) is the new one;

second, if a case C is pushed out of the window, update the accumulated retention

strength of each value that matches a value of the corresponding attribute in case C by

the following equation,

S’v(i) =  Sv(i) - Rw-1 (11)

where the W is the window size and R is the retention rate. In the implementation, the
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result of Rw-1 can be calculated and saved in a table for later look-up to speed up the

system’s performance.

The process of prediction and knowledge maintenance is summarised below:

1. use Equations (8) and (9) to determine the value of each predicted attribute for the next case;  

2. incorporate the case into memory by the following steps,

 2.1 update all the accumulated retention strengths by multiplying each of them by the

retention rate R;

2.2 by Equation (10), update the accumulated retention strength of each value that matches the

value of the corresponding attribute in the next case;

2.3 by Equation (11), update the accumulated retention strength of each value that matches a

value in the case that is pushed out of the window.  

The model is also cognitively-based in the following sense: in the process of prediction

and maintenance, step 1 is an implementation of a competitive recalling or voting

mechanism (in accord with inference theory); step 2.1 models the systematic decay

mechanism of memory;  step 2.2 reflects the effect of rehearsal of knowledge; and step

2.3 simulates the effect of forgotten memories.

3 . DISCOVERY OF AN OPTIMAL MODEL

An optimal model of sequence-based prediction in a design domain is defined as that

which can achieve the highest predictive accuracy with a given sequence of design

cases. The ‘optimal’ is only a hypothesis in a sense that it is true at least up to now.

When new cases are included, the performance of the model might slowly change.

The change of performance could not be fast because the model itself will

incrementally learn from new cases. The window slides along the chronological

sequence and the strengths are updated and only two parameters W and R in the model

are fixed.  

The window size W, the retention rate R, and their possible values together define

a state space and learning is considered as search through the state space to find an

optimal model that produces the best total predictive accuracy in the given domain. 

The value range of window size is between 1 and N, where N is the number of

design cases available. The value range of retention rate is between 0 and 1. Before the

search can start, the value of retention rate must be discretised to some selected

interval. For the sake of  learning efficiency, the interval is dynamically further divided

during the learning process. For example, if the best values up to now are  Ri and Wi,

the range between Ri-1 to Ri+1 will be further divided into more smaller intervals, and
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search will continue in the area defined by the ranges between Ri-1 and Ri+1 and

between Wi-x and Wi+x (where x is a selected constant).

An optimal model could be acquired by systematically searching the state space

for the optimal values of retention rate and window size to achieve the best prediction.

However, even with the step-wise discretization strategy, the systematic search of the

whole space could be computationally expensive. This computational complexity can

be greatly reduced by qualitatively analyzing the behaviour of the model when

changing the retention rate and the window size and by avoiding searching those areas

where an optimal model is obviously impossible.

 A qualitative analysis of the behaviour of the exponential function in Equation (6)

can be used to greatly reduce the search space, Figure 4.

S  =  R t

Strength (S)

Time (t)

R = 0.3
R = 0.5
R = 0.8
R = 0.95
R = 0.99
R = 1.0

20 

      Figure 4.  The behaviour of exponential function, S(t)  =  Rt.

Whatever the value of W is, when  R < 0.5,    R1   Rt

t = 2

W

. This means that it is

unnecessary to search the area where R < 0.5.  When R increases but its value is

smaller than 0.8, only about the 20 first values are significant, as the figure shows.

When t > 20,  Rt  becomes very small and can be ignored. This means that for certain

values of R, the search is meaningful only in certain range along the axis of window

size.  It is unnecessary to search the whole range of window sizes from 1 to N

Figure 5 indicates that the prediction accuracy is a function of retention rate. When

the retention rate R = 1, the model is a simple window-based prediction .  When the

retention rate R  0.5, the prediction is based on the single most recent design case.
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Between R > 0.5 and R < 1 there exists some optimal point or points where the

prediction accuracy will reach its maximum value. 

Retention rate (R)
0.5 1.0
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Figure 5.  The qualitative analysis of the behaviour of the model when the retention rate R is changed.
P1 represents the prediction based on the most recent case; P2 represents the window-based prediction;

and Po represents an optimal prediction, Ro is an optimal retention rate. 

Figure 6 shows that the prediction accuracy is also a function of the window size.

When window size W = 1, the prediction is actually based on only the single most

recent design case. Therefore, there will be no change on prediction accuracy even if

the retention rate changes. For a given retention rate, when window size W is equal to

or larger than a certain value, Wm, there is little influence on the prediction accuracy

when the window size further increases, because the strengths of the added cases are

too small to be significant. Between W > 1 and W < Wm there exists some point or

points where the prediction accuracy reaches its maximum value.
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Figure 6   The qualitative analysis of the behaviour of the model when the window size W is changed.
P1 represents the prediction based on the most recent case; P2 represents the prediction with a decay

rate; and Po represents an optimal prediction; there is no meaning when W < 1. 
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4. EXPERIMENTAL STUDIES AND RESULTS

The dataset of Pittsburgh bridge design, as mentioned earlier,  has been used to test the

model. The five design solution attributes are considered in the experiment and they

are T-OR-D, MATERIAL, REL-L, SPAN and TYPE. The T-OR-D attribute specifies

whether the bridge is a ‘through’ or a ‘deck bridge’; MATERIAL can be wood, iron,

or steel; REL-L is the relative length of the main span to the total length; the TYPE

describes the type of bridge, which can be one of the six values: ‘simple-t’  (simple

truss), ‘conti-t’ (continuous truss), ‘cantilev’ (cantilever), ‘suspen’ (suspension

bridge), arch, and wood. The details of the domain can be found in Reich and Fenves

(1991).

Using the systematic and step-wise search strategies, the landscape of the

predictive performance of the system for the Pittsburgh bridge design domain has been

discovered, and is presented in Figure 7. The highest value of prediction accuracy is

0.705, at the location W = 12 and R = 0.805. In other words, an optimal model

(W=12 and R=0.805) of sequence-based prediction in this design has been discovered

by the system.   

Pittsburgh bridge dataset

The Landscape of Search Space

Predictive
Accuracy

Window  Size Retention Rate

1

40

10
20

30 0.2
0.4 

0.6
0.8

1.0

Figure 7.  The landscape of the prefidticve performancee discovered by the system for the domain of

Pittsburgh bridge designs. The optimal model determined by the system is W = 12 and R = 0.805.

The experiment has indicated that the prediction accuracy is a function of the window
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size as shown in Figure 8. In the figure, the horizontal line shows the result of

prediction based on the most recent single design case, the dark line indicates the result

of prediction when R = 1, and the dotted line presents the result of prediction when R

= 0.8. It has been discovered that the prediction performance of models where R = 0.8

generally is better than that of a model where R = 1, except when the window size is

smaller than 5.
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R = 1.0
R = 0.5
R = 0.8

Size of Window

Figure 8.  The behaviour of the cognitive model of prediction for the Pittsburgh bridge dataset: the
optimal window size is 12. 

It has also been shown empirically that the prediction accuracy is a function of the

retention rate as shown in Figure 9. The horizontal line between R = 0 and R = 0.5

indicates that the prediction accuracy does not change even if the window size is

changed. It has been discovered that the predictive accuracy of models where W = 12

generally is better than that of others except when the retention rate R is close to 1.

When W = 3, the best result is close to the point where R = 1, which means that when

the size of the window is very small, a better result may not be obtained by reducing

the value of R.

Both Figures 8 and 9 indicate that for incremental frequency-based prediction (R

= 1 and W  40), the predictive accuracy is about  64%; using the most case (R 

12



0.5), the predictive accuracy is about 65%. The best predictive accuracy of this

prediction model is 70.5%, which is higher than that of Bridger (64.6%). 

W=12
W=3
W=40

Retention  Rate

P
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1.0

Figure 9.   The behaviour of the cognitive model of prediction for the Pittsburgh bridge dataset: the

optimal retention rate is 0.805. 

A sample of the predictive activities is presented in the Appendix. These predictions

show a gradual shift over the period 1818 and 1878 from bridges where the type of

material dominates (wood), to where the type of structure dominates (simple trusss

bridge type) in the period 1872 to the 1920s. Later, the cantilever style bridge type

began to dominate, followed by the arch and finally, this leads to the continuous truss

bridge. This clearly demonstrates a benefit of using a sequence-based prediction

method as it gives predictions over a time sequence. A traditional machine learning

approach would produce only one prediction across all cases.

What is suggested by these experiments is that the sequence-based prediction

might achieve a predictive accuracy as good as similarity-based prediction does in the

domain of design and its integration with other machine learning methods might

produce a higher prediction performance.

 Such an integration is demonstrated with the following example, in which concept

formation and sequence-based prediction are combined (Wang, 1994).  A decision tree

was created with the attributes ‘lane’ and ‘erected’;  then, a sequence-based prediction

method was used at each node. One of the results is shown in Figure 10, where CC

presents the number of cases in that branch and PA indicates the predictive accuracy of

that node. The total predictive-accuracy obtained in this experiment is 74.2%, which is

higher than that produced by a symbolic machine learning method.
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CC:   4
PA :  0.95

CC:   4
PA :  0.65

CC:   61
PA :  0.51

CC:   4
PA :  0.85

CC:   35
PA :  0.63

CC:   15
PA :  0.775

CC:   12
PA :  0.789

CC:   29
PA :  0.827

CC:   5
PA :  0.68

lane=1 lane=4 lane=6 missing-valuelane=2

root

erected=crafts emerging mature modern

Figure 10.  A results produced by an integration of sequence-based prediction with concept formation

5.  DISCUSSION

Most incremental concept learning systems are order dependent. Such ordering effects

have been widely mentioned in the literature (Cornuejols, 1993). The ordering effects

mean that given a set of cases, differently ordered sequences of these cases lead to

different learning results. The ordering effects in incremental learning have been studied

by  MacGregor (1988) and others. They assumed that the learning algorithms are

satisfactory and the order of examples or observations is adjustable, and attempted to

find the optimal order to get the best learning result. Some researchers have tried to

make a learning algorithm order-independent at the expense of increased memory and/or

computational time such as in ID5.

In instance-to-class learning (either supervised or unsupervised), it is assumed that

the order of examples or observations are adjustable but the parameters of a learning

model are fixed. This is due to the underlying assumption that there is no knowledge in

the sequence of examples.  In some incremental learning systems, work has been

carried out to avoid the order effects or to find the best order of a given dataset to

achieve the best performance (Cornuejols, 1993). 

In sequence-based prediction, in contrast, it is assumed that the order of

observations are fixed and the parameters of a learning systems are adjustable. Learning

includes finding the best parameters for the learning model to achieve the best

performance in prediction.

At the beginning of this paper, the power function, Equation (12), was used
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instead of the exponential function in Equation (6) in the model for sequence-based

prediction in design. The experiment was conducted and slightly better results were

achieved. 

sv(i)(t)  =  t -E       (12)

Anderson (1990) has used the following, Equation (13), in the development of

computational model of the origins of human knowledge:

S   =   ti-d

i = 1

n

        (13)

where S is the accumulated strength of a particular item of knowledge, the summation is

over the n uses of the item, each ti is the time since the use of the item, the exponent d is

a constant.

A difficulty associated with these models in Equations (12) and (13) is that they are

not efficient for incremental learning. To simplify the computational complexity at

performance time, for each i, a value of ti-d can be calculated and the results stored in a

look-up table in advance. In this way, the speed of the system can be greatly improved. 

By analysing and comparing the behaviours of the power function and the

exponential function, it is found that their behaviours are similar when t > 1 and R <

0.9. After a number of experiments was conducted, the conclusion could be drawn that

for the purpose of modelling the information in the sequence of design cases, a similar

prediction accuracy can be achieved by using either the power function or the

exponential function. The advantage of the exponential function is that it can be

calculated incrementally, which is most suitable for incremental learning.

The process of determining an optimal model  is non-incremental. However, after

the model is determined, the maintenance of the model during its application is

incremental and automatic. Another advantage of this model is that little memory is

required for the representation of acquired knowledge. The main disadvantage of this

approach is that the determination of an optimal model is computationally expensive,

irrespective of whether an exponential function or a power function is used.   

It can be concluded from this study that many designs are hard to predict by logic

or causal models. Sequence-based prediction can perform better than similarity-based

predictions in some design domains for a given parameter. An integration of sequence-

based prediction and concept formation is well suited for the development of machine

learning algorithms in the design domain. 
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APPENDIX: Samples of Predictions of Conceptual designs for Pittsburgh Bridges.

period actual-type   predicted-type period actual-type   predicted-type
------------------------------------------------------------------------------------------------------------------------------
1818 wood ---- 1903 simple-t simple-t
1819 wood wood 1903 simple-t simple-t
1829 wood wood 1904 simple-t simple-t
1837 wood wood 1904 simple-t simple-t
1838 wood wood 1904 cantilev simple-t
1840 wood wood 1908 simple-t simple-t
1844 suspen wood 1909 simple-t simple-t
1846 suspen wood 1909 simple-t simple-t
1848 wood wood 1910 cantilev simple-t
1851 wood wood 1911 cantilev simple-t
1853 wood wood 1914 simple-t simple-t
1856 wood wood 1914 simple-t simple-t
1856 wood wood 1915 simple-t simple-t
1857 wood wood 1915 cont-t simple-t
1859 suspen wood 1918 simple-t simple-t
1863 simple-t wood 1920 suspen simple-t
1864 simple-t wood 1921 arch simple-t
1866 wood wood 1923 arch simple-t
1870 wood wood 1924 suspen arch
1874 simple-t wood 1926 suspen suspen
1876 suspen wood 1926 cantilev suspen
1876 wood wood 1927 arch suspen
1878 simple-t wood 1927 cantilev arch
1882 simple-t simple-t 1927 cantilev cantilev
1883 simple-t simple-t 1927 arch cantilev
1883 simple-t simple-t 1928 cantilev arch
1884 simple-t simple-t 1928 suspen cantilev
1884 suspen simple-t 1928 simple-t cantilev
1884 arch simple-t 1928 arch cantilev
1887 simple-t simple-t 1931 arch arch
1887 simple-t simple-t 1931 suspen arch
1888 simple-t simple-t 1931 cont-t arch
1889 simple-t simple-t 1937 cantilev arch
1890 simple-t simple-t 1939 cont-t cantilev
1890 simple-t simple-t 1945 simple-t cont-t
1891 simple-t simple-t 1945 cont-t simple-t
1891 simple-t simple-t 1945 cantilev cont-t
1892 simple-t simple-t 1945 arch cantilev
1892 wood simple-t 1945 simple-t arch
1893 simple-t simple-t 1945 simple-t simple-t
1894 simple-t simple-t 1950 cont-t simple-t
1895 simple-t simple-t 1951 cont-t cont-t
1896 suspen simple-t 1951 cantilev cont-t
1896 arch simple-t 1951 cont-t cont-t
1897 simple-t simple-t 1955 simple-t cont-t
1987 simple-t simple-t 1955 cont-t cont-t
1898 simple-t simple-t 1959 arch cont-t
1900 simple-t simple-t 1959 cont-t cont-t
1900 simple-t simple-t 1961 cont-t cont-t
1901 simple-t simple-t 1962 arch cont-t
1902 cantilev simple-t 1969 arch cont-t
1903 simple-t simple-t 1975 arch arch
1903 simple-t simple-t
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