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ABSTRACT
Text categorization is an important research area and has been re-
ceiving much attention due to the growth of the on-line information
and of Internet. Automated text categorization is generally cast as
a multi-class classification problem. Much of previous work fo-
cused on binary document classification problems. Support vec-
tor machines (SVMs) excel in binary classification, but the elegant
theory behind large-margin hyperplane cannot be easily extended
to multi-class text classification. In addition, the training time and
scaling are also important concerns. On the other hand, other tech-
niques naturally extensible to handle multi-class classification are
generally not as accurate as SVM. This paper presents a simple and
efficient solution to multi-class text categorization. Classification
problems are first formulated as optimization via discriminant anal-
ysis. Text categorization is then cast as the problem of finding coor-
dinate transformations that reflects the inherent similarity from the
data. While most of the previous approaches decompose a multi-
class classification problem into multiple independent binary clas-
sification tasks, the proposed approach enables direct multi-class
classification. By using Generalized Singular Value Decomposition
(GSVD), a coordinate transformation that reflects the inherent class
structure indicated by the generalized singular values is identified.
Extensive experiments demonstrate the efficiency and effectiveness
of the proposed approach.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.2 [Artificial Intelligence]: Learning; I.5 [Pattern
Recognition]: Applications

General Terms
Algorithms, Measurement, Performance, Experimentation, Verifi-
cation
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1. INTRODUCTION
With the ever-increasing growth of the on-line information and

the permeation of Internet into daily life, methods that assist users
in organizing large volumes of documents are in huge demand.
In particular, automatic text categorization has been extensively
studied recently. This categorization problem is usually viewed
as supervised learning, where the gaol is to assign predefined cat-
egory labels to unlabeled documents based on the likelihood in-
ferred from the training set of labeled documents. Numerous ap-
proaches have been applied, including Bayesian probabilistic ap-
proaches [20, 31], nearest neighbor [22, 19], neural networks [33],
decision trees [2], inductive rule learning [4, 9], support vector ma-
chines [18, 14], Maximum Entropy [26], boosting [28], and linear
discriminate projection [3] (see [34] for comparative studies of text
categorization methods).

Although document collections are likely to contain many dif-
ferent categories, most of the previous work was focused on binary
document classification. One of the most effective binary classifi-
cation techniques is the support vector machines (SVMs) [32]. It
has been demonstrated that the method performs superbly in binary
discriminative text classification [18, 34]. SVMs are accurate and
robust, and can quickly adapt to test instances. However, the ele-
gant theory behind the use of large-margin hyperplanes cannot be
easily extended to multi-class text categorization problems. A num-
ber of techniques for reducing multi-class problems to binary prob-
lems have been proposed, including one-versus-the-rest method,
pairwise comparison [16] and error-correcting output coding [8, 1].
In these approaches, the original problems are decomposed into a
collection of binary problems, where the assertions of the binary
classifiers are integrated to produce the final output. In practice,
which reduction method is best suited is problem-dependent, so it
is a non-trivial task to select the decomposition method. Indeed,
each reduction method has its own merits and limitations [1]. In
addition, regardless of specific details, these reduction techniques
do not appear to be well suited for text categorization tasks with
a large number of categories, because training of a single, binary
SVM requires O(nα) time for 1:7 � α � 2:1 where n is the num-
ber of training data [17]. Thus, having to train many classifiers has
a significant impact on the overall training time. Also, the use of
multiple classifiers slows down prediction. Thus, despite its ele-
gance and superiority, the use of SVM may not be best suited for
multi-class document classification. However, there do not appear
to exist many alternatives, since many other techniques that can
be naturally extended to handle multi-class classification problems,
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such as neural networks and decision trees, are not so accurate as
SVMs [34, 35].

In statistics pattern recognition literature, discriminant analy-
sis approaches are well known to be able to learn discriminative
feature transformations (see, e.g., [12]). For example, Fisher dis-
criminant analysis [10] finds a discriminative feature transforma-
tion as eigenvectors associated with the largest eigenvalues of ma-
trix T = Σ̂�1

w Σ̂b, where Σ̂w is the intra-class covariance matrix and
Σ̂b is the inter-class covariance matrix1. Intuitively, T captures
not only compactness of individual classes but separations among
them. Thus, eigenvectors corresponding to the largest eigenval-
ues of T are likely to constitute a discriminative feature transform.
However, for text categorization, Σ̂w is usually singular owing to
the large number of terms. Simply removing the null space of Σ̂w
would eliminate important discriminant information when the pro-
jections of Σ̂b along those directions are not zeros [12]. This issue
has stymied attempts to use traditional discriminant approaches in
document analysis.

In this paper we resolve this problem. We extend discriminant
analysis and present a simple, efficient, but effective solution to
text categorization. We propose a new optimization criterion for
classification and cast text categorization as the problem of finding
transformations to reflect the inherent similarity from the data. In
this framework, given a document of unknown class membership,
we compare the distance of the new document to the centroid of
each category in the transformed space and assign it to the class
having the smallest distance to it. We call this method Generalized
Discriminant Analysis (GDA), since it uses generalized singular
value decomposition to optimize transformation. We show that the
transformation derived using GDA is equivalent to optimization
via the trace or determinant ratios.

GDA has several favorable properties: First, it is simple and can
be programed in a few lines in MATLAB. Second, it is efficient.
(Most of our experiments only took several seconds.) Third, the
algorithm does not involve parameter tuning. Finally, and probably
the most importantly, it is very accurate. We have conducted exten-
sive experiments on various datasets to evaluate its performance.
The rest of the paper is organized as follows: Section 2 reviews the
related work on text categorization. Section 3 introduces our new
criterion for discriminant analysis. Section 4 introduces the basics
of generalized singular value decomposition and gives the solution
of the optimization problem. Section 5 shows that the transforma-
tion derived using GDA can also be obtained by optimizing the
trace or determinant ratios. Section 6 presents some illustrating ex-
amples. Section 7 shows experimental results. Finally, Section 8
provides conclusions and discussions.

2. RELATED WORK
Text categorization algorithms can be roughly classified into two

types: those algorithms that can be naturally extended to handle
multi-class cases and those require decomposition into binary clas-
sification problems. The first consists of such algorithms as Naive
Bayes [22, 19], neural networks [25, 33], K-Nearest Neighbors [22,
19], Maximum Entropy [26] and decision trees. Naive Bayes uses
the joint distributions of words and categorizes to estimate the prob-
abilities that an input document belongs to each document class and

1This is equivalent to using eigenvectors associated with the small-
est eigenvalues of matrix T = Σ̂�1

b Σ̂w. It indicates that traditional
discriminant analysis requires the non-singularity of at least one co-
variance matrix. Since the rank of Σ̂w is usually greater than that of
Σ̂b, we will base our discussion on the eigenvalue-decomposition
of T = Σ̂�1

w Σ̂b.

then selects the most probable class. K-Nearest Neighbor finds the
k nearest neighbors among training documents and uses the cate-
gories of the k neighbors to determine the category of the test doc-
ument. The underlying principle of maximum entropy is that with-
out external knowledge, uniform distribution should be preferred.
Based on this principle, it estimate the conditional distribution of
the class label given a document.

The reduction techniques that are used by the second group in-
clude one-versus-the-rest method [29], error-correcting output cod-
ing [8], pairwise comparison [16], and multi-class objective func-
tions, where the first two have been applied to text categoriza-
tion [34, 13].

In the one-versus-the-rest method a classifier separating between
from a class and the rest is trained for each class. Multi-class clas-
sification is carried out by integrating prediction of these individ-
ual classifiers with a strategy for resolving conflicts. The method is
sometimes criticizes for solving asymmetric problems in a symmet-
rical manner and for not considering correlations between classes.

Error-correcting output coding (ECOC) [8] partitions the origi-
nal set of classes into two sets in many different ways. A binary
classifier is trained for each partition. The partitions are carefully
chosen so that the outputs of these classifiers assign a unique binary
codeword for each class (with a large Hamming distance between
any pair of them). The class of an input with unknown class mem-
bership is chosen by computing the outputs of the classifiers on
that input and then finding the class with the codeword closest to
the output codeword.

Although SVMs are considered to be very effective in binary
classification, its large training costs may make it unsuitable for
multi-class classification with a large number of classes if the above
decomposition techniques are applied. Also, the lack of a clear
winner among the above techniques makes the reduction task com-
plicated. Our GDA directly deals with multi-class classification
and does not require reduction to binary classification problems.

Other techniques for text categorization exist. Godbole et al.
[14] propose a new multi-class classification technique that exploits
the accuracy of SVMs and the speed of Naive Bayes. It uses a
Naive Bayes classifier to compute a confusion matrix quickly. Then
it uses this matrix to reduce both the number and the complexity
of binary SVMs to be built. Chakrabarti et al. [3] propose a fast
text classification technique that uses multiple linear projections. It
first projects training instances to low-dimensional space and then
builds decision tree classifiers on the projected spaces. Fragoudis
et al. [11] propose a new algorithm that targets both feature and
instance selection for text categorization.

In summary, as pointed out in [34, 26], there is no obvious win-
ner in multi-class classification techniques. For practical problems,
the choice of approach will have to be made depending on the con-
straints, e.g., the desired accuracy level, the time available, and the
nature of the problem.

3. NEW CRITERION FOR DISCRIMI-
NANT ANALYSIS

3.1 Classification as Discrimination
Suppose the dataset D has m instances, d1; : : : ;dm, having p fea-

tures each. Then D can be viewed as a subset of Rp as well as
a member of Rm�p. Suppose D has L classes, D1; : : : ;DL having
m1; : : : ;mL instances, respectively, where m= ∑L

i=1 mi . For each i,
1 � i � L, let Ji be the set of all j , 1 � j � m, such that the j-th
instance belongs to the i-th class, and let c(i) be the centroid of the
i-th class, i.e., the component-wise average of the mi vectors in the
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class. Let c be the centroid of the entire dataset. The intra-class
scatter matrixof D, Σ̂w, is defined by

Σ̂w =
L

∑
i=1

∑
j2Ji

(dj �c(i))T(dj �c(i));

and its inter-class scatter matrix, Σ̂b, is defined by

Σ̂b =
L

∑
i=1

∑
j2Ji

(dj �c)T(dj �c):

Let Aw be the m� p matrix constructed by stacking D1 �
(e(1))Tc(1), : : :, DL � (e(L))Tc(L)) and let Ab be the p� m
matrix whose columns are, from left to right,

p
m1(c(1) �

c)T ; � � � ;pmL(c(L)�c)T . Then

Σ̂w = AwAT
w and Σ̂b = AbAT

b :

Although there are ways (such as Kernel tricks [24]) for utiliz-
ing non-linear transformation, we will focus on linear transforma-
tion. Given a linear transformation Φ, the covariance matrices in
the transformed space are

(AbΦ)T(AbΦ) = ΦTAT
b AbΦ= ΦT Σ̂bΦ

and

(AwΦ)T(AwΦ) = ΦTAT
wAwΦ = ΦT Σ̂wΦ:

Fisher’s linear discriminant analysis discriminates inter-class dis-
tance and intra-class distance by using their corresponding covari-
ance matrices. The optimal projection can be obtained by solving
the generalized eigenvalue problem:

Σ̂bΦ= λΣ̂wΦ (1)

If Σ̂w is nonsingular, Φ is given by the eigenvectors of matrix
Σ̂�1

w Σ̂b. As we already pointed out, the approach fails if Σ̂w is sin-
gular which is often the case in document classification2. Usually,
this problem is overcome by using a nonsingular intermediate space
of Σ̂w obtained by removing the null space of Σ̂w and then comput-
ing eigenvectors. However, the removal of the null space of Σ̂w
possibly eliminates some useful information because some of the
most discriminant dimensions may be lost by the removal. In fact,
the null space of Σ̂w is guaranteed to contain useful discriminant
information when the projections of Σ̂b are not zeros along those
directions. Thus, simple removal of the null space of Σ̂w is not an
effective resolution [12].

Once the transformation Φ has been determined, classification
is performed in the transformed space based on a distance metrics,
such as Euclidean distance

d(x;y) =
r

∑
i
(xi �yi)2

and cosine measure

d(x;y) = 1� ∑i xiyiq
∑i x

2
i

q
∑i y

2
i

:

A new instance, z, it is classified to

argmin
k

d(zΦ; x̄kΦ); (2)

where x̄k is the centroid of k-th class.

2In fact, Σ̂w is nonsingular only if there are p+L samples. This is
usually impractical.

3.2 The New Criterion
We propose the use of the following criterion for discriminating

inter-class and intra-class distances by inter-class and intra-class
covariance matrices:

min
Φ
fkAbΦ� Ink2

F +kAwΦk2
Fg; (3)

where kXkF is the Frobenius norm of the matrix X, i.e.,
q

∑i; j x
2
i j .

The criterion does not involve the inverse of the intra-class matrix
and is similar to Tikhonov regularization of least squares problems.
Intuitively, the first term of (3) is used to minimize the difference
between the projection of x̄i � x̄ in a new space and the i-th unit
vector of the new space. The second term is used to minimize the
intra-class covariance.

The equation (3) can be rewritten as

min
Φ


�

Aw
Ab

�
Φ�

�
0
In

�
2

F
; (4)

and this is a least squares problem with the solution

(AT
wAw+AT

b Ab)Φ= AT
b : (5)

4. GENERALIZED SINGULAR VALUE DE-
COMPOSITION

Here we will show how to use GSVD to compute efficiently the
solution to the optimization problem formulated in Section 3 and
show that the solution thus obtained is stable.

4.1 The Basics of GSVD
Singular value decomposition (SVD) is a process of decompos-

ing a rectangular matrix into three other matrices of a very special
form. It can be viewed as a technique for deriving a set of uncor-
related indexing variables or factors [6]. A Generalized Singular
Value Decomposition(GSVD) is an SVD of a sequence of matri-
ces. GSVD has played a significant role in signal processing and
in signal identification and has been widely used in such problems
as source separation, stochastic realization and generalized Gauss-
Markov estimation.

The diagonal form of GSVD, shown below, was first introduced
in [21].

THEOREM 1. (GSVD Diagonal Form [21]) If A 2 Rm�p,
B2 Rn�p, and rank(AT ;BT) = k, then there exist two orthogonal
matrices, U2 Rm�m and V2 Rn�n, and a non-singular matrix,
Θ2Rp�p, such that�

UT 0
0 VT

��
A
B

�
X =

�
C
S

��
Ik 0

�
(6)

where C and S are nonnegative diagonal and of dimension m�
k and n� k, respectively,1 � S11 � �� �Smin(n;k);min(n;k) � 0, and

CTC+STS= Ik.

The generalized singular valuesare defined to be the
component-wise ratios of the diagonal entries of the two diagonal
matrices. In signal processing, A is often the signal matrix and B is
the noise matrix, in which case the generalized singular values are
referred to as signal-noise ratios.

4.2 Stable Solution
By plugging the GSVD matrices of Aw and Ab in (5), we have

Φ= X

�
Ik
0

�
STVT . Since V is orthogonal, we can drop it without
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changing the squared distance. So, we have

Φ = X

�
Ik
0

�
ST

: (7)

This derivation of Φ holds even if Σ̂w is singular. Thus, by us-
ing GSVD to solve the new criterion, we can avoid removing null
space, thereby keeping all the useful information. The degree of
linear independence of the original data, rank(AT

w;A
T
b ), is equal to

k, Since Φ 2 Rp�k, rank((AwΦ)T ;(AbΦ)T), the degree of linear
independence in the transformed space, is at most k.

We now state a theorem that shows that the solution is stable.

THEOREM 2. (GSVD relative perturbation bound [7]) Sup-
pose A and B be matrices with the same number of columns and B
is of full column rank. Let A= A1D1 and B= B1D2 such that D1
and D2 have full rank. Let E= E1D1 and F= F1D2 be perturba-
tions of A and B, respectively, such that for all x there exist some
η1;η2 < 1 for which it holds that

jjE1xjj2 � η1jjA1xjj2; jjF1xjj2 � η2jjB1xjj2:
Let σi and σ̃i be the i-th generalized singular value of(A;B) and
that of(A+E;B+F), respectively. Then eitherσi = σ̃i = 0 or

jσi � σ̃i j
σi

� η1 +η2

1�η2
:

The above theorem gives a bound on the relative error of the
generalized eigenvalues (Cii and Sii ) if the difference between the
estimated covariance matrices and the genuine covariance matrices
is small. This guarantees that the relative error of Φ is bounded
by the relative error of estimated intra- and inter-class covariance
matrices.

GSVD also brings some favorable features, which might im-
prove accuracy. In particular, computation of the cross products
AT

b Ab and AT
wAw, which causes roundoff errors, is not required.

4.3 The GDA Algorithm
The pseudo codes of the training and prediction procedures are

described as follows:

Algorithm 1 Training procedure Φ = Train (x’s)

Input: the training data xi ’s
Output: the transformation Φ;
begin
1. Construct the matrices Aw and Ab;
2. Perform GSVD on the matrix pair;
3. Obtain Φ as described in equation 7.
4. Return Φ;
end

Algorithm 2 Prediction Procedure T = Predict(Φ, x)

Input: the transformation Φ generated by the training procedure;
and a new instance x;

Output: the label T of the new instance;
begin
1. Perform Prediction as in equation 2;
2. Return T;
end

5. CONNECTIONS
Here we show that the above transformation derived using our

new criterion can also be obtained by optimizing the trace or deter-
minant ratios.

5.1 Optimizing the determinant ratio
Fisher’s criterion is to maximize the ratio of the determinant of

the inter-class scatter matrix of the projected samples to the deter-
minant of the intra-class scatter matrix of the projected samples:

J (Φ) =
jΦT Σ̂bΦj
jΦT Σ̂wΦj : (8)

One way to overcome the requirements of non-singularity of
Fisher’s criterion is looking for solutions that simultaneously max-
imize jΦT Σ̂bΦj minimize jΦT Σ̂wΦj. Using GSVD, Ab and Aw
are decomposed as Aw = UC[Ik 0]X�1 and Ab = VS[Ik 0]X�1.
To maximize J (Φ), jΦT Σ̂bΦj should be increased while decreas-
ing jΦT Σ̂wΦj. Let C0 = C[Ik 0] and S0 = S[Ik 0]. Then we have
Σ̂b = AT

b Ab = XS02X�1 and Σ̂w = AT
wAw = XC02X�1. This implies

jΦT Σ̂bΦj = jΦTXS02X�1Φj
= (jS0X�1Φj)2 and

jΦT Σ̂wΦj = jΦTXC02X�1Φj
= (jC0X�1Φj)2

:

Thus, the matrix Φ satisfying X�1Φ =

�
Ik
0

�
would simultane-

ously maximize jΦT Σ̂bΦj and minimize jΦT Σ̂wΦj (since the diag-

onal of S is decreasing). So, we have Φ = X

�
Ik
0

�
. In the case

where we must weight the transformation with the generalized sin-

gular, Φ = X

�
Ik
0

�
ST is the transformation we want.

5.2 Optimizing the trace ratio
The same transformation can also be obtained by optimizing the

trace ratio. Using GSVD, we have

trace(ΦT Σ̂bΦ) = trace(S0S0TX�1ΦΦTX�T)

= trace(S0S0TGGT)

=
k

∑
i=1

S2
ii gii and

trace(ΦT Σ̂wΦ) = trace(C0C0TX�1ΦΦTX�T)

= trace(C0C0TGGT)

=
k

∑
i=1

C2
ii gii ;

where G= X�1Φ and gii is the ii -th term of G. Since CTC+ST S=
Ik, we have

trace(ΦT Σ̂bΦ)+ trace(ΦT Σ̂wΦ) =
k

∑
i=1

S2
ii gii +

k

∑
i=1

C2
ii gii

=
k

∑
i=1

gii :

If we force that trace(ΦT Σ̂bΦ) = 1, the optimization is formu-
lated as minimization of trace(ΦT Σ̂wΦ) = ∑k

i=1 gii � 1. Here gii ’s
are diagonal elements of a positive semi-definite matrix, so they
are nonnegative. Also, for all i, gii = 0 implies that for all j
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gi j = gji = 0. Note that GGT is a p� p matrix. Since only
the first k diagonal entries, fgii gk

i=1, appear in the formula for
trace(ΦT Σ̂wΦ) = ∑k

i=1 gii � 1, the quantities of other m� k diag-
onal entries do not affect the optimization. Thus, we may set all

of these to 0, thereby obtaining Φ = X

�
Ik
0

�
. In the case when

we want to weight the transformation with the generalized singular

values, we obtain Φ = X

�
Ik
0

�
ST .

6. TEXT CLASSIFICATION VIA GDA: EX-
AMPLES

A well-known transformation method in information retrieval is
Latent Semantic Indexing (LSI) [6], which applies Singular Value
Decomposition (SVD) to the document-term matrix and computes
eigenvectors having largest eigenvalues as the directions related to
the dominant combinations of the terms occurring in the dataset
(latent semantics). A transformation matrix constructed from these
eigenvectors projects a document onto the latent semantic space.
Although LSI has been proven extremely useful in information re-
trieval, it is not optimal for text categorization because LSI is com-
pletely unsupervised. In other words, LSI deals with the data with-
out paying any particular attention to the underlying class struc-
ture. It only aims at optimally transforming the original data into
a lower dimensional space with respect to the mean squared er-
ror, which has nothing to do with the discrimination of the dif-
ferent classes. Our GDA approach possesses advantages of both
discriminant analysis and of latent semantic analysis. By explic-
itly taking the intra-class and inter-class covariance matrices into
the optimization criterion, GDA deals directly with discrimination
between classes. Furthermore, by employing GSVD to solve the
optimization problem, GDA tries to identify the latent concepts
indicated by the generalized singular values.

To illustrate how well GDA can perform, we present here two
examples. In the first example, we compare GDA against LDA and
LSI. Figure 1 shows a small dataset consisting of nine phrases in
three topics: user interaction, graph theory, and distributed systems.

No. Class Phrase
1 1 Human interface for user response
2 1 A survey of user opinion of computer

system response time
3 1 Relation of user-perceived response

time to error measurement
4 2 The generation of random, binary,

unordered trees
5 2 The intersection graph of paths in trees
6 2 Graph Minors IV: Widths of trees and

well-quasi-ordering
7 3 A survey of distributed shared memory system
8 3 RADAR: A multi-user distributed system
9 3 Management interface tools for

distributed computer system

Figure 1: Nine example sentences

After removing words (terms) that occurs only once, we have the
document-term matrix as shown in Figure 2.

The first and second samples in each class are used for train-
ing. GDA , LDA, and LSI are run on the training data to ob-
tain transformation matrices. Figure 3 shows the plot of the

word\No. 1 2 3 4 5 6 7 8 9
a 1 1 1

computer 1 1
distributed 1 1 1

for 1 1
graph 1 1

interface 1 1
of 2 1 1 1 1 1

response 1 1 1
survey 1 1
system 1 1 1 1

the 1 1
time 1 1
trees 1 1 1
user 1 1 1 1

Figure 2: Document-term Matrix

distances/similarities between document pairs in the transformed
space using each of the three methods.

(a) GDA (b) LDA (c) LSI

Figure 3: Pairwise document similarity via GDA , LDA, and
LSI. The darker the close is the more similar the documents
are. GDA is a clear winner.

The second example illustrates differences between GDA and
LSI. Distinction among three newsgroups in 20NG are attempted
by selecting from each newsgroup twenty training and twenty for
testing. Figure 4 shows plots of the the sixty testing articles using
the two dominant directions as the axes. GDA has clear separa-
tion while the LSI plot shows an L-shaped concentration of the
data points. The confusion matrices of these methods are shown in
Table 1. GDA clearly performed better than LSI.

prediction prediction
actual 1 2 3 actual 1 2 3

1 20 0 0 1 20 0 0
2 0 19 1 2 0 3 17
3 0 0 0 3 7 5 8

Table 1: The confusion matrices. Left: GDA . Right: LSI.

7. EXPERIMENTS

7.1 The Datasets
For our experiments we used a variety of datasets, most of which

are frequently used in the information retrieval research. The range
of the number of classes is from four to 105 and the range of the
number of documents is from 476 to 20,000, which seem varied
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Figure 4: Document plots. The three groups are separated sig-
nificantly better with GDA than with LSI.

enough to obtain good insights as to how GDA performs. Table 2
summarizes the characteristics of the datasets.

20Newsgroups The 20Newsgroups (20NG) dataset contains
approximately 20,000 articles evenly divided among 20 Usenet
newsgroups. The raw text size is 26MB. All words were stemmed
using a porter stemming program, all HTML tags were skipped,
and all header fields except subject and organization of the posted
article were ignored.

WebKB The WebKB dataset3 contains Web pages collected
from university computer science departments. There are approxi-
mately 8,300 documents in the set and they are divided into seven
categories: student, faculty, staff, course, project, department, and
other. The raw text size of the dataset is 27MB. Among the seven
categories, student, faculty, course, and project are the four most
populous. The subset consisting only of these categories is also
used here, which is called WebKB4. In neither of the datasets, we
used stemming or stop lists.

Industry Sector The Industry Section dataset4 is
based on the data made available by Market Guide, Inc.
(www.marketguide.com). The set consists of company homepages
that are categorized in a hierarchy of industry sectors, but we
disregarded the hierarchy. There were 9,637 documents in the
dataset, which were divided into 105 classes. We tokened the
documents by skipping all MIME and HTML headers and using a
standard stop list. We did not perform stemming.

Reuters The Reuters-21578 Text Categorization Test Collec-
tion contains documents collected from the Reuters newswire in
1987. It is a standard text categorization benchmark and contains
135 categories. We used its subsets: one consisting of the ten most
frequent categories, which we call Reuters-Top10, and the other
consisting of documents associated with a single topic, which we
call Reuters-2. Reuters-2 had approximately 9,000 documents and
50 categories.

TDT2 TDT2 is the NIST Topic Detection and Tracking text
corpus version 3.2 released in December 6, 1999 [30]. This cor-
pus contains news data collected daily from nine news sources in
two languages (American English and Mandarin Chinese), over a
period of six months (January–June in 1998). We used only the
English news texts, which were collected from New York Times
Newswire Service, Associated Press Worldstream Service, Cable
News Network, Voice of America, American Broadcasting Com-
pany, and Public Radio International. The documents were manu-
ally annotated using 96 target topics. We selected the documents
having annotated topics and removed the brief texts. The resulting

3Both 20NG and WebKB are available at http://www-
2.cs.cmu.edu/afs/cs/project/theo-11/www/wwkb.
4Available at http://www.cs.cmu.edu/ TextLearning/datasets.html

dataset contained 7,980 documents.
K-dataset This dataset was obtained from the WebACE

project [15]. It contained 2,340 documents consisting of news arti-
cles from Reuters News Service made available on the Web in Oc-
tober 1997. These documents were divided into 20 classes. They
were processed by eliminating stop words and HTML tags, stem-
ming the remaining words using Porter’s suffix-stripping algorithm.

CSTR This is the dataset of the abstracts of technical reports
published in the Department of Computer Science at the University
of Rochester between 1991 and 20025. The dataset contained 476
abstracts, which were divided into four research areas: Symbolic-
AI, Spatial-AI, Systems, and Theory. We processed the abstracts
by removing stop words and applying stemming operations on the
remaining words.

Datasets # documents # class
20NG 20,000 20

WebKB4 4,199 4
WebKB 8,280 7

Industry Sector 9,637 105
Reuters-Top10 2,900 10

Reuters-2 9,000 50
CSTR 476 4

K-dataset 2,340 20
TDT2 7,980 96

Table 2: Data Sets Descriptions

7.2 Data Preprocessing
In all experiments, we randomly chose 70% of the documents for

training and assigned the rest for testing. It is suggested in [35] that
information gain is effective for term removal and it can remove up
to 90% or more of the unique terms without performance degrade.
So, we first selected the top 1,000 words by information gain with
class labels. The feature selection is done with the Rainbow pack-
age [23].

Here we use classification accuracy for evaluation. Different
measures, such as precision-recall graphs and F1 measure [34],
have been used in the literature. However, since the datasets used
in our experiments are relatively balanced and single-labeled, and
our goal in text categorization is to achieve low misclassification
rates and high separation between different classes on a test set,
we thought that accuracy is the best measure of performance. All
of our experiments were carried out on a P4 2GHz machine with
512M memory running Linux 2.4.9-31.

7.3 Experimental Results
Now we present and discuss the experimental results. Here we

compare GDA against Naive Bayes (NB for short), K-Nearest
Neighbor (KNN for short), Maximum Entropy (ME for short),
LDA, and SVM on the same datasets with the same training and
testing data. Recall that the first three of the methods we compare
against are commonly-used direct methods for multi-class classi-
fication (in the sense that they do not require reduction to binary
classification problems). For experiments involving SVM we used
SVMTorch [5]6, which uses the one-versus-the-rest decomposition.

Table 3 and Figure 5 show performance comparisons. GDA
outperformed all the other five methods on 20NG, WebKB4, We-
bKB and Industry Sector. SVM performed the best on Reuters-2,

5The TRs are available at http://www.cs.rochester.edu/trs.
6Download-able at http://old-www.idiap.ch/learning/SVMTorch.html.
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K-dataset, and TDT2. GDA outperformed LDA on all the experi-
ments, and the improvement was significant (more than 10%) when
the sample size was relatively small (in the case of CSTR, Reuters-
Top10, and K-dataset).

On 20NG, the performance of GDA s 95:03%, which is approx-
imately 10% higher than that of NB, 6% higher than that of ME,
and 4% higher than that of SVM. On the WebKB4 dataset, GDA
beats NB by approximately 5%, and both ME and SVM by approx-
imately 2%. On the WebKB dataset, GDA beats NB by approx-
imately 16% and ME by 6%. The performance of GDA is about
8% higher than that of NB and by 6% than that of ME on the In-
dustry Sector. The results with GDA and with SVM are almost
the same on WebKB, Industry Sector, Reuters-Top10, and CSTR.
On Reuters-2, K-dataset, and TDT2, SVM performs slightly bet-
ter than GDA by 3%. ME achieves the best results on the CSTR
dataset while NB is the winner on Reuters-top10 in terms of perfor-
mance On CSTR, the performance of GDA is 2% lower than that
of NB and 4% lower than that of ME. On Reuters-Top10, GDA
is beaten by NB by approximately 1%. In total, the performance
of GDA is always either the winner or very close to the winner:
it is ranked the first four times, ranked the second three times, and
ranked the third in the remaining two. Although there is no sin-
gle winner over all datasets, GDA seems to outperform the rest on
most counts. We can say that GDA is a viable, competitive algo-
rithm in text categorization.

Datasets GDA NB KNN ME LDA SVM
20NG 95.03 85.60 50.70 89.06 93.90 91.07

WebKB4 94.01 85.13 37.29 91.93 90.72 92.04
WebKB 79.02 61.01 44.81 71.30 77.35 78.89

Industry Sector 66.57 56.32 39.48 58.84 66.49 65.96
Reuters-Top10 81.98 83.33 74.07 81.65 71.46 81.13

Reuters-2 89.82 87.88 73.22 88.56 88.65 92.43
CSTR 88.50 90.85 82.53 92.39 68.29 88.71

K-dataset 88.44 86.14 58.26 86.19 77.69 91.90
TDT2 90.54 91.59 86.63 89.18 88.41 93.85

Table 3: Performance comparisons. For KNN we set k to 30.
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Figure 5: Performance Comparison

GDA is also very efficient and most experiments are done in
several seconds. Table 4 summarizes the running time for all the
experiments of GDA and SVM. Figure 6 and Figure 7 present the
comparisons of training and prediction time respectively. The time
saving of GDA is very obvious. In summary, these experiments

have shown that GDA provides an alternate choice for fast and
efficient text categorization.

GDA GDA SVM SVM
Datasets Training Prediction Training Prediction
20NG 171.80 6.86 270.20 64.28

WebKB4 63.4 0.20 114.67 54.72
WebKB 94.64 0.43 1108.17 103.03

Industry Sector 88.23 6.45 423.54 79.82
Reuters-Top10 61.23 0.15 94.28 18.65

Reuters-2 96.19 1.13 566.53 85.10
CSTR 3.65 0.02 7.50 2.77

K-dataset 62.88 0.18 84.56 47.70
TDT2 21.69 5.14 89.91 26.76

Table 4: Time Table in seconds.
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Figure 6: Training Time Comparisons
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Figure 7: Prediction Time Comparisons

8. DISCUSSIONS AND CONCLUSIONS
In this paper, we presented GDA , a simple, efficient, and yet ac-

curate, direct approach to multi-class text categorization. GDA uti-
lizes GSVD to transform the original data into a new space, which
could reflect the inherent similarities between classes based on a
new optimization criterion. Extensive experiments clearly demon-
strate its efficiency and effectiveness.

Interestingly enough, although traditional discriminant ap-
proaches have been successfully applied in pattern recognition, lit-
tle work has been reported on document analysis. As we mentioned
earlier, this is partly because the intra-class covariance matrix is
usually singular for document-term data and hence restrict the us-
age of discriminant. Our new criterion avoids the problem while
still preserving the discriminative power of the covariance matrix.
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Another big barrier to application of discriminant analysis in doc-
ument classification is its large computation cost. As we know,
traditional discriminant analysis requires a large amount of com-
putation on matrix inversion, SVD, and eigenvalue-analysis. The
costs of these operations are extremely large in document analysis
because the matrices have thousands of dimension. Our approach
makes use of effective feature selection via information gain, with
which we can remove up to 90% or more of the unique terms with-
out significant performance degrade [35]. One of our future plans
is to explore how the performance correlates with different feature
selection methods and the number of words selected. There are also
other possible extensions such as using random projection to reduce
the dimensionality before applying discriminant analysis [27].

Acknowledgments
This work is supported in part by NSF grants EIA-0080124, DUE-
9980943, and EIA-0205061, and NIH grant P30-AG18254.

9. REFERENCES
[1] Allwein, E. L., Schapire, R. E., & Singer, Y. (2000). Reducing

multiclass to binary: A unifying approach for margin
classifiers. ICML-00 (pp. 9–16).

[2] Apte, C., Damerau, F., & Weiss, S. (1998). Text mining with
decision rules and decision trees. Proceedings of the Workshop
with Conference on Automated Learning and Discovery:
Learning from text and the Web.

[3] Chakrabarti, S., Roy, S., & Soundalgekar, M. V. (2002). Fast
and accurate text classification via multiple linear discriminant
projections. Proceedings of the 28th International Conference
on Very Large Databases(pp. 658–669).

[4] Cohen, W. W., & Singer, Y. (1996). Context-sensitive learning
methods for text categorization. Proceedings of the 19th Annual
International ACM SIGIR Conference on Research and
Development in Information(pp. 307–315).

[5] Collobert, R., & Bengio, S. (2001). SVMTorch: Support
vector machines for large-scale regression problems. Journal of
Machine Learning Research, 1, 143–160.

[6] Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas,
G. W., & Harshman, R. A. (1990). Indexing by latent semantic
analysis. Journal of the American Society of Information
Science, 41, 391–407.
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