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Abstract. Over the past few years, the focus of robotic design has been moving
from a scenario where a few specialized (and expensive) units were used to solve
a variety of tasks, to a scenario where many general purpose (and cheap) units are
used to achieve some common goal. Consequently, part of the focus has been to
understand better how to coordinate and control a set of such “simpler” mobile units
efficiently. Studies can be found in different disciplines, from engineering to artificial
life: a shared feature of the majority of these works has been the design of algorithms
based on heuristics, with no main concern on their correctness and termination. Few
researchers have focused on trying to model formally an environment constituted by
mobile units, analyzing which kind of capabilities they must have in order to achieve
their goals; in other words, to study the problem from a computational point of view.
In this paper we do a direct comparison between two models, ATOM and CORDA,
introduced in two studies leading in this direction. First their main features are
described, and then the main differences are highlighted, showing the relationship
between the class of problems solvable in the two models.

1. Introduction

In a system consisting of a set of totally distributed agents the goal is generally to exploit
the multiplicity of the elements in the system so that a certain predetermined task is
accomplished in a coordinated and distributed way. Such a system is preferable to one
made up of just one powerful robot for several reasons: the advantages that can arise from
a distributed and parallel solution to the given problems, such as a faster computation;

∗ Parts of this paper have appeared in preliminary form in [20].
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the ability to perform tasks that cannot be accomplished by a single agent; increased fault
tolerance; and the decreased cost through simpler individual robot design. On the other
hand, the main concern in such a system is to find an efficient way to coordinate and
control the mobile units in order to exploit to the utmost the presence of many elements
moving independently.

Several studies in different fields have been conducted in this direction. In the
engineering area we can cite the Cellular Robotic System (CEBOT) of Kawaguchi et al.
[16], the Swarm Intelligence of Beni and Hackwood [4], and the Self-Assembly Machine
(“fructum”) of Murata et al. [18]. In the AI community there have been a number of
remarkable studies: social interaction leading to group behavior by Matarić [17]; selfish
behavior of cooperative robots in animal societies by Parker [19]; and primitive animal
behavior in pattern formation by Balch and Arkin [3].

The shared feature of all these approaches is that they do not deal with formal
correctness and they are only analyzed empirically. Algorithmic aspects were somehow
implicitly an issue, but clearly not a major concern—let alone the focus—of the study.

A different approach is to analyze an environment populated by a set of autonomous,
mobile robots, aiming to identify the algorithmic limitations of what they can do. In other
words, the approach is to study the problem from a computational point of view.

Typical problems that have been studied in this perspective are taken directly from
those usually studied in robotics and engineering. For instance, we can cite the Arbitrary
Pattern Formation problem, where the robots are asked to form in finite time, a pattern
they are given as input [10], [25] (e.g., a circle [7]); the Gathering problem, where the
robots are asked to gather in a point of the plane not known in advance [1], [2], [5], [12],
[25]; the Flocking problem, where the robots are required to follow a leader unit wherever
it goes, while keeping a formation given them as input, and not knowing beforehand the
path the leader will follow [14]; the Intruder problem, where all robots in the environment
are required to chase and capture an intruder that sneaks through a restricted area they
are patrolling [13].

This paper deals with two studies leading in this direction (the only ones, to our
knowledge, that analyze the problem of coordinating and controlling a set of autono-
mous, mobile units from this point of view). The first study was started by Suzuki and
Yamashita [23]–[25], and then continued in [2] and [22]. It gives a nice and systematic
account on the algorithmics of different tasks for the robots, operating under several
assumptions on the power of the individual robot. The second is by Flocchini et al. [10],
[12]: they present a model (that we refer to as CORDA—COordination and control of a
set of Robots in a Distributed and Asynchronous environment) that has as its primary
objective the description of a set of totally asynchronous mobile units, which have no
central control (i.e., move independently from each other) and that execute the same
deterministic algorithm in order to achieve some goal. In both studies the modeled
robots are rather weak and simple, but this simplicity allows the authors to highlight
formally from an algorithmic and computational viewpoint the minimal capabilities the
robots must have in order to accomplish basic tasks and produce interesting interactions.
Furthermore, it allows us to understand better the power and limitations of the distributed
control in an environment inhabited by mobile agents, hence to prove formally what can
be achieved under the “weakness” assumptions of the models, that will be described
later in more detail.
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An investigation with an algorithmic flavor has been undertaken within the AI com-
munity by Durfee [9], who argues in favor of limiting the knowledge that an intelligent
robot must possess in order to be able to coordinate its behavior with others.

Although the model of Suzuki and Yamashita (which we refer to as ATOM) and
CORDA share some features, they differ in some aspects that render the two models quite
different. In this paper we do a direct comparison between the two models, highlight-
ing these differences, focusing in particular on the different approach in modeling the
asynchronicity of the environment in which the robots operate.

In Section 2 ATOM and CORDA are described, highlighting the features that render the
two models different. In Section 3 we show that the class of problems solvable in CORDA is
strictly contained in the class of problems solvable in ATOM; furthermore, we present a
set of conditions that allow us to establish whether an algorithm designed in ATOM to
solve a given problem can be used in CORDA to solve the same problem. In Section 4
we present a case study that shows an example on one of those conditions. Finally, in
Section 5 we draw some conclusions and present open problems and suggestions for
further study.

2. Modeling Autonomous Mobile Robots

In this section we describe the approaches used in ATOM and CORDA to model the control
and coordination of a set of autonomous mobile robots. In particular, we first present the
common features of the two models, and successively present in detail the instantaneous
actions of ATOM, and the full asynchronicity of CORDA, that model the behavior of the
robots.

2.1. Common Features

The two models discussed in this paper share some basic features. Consider a distributed
system populated by a set of n autonomous mobile robots, denoted by r1, . . . , rn , that
are modeled as devices with computational capabilities1 which are able to move freely
on a two-dimensional plane. Each robot is viewed as a point, and it is equipped with
sensors that let it observe the positions of the other robots in the plane, and form its local
view of the world. The set of absolute positions2 on the plane occupied by the robots at
a given time instant is called a configuration of the robots.

The behavior of a robot is a cycle of sensing, computing, moving, and being inac-
tive. In particular, each robot is capable of sensing the positions of other robots in its
surrounding, performing local computations on the sensed data, and moving towards
the computed destination. The local computation is done according to a deterministic
algorithm that takes as input the sensed data (i.e., the robots’ positions), and returns a
destination point towards which the executing robot moves. All the robots execute the
same algorithm.

1 To our knowledge, nothing is ever mentioned on the computational power of the modeled robots. For
the purpose of this paper, they can be considered as Turing-equivalent machines.

2 That is, with respect to an inertial reference frame.
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The local view of each robot includes a unit of length, an origin, and a Cartesian
coordinate system defined by the directions of two coordinate axes, identified as the x
and y axis, together with their orientations, identified as the positive and negative sides
of the axes.

Different settings arise from different assumptions that are made on the robots’
capabilities, and on the amount of information that they share and use during the accom-
plishment of the assigned task. In particular:

(Vis) The robots may be able to sense the complete plane or just a portion of it. We
refer to the first case as the Unlimited Visibility setting. In contrast, if each robot
can sense only up to a distance V > 0 from it, we are in the Limited Visibility
setting. In the following, we say also that the robots have unlimited/limited
visibility.

In addition, a robot cannot in general detect whether there is more than one
fellow robot on any of the observed points, included the position where the
observing robot is. We say it cannot detect multiplicity.

(Agr) The robots do not necessarily share the same x–y coordinate system, and do
not necessarily agree on the location of the origin (that we can assume, without
loss of generality, to be placed in the current position of the robot), or on the
unit distance. In general, there is no agreement among the robots on the chirality
of the local coordinate systems (i.e., in general they do not share the same
concept of where North, East, South, and West are). We refer to this scenario
as no agreement on the local coordinate systems (see Figure 1(c)). In the most
favorable scenario the robots agree on the direction and orientation of both axes,
hence they agree on where North, South, East, and West are (see Figure 1(a)).
Knowing the direction of the x axis means that all robots know and use the
fact that all the lines identifying their individual x axes are parallel. Similarly,
knowing the orientation of an axis means that the positive side of that axis in
the local coordinate system coincides for all robots. As an example for an axis
whose direction and orientation is known, each robot may have a built-in compass
needle that points North, with all compass needles parallel, consistently for all
robots. In this case we talk of total agreement on the local coordinate systems.
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Fig. 1. (a) Total agreement on the local coordinate systems. (b) Partial agreement on one axis direction and
orientation. (c) No agreement on the local coordinate systems.
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Note that knowledge of the directions and orientations of both axes does not
imply knowledge of the origin or the unit of length. An alternative scenario is
when the robots agree only on the direction and orientation of one axis, say
y, hence they agree on the orientation of the North–South axis, but there is no
general agreement on where East or West is (see Figure 1(b)): we talk of one
axis direction and orientation agreement (or shortly partial agreement).

(Obl) The robots can access local memory to store different amount of information
regarding the positions in the plane of their fellows. In particular, if the robots
can only store the robots’ positions retrieved in the last observation, we have
oblivious robots. In contrast, if the robots can store all the positions retrieved
since the beginning of the computation, we have non-oblivious robots. We also
refer to the algorithm the robots execute as oblivious or non-oblivious, depending
on the adopted model.

Note that the robots always have common knowledge [15] of the conditions un-
der which they operate. For instance, having limited visibility, obliviousness, and total
agreement on the local coordinate systems means the robots have common knowledge
of these operating conditions.

The robots are completely autonomous: no central control is needed. Furthermore
they are anonymous, meaning that they are a priori indistinguishable by their appearance,
and they do not (need to) have any kind of identifiers that can be used during the
computation.3

Moreover, there are no explicit direct means of communication: any communication
occurs in a totally implicit manner. Specifically, it happens by means of observing the
robots’ positions in the plane, and taking a deterministic decision accordingly. In other
words, the only means for a robot to send information to some other robot is to move
and let the others observe (reminiscent of bees in a bee dance).

Finally, a critical feature regards the way the robots act during the computation; that
is, the timing of the operations executed by each robot during its life. In particular:

(Time) If the amount of time spent in observation,4 in computation, in movement,
and in inaction is finite but otherwise unpredictable, then we say that the robots
are fully asynchronous. In particular, the robots do not (need to) have a common
notion of time. Each robot executes its actions at unpredictable time instants.
This setting is adopted in CORDA.

In contrast, if the robots execute their activities (observation, computation,
movement, and waiting) in an atomic and instantaneous fashion (that is, the
amount of time spent in each activity of each cycle is negligible), we say that
the robots are atomically synchronized. This setting is adopted in ATOM.

We discuss in more detail the implications of time settings in the following. Clearly,
depending on the adopted settings, these basic features allow us to model different
levels of power of the robots. For instance, the oblivious, asynchronous, and with no

3 Note that the non-obliviousness feature does not imply the possibility of a robot finding out which
robot corresponds to which position it stored, since the robots are anonymous.

4 That is, activating the sensors and receiving their data.
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agreement model renders the robots particularly weak, especially considering the current
engineering technology. However, as already noted, the main interest of this kind of study
is to approach the problem of coordinating and controlling a set of mobile units from a
computational point of view. In fact, the general idea proposed in this work is to look for
the minimum power to give to the robots so that they can solve a given task; hence, to
analyze formally the strengths and weaknesses of the distributed control. Furthermore,
this simplicity also leads to some advantages. For example, making do without the ability
to remember what has been observed in the past (obliviousness) could give the system
the nice property of self-stabilization [6], [8], [25].

2.2. The Full Asynchronicity of CORDA

In CORDA the robots are fully asynchronous: the amount of time spent in observation,
in computation, in movement, and in inaction is finite but otherwise unpredictable. In
particular, the robots do not have a common notion of time, and each robot executes its
actions at unpredictable time instants.

During its life, each robot cyclically executes four states: (i) initially it is inactive—
Wait, (ii) asynchronously and independently from the other robots, it observes the posi-
tions of the other robots in its area of visibility—Look, (iii) it computes its next destination
point by executing the algorithm (the same for all robots)—Compute, and (iv) it moves
towards the point it just computed—Move; after the move it goes back to a waiting
state. As already stated, the robots execute these states asynchronously, without any
central control: in this feature CORDA drastically differs from ATOM (as we will see in
Section 2.3).

The sequence: Wait–Look–Compute–Move is called a computation cycle (or briefly
cycle) of a robot. The operations performed by each robot r in each state is now described
in more detail.

(i) Wait The robot is idle. A robot cannot stay indefinitely idle (see Assumption
A2 below). At the beginning all robots are in Wait.

(ii) Look The robot observes the world by activating its sensors which will return
a snapshot of the positions of all other robots within the visibility range with
respect to its local coordinate system. Each robot is viewed as a point, hence its
position in the plane is given by its coordinates, and the result of the snapshot
(hence, of the observation) is just a set of coordinates in its local coordinate
system: this set forms the view of the world of r. More formally, the view of
the world of r at time t , denoted by Vr (t), is defined as the last snapshot taken
at a time smaller than or equal to t .

(iii) Compute The robot performs a local computation according to a determin-
istic algorithmA (we also say that the robot executesA ). The algorithm is the
same for all robots, and the result of the Compute state is a destination point.
If the robots are oblivious, then A can access only the set of robots’ posi-
tions retrieved during the last Look; otherwise, A can access the information
relative to all the positions of the robots observed since the beginning of the
computation.

(iv) Move If the point computed in the previous state is the current location of
r , we say that r performs a null movement, and it does not move; otherwise
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it moves towards the point computed in the previous state. The robot moves
towards the computed destination of an unpredictable amount of space, which is
assumed neither infinite nor infinitesimally small (see Assumption A1 below).
Hence, the robot can only go towards its goal, but it cannot know how far it will
go in the current cycle, because it can stop anytime during its movement.5 The
amount of space traveled by a robot during this state is also called the length
of the move.

The (global) time that passes between two successive states of the same robot is
finite but unpredictable. In addition, no time assumption within a state is made. This
implies that the time that passes after the robot starts observing the positions of all others
and before it starts moving is arbitrary but finite. That is, the actual move of a robot may
be based on a situation that was observed arbitrarily far in the past, and therefore it may
be totally different from the current situation.

This assumption of asynchronicity within a cycle is important in a totally asyn-
chronous environment, since each robot has enough time to perform its local computa-
tion; furthermore, in this way it is also possible to model different motorial speeds of the
robots. If the robots move according to this time setting, we say that they move according
to an asynchronous activation schedule. Furthermore,

Definition 2.1. An algorithmA solves a problem P if the robots, activated according to
any asynchronous activation schedule, reach in a finite number of cycles a configuration
such that the task defined by P is accomplished.

A remark regarding the Look state: as already stated, the result of this state is a set
of positions retrieved at one time instant, i.e., at the time when the snapshot of the world
was done. That is, each Look can be split in three parts: in the first part the sensors are
activated; in the second part the actual snapshot is performed; in the last part the data
captured by the sensors are sent away in order to be processed. For instance, referring to
the cycle depicted in Figure 2(a), the first part of the Look is executed between time t1 and
t2, the snapshot is taken at time t2, and the third part is executed between time t2 and t3. In
the following we assume that the first and third parts have null length. This is not a loss
of generality: in fact, the first part can be thought of as part of the previous Wait state, and
the third part as part of the following Compute state (as shown in Figure 2(b)). Therefore,
each Look consists only of the snapshot: if r is executing a Look at time t , then Vr (t) is
the snapshot retrieved at t .

In the model there are only two limiting assumptions about space and time. The
first one refers to space; namely, the distance traveled by a robot during a computational
cycle.

Assumption A1 (Distance). The distance traveled by a robot r in a move is not infinite.
Furthermore, there exists an arbitrarily small constant δr > 0, such that if the destination
point is closer than δr , r will reach it; otherwise, r will move towards it at least δr .

5 That is, a robot can stop before reaching its destination point, e.g., because of limits to the robot’s
motorial capabilities.
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Fig. 2. (a) An example of a cycle. In particular, the three parts that constitute the Look state (between time
t1 and t3) are put in evidence. (b) Without loss of generality, we can assume that the Look state starts with the
snapshot, since the time spent in activating the sensors can be thought as part of the previous Wait.

As no other assumptions on space exist, the distance traveled by a robot in a cycle
is unpredictable. The reason for introducing δr is to ensure progress in the movement
of the robots; in other words, if r aims to reach a destination point p, Assumption A1
ensures that r will reach p in a finite number of cycles. Without such an assumption, it
would be impossible to prove the termination of the algorithms designed in CORDA in
a finite number of cycles: in fact, following a classical Zenonian argument, without
Assumption A1 r could move at each cycle towards p always by half of its distance
from p.

Similarly, to prove that the algorithms designed in CORDA terminate in finite time,
the following assumption on the length of a computational cycle is made.

Assumption A2 (Computational Cycle). The amount of time required by a robot r
to complete a computational cycle is not infinite. Furthermore, there exists a constant
εr > 0 such that the cycle will require at least εr time.

As no other assumption on time exists, the resulting system is fully asynchronous
and the duration of each activity (or inactivity) is unpredictable. As a result, the robots do
not have a common notion of time, robots can be seen while moving, and computations
can be made based on obsolete observations.

2.3. A Different Approach: The Instantaneous Actions of ATOM

As highlighted in the previous section, one important feature of CORDA is that the agents
in the environment act following fully asynchronous behavior. The main aspect where
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ATOM and CORDA drastically differ is in the way the robots interact, specifically in the
way time is modeled. In fact in ATOM, similarly to CORDA, the cycle of life of each
robot is to (i) observe the positions of the others, (ii) compute its next destination point
according to a deterministic algorithm (shared by all the robots), and (iii) move towards
this destination.

However, the robots operate in an atomic fashion, i.e., they perform their actions
always together: for instance, at a given time t , there cannot exist two distinct robots that
are performing a Look and a Move, respectively. Such a setting has been introduced and
studied in [2] and [25].

In particular, discrete time 0, 1, . . . is used to describe the behavior of the robots in
the system, and a cycle “is regarded as an atomic instantaneous event, and thus a robot
observes other robots (when a cycle begins) only when they are stationary” [2]. At each
time instant t , every robot ri is either active or inactive. At least one robot is active at
every time instant, and every robot becomes active at infinitely many unpredictable time
instants. A special case is when every robot is active at every time instant; in this case we
say that the robots are strongly synchronized.6 Let At be the set of active robots at time
t ; furthermore, let us call the sequence A0, A1, . . . an atomic activation schedule. In the
following we denote this sequence by ActATOM, the position of robot ri at time instant
t by pi (t), and the algorithm every robot uses by ψ . For any t ≥ 0, if ri is inactive, then
pi (t + 1) = pi (t); otherwise

pi (t + 1) = p, (1)

where p is the point returned by ψ . Depending on whether the model is oblivious or
not, ψ takes as input only the positions of the robots retrieved at the last Look , or all the
configurations retrieved since the beginning. An algorithm ψ solves a problem P if the
robots, activated following any atomic activation schedule, reach in a finite number of
cycles a configuration such that the task defined by P is accomplished.

Thus, from (1), ri executes the three states atomically and instantaneously, in the
sense that a robot that is active and observes at t , has already reached its destination
point p at t + 1, and no fellow robot can see it while it is moving (or, alternatively, the
movement is instantaneous).

The maximum distance that ri can move in one cycle has as an upper bound the local
unit measure of ri , that corresponds to some physical distance7 σi > 0 (if the destination
is closer than σi , the robot can clearly move less). The reason for such a constant is to
simulate continuous monitoring of the world by the robots. However, in [2] and [25]
this limit is stated as a restriction on ψ that must be written in such a way as never to
return a destination point at a distance greater than σi from pi (t).

2.4. Final Remarks

The main difference between the two models is, as stated before, in the way the asyn-
chronicity is regarded. In CORDA the environment is fully asynchronous, in the sense that
there is no common notion of time, and a robot observes the environment at unpredictable

6 In [2] and [25] the authors refer to this case simply as synchronous.
7 In [2] and [25], this constant is denoted by εi .
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time instants. Moreover, no assumptions on the cycle time of each robot, and on the time
each robot takes to execute each state of a given cycle are made. It is only assumed that
each cycle is completed in finite time, and that the distance traveled in a cycle is finite.
Thus, each robot can take its own time to compute, or to move towards some point in the
plane: in this way, it is possible to model different computational and motorial speeds
of the units. Moreover, every robot can be seen while it is moving by other robots that
are observing.8 This feature renders more difficult the design of an algorithm to control
and coordinate the robots. For example, when a robot starts a Move state, it is possible
that the movement it performs is not “coherent” with the current configuration (i.e., the
configuration it observed at the time of the Look and the configuration at the time of
the Move can differ), since, during the Compute state, other robots can have moved. On
the other hand, we feel that the full asynchronicity of CORDA better models the way a
set of autonomous, mobile, and asynchronous robots interact and coordinate in order to
accomplish some given task.

A further remark regards the distance each robot can travel during a cycle. As already
mentioned, in ATOM such a distance is bounded by σi . In CORDA there is no assumption
on the maximum distance a robot can travel before observing again (apart from the
bound given from the destination point that has to be reached). The only assumption in
CORDA is that there is a lower bound on such a distance: when a robot r moves, it moves
at least some positive, small constant δr .

3. Instantaneous Action versus Full Asynchronicity

The two time settings presented in the previous section (asynchronous for CORDA and
atomic for ATOM) are drastically different. In this section we discuss in more detail the
features that render the two models different; in particular, we focus on the time feature
of the two models introduced so far, highlighting the relationships between the two time
settings.

The first question we address is: Can an algorithm designed in ATOM be executed
in CORDA, and vice versa? The difference between an algorithm designed in ATOM and
one for CORDA relies on the amount of distance that each robot is allowed to travel in
each cycle. In fact, to our knowledge and as mentioned in Sections 2.3 and 2.4, in all the
algorithms designed for ATOM there is explicit knowledge by the robots of the maximum
amount of distance that can be traveled in one cycle. Namely, if the destination point
computed at a given cycle by robot ri is further than σi , then the algorithm explicitly
returns a point at most at distance σi . We call (for ATOM) an algorithm that imposes such
a limitation on the movements of the robots valid.

In contrast, such a limitation is not required in CORDA. Hence, it follows that any
valid ATOM algorithm can be executed in CORDA with no changes. Clearly, this does
not implies that a valid algorithm that solves a given problem in ATOM solves the same
problem in CORDA; it simply means that a valid algorithm can also be run in CORDA with
no modifications.

8 Note that this does not mean that the observing robot can distinguish a moving robot from a non-moving
one.
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On the other hand, an algorithmA designed for CORDA needs some transformation
in order to become valid: it is sufficient to give as input to the algorithm of robot ri also
the maximum amount of distance it can travel at each cycle, σi (note that σi is known to
the robot, since it is its local unit measure, see Section 2.3). In particular, let pi be the
position of ri when it executes A at a given time, and let desti be the destination point
returned by this computation. Then the transformed valid algorithmA v returns a point p
on the segment [pi , desti ] such that dist(pi , p) = min(σi , dist(pi , p)). Note that, by the
way the Move state is defined in CORDA, if A solves a given problem P in CORDA, then
A v will still solve P in CORDA; shortly, we will also prove that A v solves the problem
in ATOM.

The other major difference between the two models regards the way time is modeled.
The asynchronous setting in CORDA is very lazy: in fact, no restriction is imposed on
the timing of the robots’ activities. In particular, given a problem P, and an algorithm
A that solves it in such a time setting, the robots are able to solve P independently from
the duration of their cycles, and from the duration of the states in each cycle. This means
that the robots are able to solve P, even if they move in a synchronized fashion: that is, if
all the activities of the robots are done at the same time. In other words, all robots start a
cycle together at the same time, and each state of a cycle lasts the same amount of time.
Notice that this time setting is still different from the atomic setting, where each cycle
is executed atomically, and the only choice of a schedule is on the activation of a robot.

Hence, we have just introduced a third time setting: the synchronous, that is somehow
between the asynchronous and the atomic time setting. More formally, a synchronous
activation schedule is an asynchronous schedule with the following constraints (refer to
the example in Figure 3):

1. all robots start their executions together, say at time t = 0;
2. each robot can either execute a normal cycle (NC) or a long wait (LW). In

particular, given a constant ρ > 0, a normal cycle is a cycle that lasts 4ρ time,
and where each state lasts exactly ρ time; in a long wait a robot is simply in
Wait for 4ρ time.

It follows by the above definition and by Definition 2.1, that any problem that can
be solved in the asynchronous time setting is solved even if the robots move according
to a synchronous schedule.

Now we are ready to address the following question: What is the relationship between
the synchronous and the atomic time setting? That is, if a problem can be solved in the
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Fig. 3. An example of a synchronous activation schedule for three robots.
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synchronous time setting, can it be solved in the atomic one? The following lemma gives
the answer.

Lemma 3.1. Given a deterministic algorithmA designed in CORDA, any synchronous
activation schedule SyncF can be transformed into an atomic activation schedule
ActATOM such that if the robots, starting from the same initial configuration, are in
a configurationGt at time t when they executeA according to SyncF , they are inGt at
time t when they execute A according to ActATOM.

Proof. As noted above,A can be transformed into a valid algorithmA v . By executing
A v according to SyncF , a robot performs only NCs or LWs, and each NC or LW always
starts at a time that is multiple of 4ρ (see Figure 3). ActATOM is built from SyncF as
follows: if at time t = 4 · k · ρ, for k ≥ 0, robot ri executes an NC (resp., LW), then ri

is active (resp., inactive) in A t/4ρ .
Let us choose ρ = 1

4 , and executeA v according to both SyncF and ActATOM. The
proof is by induction: by hypothesis, the robots start from the same initial configuration
at time 0 in both executions; hence, the robots are in G0 in both executions.

Let us assume that at time t the robots are in the same configuration Gt in both
executions. In SyncF the robots that execute an NC observe at time t + 1

4 , while in
ActATOM the active robots observe at time t ; hence, in both executions, the robots observe
the same configuration. SinceA v is deterministic, and in SyncF no robot moves between
time t and t + 3

4 , in both executions the robots are in Gt+1 at time t + 1, and the lemma
follows.

An example of the above lemma is given in Figure 4. In the following theorem, we
prove that any problem that can be solved in CORDA can be solved in ATOM . We denote
by C and Z the class of problems that are solvable in the asynchronous and the atomic
setting, respectively. We can state the following:

Theorem 3.1. C ⊆ Z.

Proof. Let A be an algorithm that solves a given problem in CORDA. By defini-
tion, A solves the problem only if the robots reach a final configuration by execut-
ing A according to any asynchronous activation schedule; hence, according to a syn-
chronous one, SyncF . By using the transformation offered by Lemma 3.1, the theorem
follows.

L C M L C M

L MW C

1 3 4

NCLW

0

L MCW

NC

2

inactive active active inactive

LW
SyncF

ActAtom r

r

Fig. 4. Example of the idea behind Lemma 3.1.
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The vice versa is not true. To show this result, we introduce a problem that can be
solved in the atomic setting, but not in the asynchronous one.

Definition 3.1 (Movement Awareness). The Movement Awareness problemMA is di-
vided in two subtasks T1 and T2. In T1 each robot ri , 1 ≤ i ≤ n, simply moves along
a direction it chooses arbitrarily; ri can start T2 only after it has observed rj in at least
three different positions, and after rj has observed ri in at least three different positions,
for all j �= i .

Note that MA is solvable only in the non-oblivious setting: in fact, a robot can
switch from T1 to T2 only if it can remember the previous positions occupied by the
other robots.

Lemma 3.2. There exists no algorithm that solvesMA in CORDA, in the non-oblivious
setting.

Proof. By contradiction, let us assume that there exists an algorithm Ã that correctly
solves MA in the asynchronous setting. The generic robot ri starts its execution by
moving along the direction it chooses. By hypothesis, it will eventually and within a
finite number of cycles start the second subtask. Let t be the time when ri decides to
switch to T2. By hypothesis, Ã solves MA under any schedule. Let us take j �= i
and consider the particular asynchronous activations schedule such that rj starts its first
Move state at time t ′ < t , and finishes it at time 2t (that is, at time t , rj is still executing
its first cycle). Then MA is not correctly solved, since rj has not started its second
cycle at time t yet, hence rj has not observed ri in at least three different positions yet,
a contradiction. Notice that the proof does not depend on any particular feature of Ã ,
hence it is valid for any Ã , proving that no such algorithm can exist.

An algorithm similar to the one used in [25] to discover the initial configuration
(“distribution”) of the robots in the system, can be used to solveMA in the atomic and
non-oblivious setting. Namely, each robot starts moving along the direction it locally
chooses, e.g., the direction of its local y axis. When a robot ri observes another robot rj

in at least three different positions, ri moved at least twice. Moreover, since the actions
are instantaneous, ri can correctly deduce that rj observed at least three times, hence that
rj observed ri in at least three different positions. However, a problem can arise: since
the robots are indistinguishable, if n > 2, then ri might not be able to determine how
rj has moved, given the configurations at two distinct time instants. A solution to this
problem is offered in [25]: each robot ri memorizes the distance ai > 0 to its nearest
neighbor when it becomes active for the first time and moves at most distance ai/2k+1

in the kth move. In this way, r will remain in the interior of the ai/2-neighborhood of
its initial position, and thus every robot can correctly determine which robot has moved
to which position. Therefore, ri can correctly start T2 when it observes all rj �= ri in at
least three different positions.

Hence, we can state the following:

Lemma 3.3. MA is solvable in ATOM in the non-oblivious setting.
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From the above results, we can finally state the following:

Theorem 3.2. C ⊂ Z.

A question that arises is: Does it happen in the oblivious case? Unfortunately, we do
not yet have an answer. Our conjecture, however, is that the result stated in Theorem 3.2
also holds in the oblivious case. In the non-oblivious setting, the fact that in CORDA a
robot can be seen by its fellows while it is moving is crucial to prove C ⊂ Z. This is
not the case in the oblivious setting. In fact, since the robots have no memory of robots’
positions observed in the past, every time a robot r observes another robot r ′, r cannot
tell if r ′ moved since the last cycle or not: every observation is like the first one. Hence,
we believe that the key to prove C ⊂ Z in the oblivious case is related to the fact that in
CORDA the positions of the robots between a Look and a Compute can change, hence the
computation can be done on “outdated” data. In other words, if r executes the Look at
time t and the Compute at time t ′ > t , the set of robots’ positions at t and at t ′ can be
clearly different; hence r computes its destination point on the old data sensed at time t ,
implying that the movement might not be “coherent” with the configuration at the time
of the Move. This clearly does not happen in ATOM, where the possible states a robot
can be in are executed atomically.

Theorem 3.1 tells us that any problem P solvable in the asynchronous time setting
can be solved in the atomic one: we first take a solution algorithm for P in CORDA, and
then we transform it into an algorithm A v valid in ATOM. Vice versa, Theorem 3.2
states that not all problems that are solvable in ATOM are solvable in CORDA. Since it is
usually easier to think in terms of the atomic model, in the following we want to focus
on the solution algorithms that solve problems in ATOM. As already noted in Section 3,
algorithms designed in ATOM can be run in CORDA too. So we ask the following: Given
an algorithmA that solves a given problem P in ATOM, when can this algorithm be used
to solve the same problem in CORDA? What are the conditions that allowA to solve the
same problem in the asynchronous model too?

The first observation regards the “coherence” of the computations with respect to the
snapshots. In particular, as already highlighted, A must correctly handle computations
that are done on “outdated” observations. More precisely, A does not work in CORDA if

(1) it assumes that, given any robot ri , the configuration of robots does not change
between the time the snapshot has been taken and the time when the computation
starts, in any of the cycles ri executes.

Note that (1) implies that the algorithm will not work if

(1A) it assumes that when a robot makes its observation, all the other robots are still;
or, alternatively, that no moving robot can be observed while in movement;

(1B) it assumes that, for all robots that at a given time t ≥ 0 are computing,A takes
as input the same configuration of robots.

An example of (1A) is given by the proof of Lemma 3.2, where Ã implicitly assumes
that no robot can be seen while it moves.

The second important aspect that A must be capable of facing is the “coherence”
of the movements with respect to the computations. More precisely,A does not work in



The Effect of Synchronicity on the Behavior of Autonomous Mobile Robots 553

CORDA if

(2) it assumes that, given any robot ri , the configuration of robots does not change
between the time the computation starts and the time the movement begins, in
any of the cycles ri executes.

In the next section we present a case study that shows an example of an algorithm
that solves the Gathering problem assuming (2), hence does not solve the problem in
CORDA.

4. Case Study: Oblivious Gathering with Unlimited Visibility

In the Gathering problem in the unlimited visibility setting, the robots are asked to gather
in a not predetermined point in the plane, denoted by p, in a finite number of cycles.

An algorithm is said to solve the gathering problem if it lets the robots gather in a
point, given any valid initial configuration. A valid initial configuration for this problem
is any configuration in which all the robots occupy distinct positions.

An oblivious algorithm to solve this problem has been presented in [2] and [25]
for ATOM (called Algorithm 5 in the Appendix); we show that the given solution assumes
Condition (2) described in previous section, hence does not work in CORDA.

The intuition behind the algorithm is as follows. Starting from distinct initial po-
sitions, the robots are moved in such a way that eventually there will be exactly one
position p that two or more robots occupy (the gathering point). Once such a situation
has been reached, all the robots move towards p. It is clear that such a strategy works
only if the robots in the system have the ability to detect multiplicity (i.e., if on a given
position in the plane there is more than one robot). In [2] and [25] this capability is never
mentioned, but it is clearly used implicitly. However, it is necessary in order to solve the
problem, as shown in [21].

Theorem 4.1. Algorithm 5 does not correctly locate a unique gathering point when
run in CORDA, in the unlimited visibility setting.

Proof. The key to proving the theorem is to show that the correctness of Algorithm 5
relies on Condition (2). In particular, we give an initial configuration of the robots and
describe an asynchronous activation schedule that leads to having two gathering points
in the plane, if Condition (2) is violated.

Let us suppose we have four robots ri , i = 1, 2, 3, 4, that at the beginning are on
a circle C, with r2 and r4 occupying the ending points of a diameter of C (as pictured
in Figure 5, Cycle 1). In the following the positions of the robots are indicated by pi ,
i = 1, 2, 3, 4. A possible schedule of the robots is described in what follows:

Cycle 1. At the beginning the four robots are in distinct positions on a circle C. r1 and r2

enter the Look state, while the others are in Wait. After having observed, r1 and
r2 enter the Compute state: we assume that r2 is computationally slower than r1.
Therefore, r1 decides to move towards the center of C (Part 2.3 of Algorithm
5), while r2 is still stuck in its Compute state. r1 starts moving towards the
center, while r2 is still in Compute, and r3 and r4 are in Wait.
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Cycle 1 Cycle 2 Cycle 3
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Fig. 5. Proof of Theorem 4.1. The dotted circles indicate the robots in the Look state; the grey ones the robots
in the Compute state; the circle with an arrow inside are the robots that are moving; the white circles represent
the robots in Wait . The arrows indicate the direction of the movement computed in the Compute state.

Cycle 2. r1 is inside C, while the other robots are still on C. Now r1 observes again
(already in its second cycle) and, according to Part 2.1 of the algorithm, decides
to move towards a robot that is on the circle, say r2. Moreover, r2 is still in the
Compute state of its first cycle, and r3 and r4 are in Wait.

Cycle 3. r1 reaches r2 and enters the Wait of its third cycle: at this point, there is one
position in the plane with two robots, namely p = p1 = p2. Now, r3 enters its
first Look state, looks at the situation, and, according to the algorithm, decides
to move towards p, that is the only point in the plane with more than one robot
on it. r2 is still in its first Compute, and r4 in Wait.

Cycle 4. r3 reaches r1 and r2 on p, and it starts waiting. r1 is in Wait, r2 is still in its
first Compute state, and r4 starts its first Look state, decides to move towards
p, and starts moving.

Cycle 5. While r4 is on its way towards p, r2 ends its first Compute state. Since the
computation is done according to what it observed in its previous Look state
(Cycle 1), it decides to move towards the center of C (Part 2.3 of the algorithm),
thus violating Condition (2). r2 starts moving towards the center of C after r4

passes over the center of C in its move towards p; r1 is in Wait.
Cycle 6. r2 and r4 are moving in opposite directions on the same diameter of C , and

they stop exactly on the same point p′.

At this time there are two gathering points in the plane, namely p and p′with p �= p′.
Therefore, Algorithm 5 does not correctly locate a unique gathering point.
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5. Conclusions

In this paper we discussed two models, ATOM [2], [25] and CORDA [10]–[12], whose
main focus is to study the algorithmic problems that arise in an asynchronous environ-
ment populated by a set of autonomous, anonymous, mobile units that are requested
to accomplish some given task. These studies want to gain a better understanding of
the power of the distributed control from an algorithmic point of view; specifically, the
goal is to understand what kind of goals such a set of robots can achieve, and what are
the minimal requirements and capabilities that they must have in order to do so. To our
knowledge, these are the only approaches to the study of the control and coordination
of mobile units in this perspective.

We showed that the different way in which the asynchronicity is modeled in
ATOM and CORDA is the key feature that renders the two models different: in ATOM the
robots operate executing instantaneous actions, while in CORDA full asynchronicity is
modeled, and the robots execute their states in a finite, but otherwise unpredictable,
amount of time. In particular, we showed that C ⊂ Z in the non-oblivious setting, where
C and Z denote the class of problems that are solvable in CORDA and ATOM, respectively.
One open issue is to prove this result also in the oblivious setting.

Finally, we presented a set of conditions that allow us to recognize whether an
algorithm designed in ATOM to solve a given problem can be used to solve the same
problem in CORDA. We have also shown that the ATOM algorithm presented in [25]
to solve the oblivious gathering in the unlimited visibility setting, violates one of those
conditions, hence does not work in the asynchronous environment modeled by CORDA.

We feel that the approach used in CORDA better describes the way a set of inde-
pendently moving robots interact in real robotic applications, where the asynchronicity
of robots’ actions is of great importance; this would motivate further investigations in
coordination problems in a distributed, asynchronous environment using the fully asyn-
chronous approach. Issues that merit further research concern the operating capabilities
of the modeled robots. In fact, it would be interesting to look at models where robots have
different capabilities. For instance, it could be studied how the robots can use some kind
of direct communication; or the robots could be equipped with just a bounded amount
of memory (semi-obliviousness), and the relationship between amount of memory and
solvability of the problems could be analyzed, or how semi-obliviousness would affect
the self-stabilization property of the oblivious algorithms [6].

Other features that could inspire further study include giving a dimension to the
robots, and adding stationary obstacles to the environment, thus adding the possibility
of collision between robots or between moving robots and obstacles.

The relationship between memory and the ability of robots to complete given tasks,
dimensional robots, obstacles in the environment that limit the visibility and that mov-
ing robots must avoid or push aside, suggest that the algorithmic nature of distributed
coordination of autonomous, mobile robots merits further investigation.
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Appendix. Oblivious Gathering in ATOM

In this appendix we report the oblivious algorithm described in [25] that lets the robots
gather in a point in ATOM, in the unlimited visibility setting. In particular, we report the
part of the algorithm that lets the robots achieve a configuration where a unique point p
with multiplicity greater than one is determined. When such a configuration is achieved,
all the robots will gather on p. Note that the algorithm works for n ≥ 3 robots. In fact,
in [25], it has been shown that the problem is not solvable for n = 2 robots.

Algorithm 1 (Point Formation Algorithm in ATOM, Unlimited Visibility [25]).

Case 1. n = 3; p1, p2, and p3 denote the positions of the three robots.
1.1. If n = 3 and p1, p2, and p3 are collinear with p2 in the middle, then the robots

at p1 and p3 move towards p2 while the robot at p2 remains stationary. Then
eventually two robots occupy p2.

1.2. If n = 3 and p1, p2, and p3 form an isosceles triangle with |p1 p2| = |p1 p3| �=
|p2 p3|, then the robot at p1 moves towards the foot of the perpendicular drop
from its current position to p2 p3 in such a way that the robots do not form an
equilateral triangle at any time, while the robots at p2 and p3 remain stationary.
Then eventually the robots become collinear and the problem is reduced to
Part 1.1.

1.3. If n = 3 and the lengths of the three sides of triangle p1, p2, p3 are all different,
say |p1 p2| > |p1 p3| > |p2 p3|, then the robot at p3 moves towards the foot of
the perpendicular drop from its current position to p1 p2 while the robots at p1

and p2 remain stationary. Then eventually the robots become collinear and the
problem is reduced to Part 1.1.

1.4. If n = 3 and p1, p2, and p3 form an equilateral triangle, then every robot
moves towards the center of the triangle. Since all robots can move up to at
least a constant distance σ > 0 in one cycle, if Part 1.4 continues to hold then
eventually either the robots meet at the center, or the triangle they form becomes
no longer equilateral and the problem is reduced to Part 1.2 or Part 1.3.

Case 2. n ≥ 4; C t denotes the smallest enclosing circle of the robots at time t .
2.1. If n ≥ 4 and there is exactly one robot r in the interior of C t , then r moves

towards the position of any robot, say r ′, on the circumference of C t while
all other robots remain stationary. Then eventually r and r ′ occupy the same
position.

2.2. If n ≥ 4 and there are two or more robots in the interior of C t , then these robots
move towards the center of C t while all other robots remain stationary (so that
the center of C t remains unchanged). Then eventually at least two robots reach
the center.

2.3. If n ≥ 4 and there are no robots in the interior of C t , then every robot moves
towards the center of C t . Since all robots can move up to at least a constant
distance σ > 0 in one cycle, if Part 2.3 continues to hold, then eventually the
radius of C t becomes at most σ . Once this happens, then the next time some
robot moves, say, at t ′, either (i) two or more robots occupy the center of C t

or (ii) there is exactly one robot r at the center of C t , and therefore there is a
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robot that is not on C t ′ (and the problem is reduced to Part 2.1 or Part 2.2) since
a cycle passing through r and a point on C t intersects with C t at most at two
points.
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