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Abstract—Traceability is the only means to ensure that the source code of a system is consistent with its requirements and that all
and only the specified requirements have been implemented by developers. During software maintenance and evolution, requirement
traceability links become obsolete because developers do not/cannot devote effort to update them. Yet, recovering these traceability
links later is a daunting and costly task for developers. Consequently, the literature proposed methods, techniques, and tools to recover
these traceability links semi-automatically or automatically. Among the proposed techniques, the literature showed that information
retrieval (IR) techniques can automatically recover traceability links between free-text requirements and source code. However, IR
techniques lack accuracy (precision and recall). In this paper, we show that mining software repositories and combining mined results
with IR techniques can improve the accuracy (precision and recall) of IR techniques and we propose Trustrace, a trust-based traceability
recovery approach. We apply Trustrace on four medium-size open-source systems to compare the accuracy of its traceability links with
those recovered using state-of-the-art IR techniques from the literature, based on the Vector Space Model and Jensen–Shannon
model. The results of Trustrace are up to 22.7% more precise and have 7.66% better recall values than those of the other techniques,
on average. We thus show that mining software repositories and combining the mined data with existing results from IR techniques
improves the precision and recall of requirement traceability links.
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1 INTRODUCTION

R EQUIREMENT traceability is defined as “the ability
to describe and follow the life of a requirement, in

both a forwards and backwards direction (i.e., from its
origins, through its development and specification, to its
subsequent deployment and use, and through all periods
of on-going refinement and iteration in any of these
phases)” [1]. Traceability links between requirements1

of a system and its source code are helpful in reducing
system comprehension effort. They are also essential to
ensure that a system’s source code is consistent with
its requirements and that all and only the specified
requirements have been implemented by developers.
Yet, during software maintenance and evolution, as de-
velopers add, remove, or modify features, requirement
traceability links become obsolete because developers
do not/cannot devote effort to update them [2]. Yet,
recovering later these traceability links is a daunting and
costly task for developers. Consequently, the literature
proposed methods, techniques, and tools to recover these
traceability links semi-automatically or automatically [3].
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1. Without loss of generality with other textual documentation, in
the following, we use textual requirements as high-level documents
and source code as low-level documents.

Requirements traceability has received much attention
over the past decade in the scientific literature. Many
researchers used information retrieval (IR) techniques,
e.g., [2], [3], [4], to recover traceability links between
high-level documents, e.g., requirements, manual pages,
and design documents, and low-level documents, e.g.,
source code and UML diagrams [3], [4], [5], [6]. IR
techniques assume that all software artifacts are/can be
put in some textual format. Then, they compute the
textual similarity between two software artifacts, e.g., the
source code of a class and a requirement. A high textual
similarity means that the two artifacts probably share
several concepts [3] and that, therefore, they are likely
linked to one another.

The effectiveness of IR techniques is measured using
IR metrics: recall, precision, or some average of both,
like the F1 score [3], [5], [7]. For a given requirement,
recall is the percentage of correct recovered links over
the total number of pertinent, expected links while
precision is the percentage of correct recovered links
over the total number of recovered links. High recall
could be achieved by linking each requirement to all
source code entities (classes, structures, methods, and
functions), but precision would be close to zero. High
precision could be achieved by reporting only obvious
links, but recall would be close to zero. Either extreme
cases are undesirable because developers then would
need to manually review numerous candidate links to
remove false positives and–or study the source code to
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recover missing links [3]. Hence, the literature proposed
IR-based techniques that sought a balance between pre-
cision and recall.

During software maintenance and evolution, develop-
ers often evolve requirements and source code differ-
ently. Indeed, they often do not update requirements and
requirement-traceability links with source code. Require-
ments and source code consequently diverge from each
other, which decreases their textual similarity. Thus, IR
techniques (or any combination thereof [8], [9]) typically
produce links with low precision and–or recall because,
due to their very nature, they depend on the textual
similarity between requirements and source code [10].
Yet, while developers may not evolve requirements in
synchronisation with source code, they frequently up-
date other sources of information, including CVS/SVN
repositories, bug-tracking systems, mailing lists, forums,
and blogs. We believe that we can exploit these other
sources of information to build improved traceability-
recovery approaches.

Consequently, we conjecture that: (1) we can mine
software repositories, e.g., CVS/SVN repositories, to
support the traceability recovery process and improve
the precision and recall of IR-based traceability re-
covery approaches; (2) we can think of heterogeneous
sources of information as experts whose opinions we
can combine using a trust model to discard/re-rank
the traceability links provided by the IR techniques to
improve accuracy; and, (3) we can use an automatic,
dynamic, per-link weighting technique rather than
some global static weights to combine the opinions
of experts to avoid the need of manually-built oracles
to tune weights.

Consequently, we design, implement, and evaluate
Trustrace, a traceability-recovery approach between re-
quirements and source code, which we use to support
our conjectures. Trustrace uses heterogeneous sources of
information to dynamically discard/re-rank the trace-
ability links reported by an IR technique. Trustrace con-
sists of three parts:

1) Histrace mines software repositories to create links
between requirements and source code using infor-
mation from the repositories. Histrace stores all the
recovered links between requirements and software
repositories in dedicated sets, e.g., Histracecommits
and Histracebugs, which are considered as experts
whose opinions will be used to discard/re-rank
baseline traceability links. For example, Histrace
mines CVS/SVN repository to link requirements
and source code using commit messages and pro-
vide the set of expert Histracecommits.

2) Trumo combines the requirement traceability links
obtained from an IR technique and discards/re-
ranks them using the an expert’s opinions and
a trust model inspired by Web-trust models [11],
[12], [13], [14]. It compares the similarity of the
recovered links with those provided by the experts

and with the number of times that the link appears
in each expert’s set. It is not tied to any specific
IR-based traceability-recovery approach and can
use any expert’s opinion to adjust the ranking of
recovered links. For example, the experts can be
Histracecommits and–or Histracebugs, taking ad-
vantage of CVS/SVN repositories and bug-tracking
systems.

3) DynWing computes and assigns weights to the ex-
perts in the trust model dynamically, i.e., on a per-
link basis. As combining different experts’ opinions
is still an active research area [9], researchers used
either static weights computed using oracles [2],
[8] or other techniques, e.g., principal component
analysis (PCA) [9], for each source of information.
However, defining a static weight for all the links
for each expert may not be feasible because ora-
cles may not be available or might be too costly
to build. Thus, dynamic-weighting techniques are
promising to assign weights for each link. Dyn-
Wing analyses each expert’s similarity value for
each link and assigns weights according to these
values.

We empirically evaluate Trustrace on four medium-
size open-source systems i.e., jEdit v4.3, Pooka v2.0, Rhino
v1.6, and SIP Communicator v1.0-draft, to compare the
accuracy of its recovered requirement traceability links
with those of state-of-the-art IR techniques. As state-of-
the-art IR techniques, we choose the Vector Space Model
(VSM), a representative of the algebraic family of tech-
niques, and Jensen–Shannon model (JSM), a representa-
tive of the probabilistic family of techniques. We use the
IR measures of precision, recall, and the F1 score. We
also compare two different weighting techniques: PCA
and DynWing. We thus report evidence that Trustrace
improves, with statistical significance, the precision and
recall of the recovered traceability links.

Hence, we found the evidence supporting our three
conjectures about the benefits of (1) mining software
repositories and considering the links recovered through
these repositories as experts, (2) using a trust model
inspired by Web-trust models to combine these experts’
opinions, and (3) weighting the experts’ opinions dy-
namically for each link recovered using an IR technique.
We also bring the following contribution with respect to
our previous work [2]:

• We implement and use two experts, i.e.,
Histracecommits when mining CVS/SVN and
Histracebugs when mining bug reports.

• We propose DynWing, a dynamic weighting tech-
nique to automatically assign weights to different
experts on a per-link basis.

• We compare DynWing with a PCA-based weighting
technique and with a static weighting technique to
analyse the potential improvement of using different
weighting techniques.

• We study the impact of Trustrace on another IR
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technique, i.e., the Jensen–Shannon similarity model.
• We perform detailed statistical analyses of the data

distribution to select an appropriate statistical test as
well as to measure the effect size of Trustrace over
JSM and VSM.

• We perform experiments on four medium-size open-
source systems, i.e., two additional systems: jEdit
and Rhino in addition to Pooka and SIP, to analyse
the impact of Trustrace.

Section 2 describes our approach, Trustrace, and our
three novel techniques: Histrace, Trumo, and DynWing.
Section 3 presents our empirical evaluation of Trustrace
while Section 4 reports its results. Section 5 provides
a discussion of the results and a qualitative analysis.
Section 6 puts our work in perspective with respect to
previous work. Finally, Section 7 concludes and sketches
future work.

2 TRUSTRACE: TRUST-BASED TRACEABILITY

We now present Trustrace. Trustrace uses software repos-
itories, e.g., CVS/SVN repositories and bug-tracking sys-
tems, as experts to trust more or less some baseline links
recovered by an IR technique and, thus, to discard/re-
rank the links to improve the precision and recall of
the IR-based techniques. Figure 1 shows the high-level
architecture of Trustrace, whose conceptual steps we
detail in the following sections: Section 2.1 provides the
definitions of the terms that we use to describe Trustrace;
Section 2.2 describes Histrace, our traceability recovery
technique based on mining software repositories; Section
2.3 describes our trust model; and, Section 2.4 details our
dynamic weighting technique.

2.1 In a Nutshell

In the following, without the loss of generality, we target
object-oriented systems and use classes as representative
of source code files. We also consider classes because
considering packages is likely to be too coarse-grained,
as a package contributes to the implementation of several
requirements, while considering methods is likely to be
too fine-grained as a method only participates in the im-
plementation of some requirement(s), rarely implements
them entirely. Moreover, CVS/SVN software repositories
only consider files, not packages or methods.

2.1.1 Definitions
In Trustrace, we represent a traceability link as a triple
{source document, target document, similarity} and we
use the following notations. Let R = {r1, . . . , rN} be a
set of requirements and C = {c1, . . . , cM} be a set of
classes supposed to implement these requirements. Let
T = {T1, . . . , TP } be a collection of sets where each
Ti = {t1, . . . , tNi} is a set of homogeneous pieces of
information, e.g., the set of all CVS/SVN commits or of
all bug reports for a given system. P the is total number
of experts.

Then, let us assume that, for each Ti ∈ T , we define
a function δTi mapping one element of Ti into a subset
of C. For example, if Ti is a set of bug reports, then, for
a given bug report tk, δTi

(tk) returns the set of classes
affected by tk, with δTi

(tk) ⊆ C.
Let R2C be the set of baseline traceability links recov-

ered between R and C by any standard IR technique,
such as VSM, and, further, assume that, for each set
Ti ∈ T , we build a set R2CTi for each expert Ti as
follows:

R2CTi,rj ,tk = {(rj , cs, σ′i(rj , tk))|cs ∈ δTi
(tk) & tk ∈ Ti}

Finally, let us define two functions α and φ. The first
function, α(rj , cs, σ′(rj , cs)), returns the pair of docu-
ments (or set of pairs) involved in a link, e.g., require-
ments and source code, i.e., (rj , cs). The second function,
φ(rj , cs, σ

′(rj , cs)), returns the similarity score σ′(rj , cs)
of the link.

Given these definitions, Trustrace works as follows.
It first builds the set R2C from R and C using an IR
technique. Then, it calls Histrace to build the sets R2CTi
using CVS/SVN commit messages and bug reports.
Second, it uses Trumo to evaluate the trustworthiness
of each link using DynWing to compute the weights
λi(rj , cs) to assign to each link in the sets R2CTi, and
to re-rank the similarity values of the link, using the
experts’ opinions R2CTi.

2.1.2 Information Retrieval Technique
Trustrace uses IR techniques for two different purposes:
(1) to create the baseline set of traceability links R2C,
whose similarity values will be recomputed using Trumo
and DynWing using the output of Histrace and (2) to
create the output sets of Histrace: R2CTi.

IR techniques consider all the software artifacts as
textual documents. They extract all the terms from the
documents and compute the similarity between two
documents based on the similarity of their terms and–
or their distributions. With any IR technique, a high
similarity value between two documents suggests a po-
tential link between them. IR techniques take some pre-
processed documents, as explained in the following, as
input to build a m×n term-by-document matrix, where
m is the number of all unique terms that occur in the
documents and n is the number of documents in the
corpus. Then, each cell of the matrix contains a value
wi,j , which represents the weight of the ith term in the
jth document i.e., the importance of the term in the
corpus. Various term weighting schemes are available
to compute the weight of a term [3], [15]. Different IR
techniques [3], [15], [16], [17] can be used to compute the
similarity between two documents.

2.2 Histrace
Histrace creates links between the set of requirements, R
and the source code, C, using the software repositories
Ti, i.e., in the following, T1 stands for CVS/SVN commit
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Fig. 1. Trust-based requirement traceability process

messages and T2 for bug reports. Histrace considers the
requirements’ textual descriptions, CVS/SVN commit
messages, bug reports, and classes as separate docu-
ments. It uses these sources of information to produce
two experts R2CT1,rj ,tk , which we call Histracecommits
in the following for simplicity, and R2CT2,rj ,tk , which
we call Histracebugs, which use CVS/SVN commit mes-
sages and bug reports, respectively, to create traceability
links between R and C through the Ti. Below, we discuss
each step of Histrace in details.

2.2.1 Document Pre-processing

Depending on the input information source (i.e., require-
ments, source code, CVS/SVN commit messages, or bug
reports), we perform specific pre-processing steps to re-
move irrelevant details from the source, (e.g., CVS/SVN
commit number, source code punctuation or language
keywords), split identifiers, and, finally, normalise the
resulting text using stop-word removal and stemming.

Requirements and Source Code.
Histrace first processes source code files to extract all

the identifiers and comments from each class. Histrace
then uses underscore and the CamelCase convention [3]
to split identifiers into terms, thus producing for each
class a separate document.

Histrace then performs the following steps to nor-
malise requirements and source code documents: (1)
converting all upper-case letters into lower-case and
removing punctuation; (2) removing all stop words (such
as articles, numbers, and so on); and, (3) performing
word stemming using the Porter Stemmer [18], bringing
back inflected forms to their morphemes.

CVS/SVN Commit Messages.
We use Ibdoos2 to convert CVS/SVN commit logs into

a unified format and put all commit messages into a
database for ease of treatment. Ibdoos provides parsers

2. http://www.ptidej.com

for various formats of commit logs, including CVS, Git,
and SVN.

To build Histracecommits, Histrace first extracts
CVS/SVN commit logs and excludes those that (1) are
tagged as “delete” because they concern classes that have
been deleted from the system and thus cannot take part
in any traceability link, (2) do not concern source code
(e.g., if a commit only contains HTML or PNG files),
(3) have messages of length shorter or equal to one
English word, because such short messages would not
have enough semantics to participate in creating R2CTi.

Histrace then extracts the CVS/SVN commit messages
as well as the classes that (1) are still part of the source
code and (2) have been part of the commits. Histrace ap-
plies the same normalisation steps on CVS/SVN commit
messages as those for requirements and source code.

Following our definitions, T1 is the set of all remaining
CVS/SVN commit messages and, for any tk ∈ T1, we
have a function δT1

that returns a subset of the classes
C ′k ⊂ C = {c1, . . . , cM} modified in the commits. His-
trace uses commit messages and an IR-based technique
to compute σ′ri,tk . Using δT1

, Histrace builds R2CT1.
For example, Histrace could use an IR technique,

e.g., VSM, to link the CVS/SVN log Logs1741 of
Pooka, containing NewMessageInfo.java, to the re-
quirement r21. This means that Histrace can simply
link r21 to NewMessageInfo.java and add it to the
Histracecommits set for Pooka.

Bug Reports.
To build Histracebugs, Histrace extracts all the bug

reports from a bug-tracking system. Usually, bug reports
do not contain explicit information about the source
code files that developers updated to fix a bug. All the
details about the updated, deleted, or added source code
files are stored in some CVS/SVN repository. Therefore,
Histrace must link CVS/SVN commit messages to bug
reports before being able to exploit bug reports for
traceability.

Histrace uses regular expressions, i.e., a simple text
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matching approach but with reasonable results, to link
CVS/SVN commit messages to bug reports. However,
Histrace could also use more complex techniques, such
as those in [19], [20]. Consequently, Histrace assumes
that developers assigned to each bug a unique ID that is
a sequence of digits recognisable via regular expressions.
The same ID must be referred to by developers in the
CVS/SVN commit messages.

Then, to link CVS/SVN commit messages to bug
reports concretely, Histrace performs the following steps:
(1) extracts all CVS/SVN commit messages, along with
commit status and committed files, (2) extracts all the
bug reports, along with time/date and textual descrip-
tions, and (3) links each CVS/SVN commit message and
bug reports using regular expressions, e.g.,

((b)[ug]{0, 2}\s ∗ [id]{0, 3}|id|fix|pr|#)

[\s# =] ∗ [?([0−−9]{4, 6})]?

which is the regular expression tuned to the naming and
numbering conventions used by the developers of Rhino.
This expression must be updated to match other naming
and numbering conventions, as discussed in 3.6.4.

In its last step, Histrace removes false-positive links
by imposing the following constraint:

fix(e[ds])?|bugs?|problems?|defects?patch”

This regular-expression constraint only keeps a
CVS/SVN commit if it contains a keyword, i.e., fix(es),
fixed, bug(s), problem(s), defect(s), or patch, followed
by a number, i.e., if it follows naming conventions for
bug numbering usual in open-source development. It
thus returns the bug reports linked to CVS/SVN commit
messages.

Following our definitions, T2 is the set of all bug
reports and, for any tk ∈ T2, we have a function δT2

that returns a subset of classes C ′k ⊂ C = {c1, . . . , cM}
modified to fix a bug. Histrace uses the bug reports
and an IR-based technique to compute σ′ri,tk . Using δT1 ,
Histrace builds R2CT2 as explain above.

For example, Histrace could use an IR technique to
link the bug report bug434 to requirement r11. Then, it
could link the bug report bug434 to the CVS/SVN log
Logs4912 in SIP using the appropriate regular expression.
Logs4912 contains FirstWizardPage.java and
DictAccountRegistrationWizard.java. Thus,
Histrace could link r11 to FirstWizardPage.java
and DictAccountRegistrationWizard.java to
build the Histracebugs set for SIP.

2.3 Trumo

Trumo assumes that different experts Histracecommits
(also known as R2CT1) and Histracebugs (R2CT2) know
useful information to discard or re-rank the traceability
links between two documents, e.g., requirements and
source code classes. Trumo is thus similar to a Web
model of the users’ trust: the more users buy from a Web

Fig. 2. Overlapping of R2C, R2CTi, and Tr

merchant, the higher the users’ trust of this merchant
[14].

By the definitions in Section 2.1, In Equation 1, rj
is a requirement with rj ∈ R; cs is a class with
cs ∈ δTi

(tk) because we use the sets Ti ∈ T to build
a set of trustable links Tr; σ′i is the similarity score
between the requirement rj and some class tk such that
tk ∈ Ti and α(R2CTi,rj ,tk) returns a pair (rj , tk). With
Equation 1, Trumo uses the set of candidate links lrc =
(rj , cs, σi(rj , cs)) with j ∈ [1, . . . , N ] and s ∈ [1, . . . ,M ]
and the sets of candidate links lrt = (rj , cs, σ

′
i(rj , tk))

with j ∈ [1, . . . , N ] and k ∈ [1, . . . , Ni] generated from
each expert Ti and for each requirement rj ∈ R.

Tr = {(rj , cs, σ′i(rj , tk)) |
∃ tk ∈ Ti : (rj , cs) ∈ α(R2CTi,rj ,tk) (1)

& (rj , cs) ∈ α(R2C)}

Figure 2 shows the Venn diagram of the R2C, R2CTi,
and Tr sets. The last constraint (rj , cs) ∈ α(R2C) im-
poses that a link be present in the baseline set R2C and
in any of the R2CTi sets. If a link does not satisfy this
constraint, then Trumo discards it. Then, Trumo re-ranks
the similarity of the remaining links in Tr as follows.
Let TCi(rj , cs) be the restriction of Tr on (rj , cs) for
the source Ti, i.e., the set {(rj , cs, σ′i(rj , tk)) ∈ Tr}, then
Trumo assigns to the links in TCi(rj , cs) a new similarity
σ∗i (rj , cs) computed as:

σ∗i (rj , cs) =
σ(rj , cs) +

∑
l∈TCi(rj ,cs)

φ(l)

1 + |TCi(rj , cs)|
(2)

where σ(rj , cs) is the similarity between the require-
ment rj and the class cs as computed in R2C and
φ(l) is the similarity of the documents linked by the
link l of TCi(rj , cs), i.e., derived from tk, which means
σ′i(rj , tk). Finally, |TCi(rj , cs)| is the number of ele-
ments in TCi(rj , cs). The higher the evidence (i.e.,∑
l∈TCi(rj ,cs)

φ(l)) provided by links in TCi(rj , cs), the
higher the new similarity σ∗i (rj , cs); in the contrary, little
evidence decreases σ∗i (rj , cs).

Finally, Trumo assigns weight to each expert and com-
bines their similarity values to assign a new similarity
value to each link in Tr using the ψ function:
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ψrj ,cs(Tr) =
[ P∑
i=1

λi(rj , cs)σ
∗
i (rj , cs)

]
(3)

+ λP+1(rj , cs)
|Tr(rj , cs)|

maxn,m |Tr(rn, cm)|

where Tr(rj , cs) is the subset of Tr restricted to the links
between rj and cs; λi(rj , cs) ∈ [0, 1] and λ1(rj , cs) +
λ2(rj , cs)+ ...+λP+1(rj , cs) = 1; recall that P is the total
number of experts. With the ψ function, the more often a
pair (rj , cs) exists in Tr, the more we can trust this link
(if such a link is also present in R2C).

2.4 DynWing

To automatically decide the weights λi(rj , cs) for each
expert, we apply a dynamic weighting technique. Ex-
isting techniques [2], [8] to define weights use static
weights for all the experts. Thus, they require oracles to
decide a “good” weight or range of weights. However,
with real, legacy systems, no such oracle exists, i.e., no
a priori-known set of traceability links exists. Moreover,
using the same static weight may not be beneficial for
all the recovered links.

Therefore, we consider each link recovered by a base-
line IR technique and by the different experts as an inde-
pendent link and dynamically assign weights to baseline
links and each expert. Choosing the right weight per link
is a problem that we formulate as a maximisation prob-
lem. Basically, we have different experts, i.e., CVS/SVN
commits , bug reports, and others, to trust a link. Each
expert has its own trust into the link. By maximizing
the similarity value ψrj ,cs(Tr) (and hence determining
the optimal λi(rj , cs) values), DynWing automatically
identifies the experts that are most trustworthy (highest
λi(rj , cs) values) and those that are less trustworthy
(lowest λi(rj , cs) values):

max
λ1(rj ,cs),...,λP+1(rj ,cs)

{ψrj ,cs(Tr)} (4)

with the following constraints:

0 ≤ λi(rj , cs) ≤ 1, i = 1, ..., P + 1

λ1(rj , cs) + λ2(rj , cs) + ...+ λP+1(rj , cs) = 1

λk1(rj , cs) ≥ λk2(rj , cs) ≥ . . . ≥ λkP+1
(rj , cs)

Given the three previous constraints, it is possible that
DynWing assigns λi(rj , cs) = 1 to a single expert i. To
avoid such an assignment, a developer can define her
global trust into the experts. For example, CVS/SVN
commit messages may be considered by the developer
more trustworthy than bug reports. Therefore, the de-
veloper may constrain further Equation 4 by imposing:

λcommits(rj , cs) ≥ λbugs(rj , cs) > 0

3 EMPIRICAL EVALUATION

We now report on an empirical evaluation of Trustrace
with four systems to assess its accuracy in terms of
precision and recall. We use two state-of-the-art IR tech-
niques, i.e., JSM and VSM, for evaluation purposes.
We use the names TrustraceV SM and TrustraceJSM to
denote the IR techniques that Trustrace uses. We also
compare the DynWing weighting technique of Trustrace
with the principal component analysis (PCA) weighting
technique [9].

We implement Trustrace and its three novel techniques
in FacTrace3 (artiFACT TRACEability). FacTrace provides
several modules with activities ranging from traceability
recovery to the manual verification of traceability links.

3.1 Goal

The goal of our empirical evaluation is to study the
accuracy of Trustrace when recovering traceability links
against that of a single IR technique, JSM and VSM,
using requirements, source code, CVS/SVN commits,
and–or bug reports as experts. The quality focus is the
accuracy of Trustrace in terms of precision and recall
[21]. It is also the improvement brought by the dynamic
weighting technique, DynWing, with respect to a PCA-
based technique in terms of F1 score. The perspective
is that of practitioners interested in recovering trace-
ability links with greater precision and recall values
than that of currently-available traceability recovery IR-
based techniques. It is also that of researchers interested
in understanding whether or not we can support our
conjectures.

3.2 Research Questions

Our research questions are:
• RQ1: How does the accuracy of the traceability

links recovered by Trustrace compare with that of
approaches based on JSM and VSM alone?

• RQ2: How does the accuracy of the traceability links
recovered using DynWing compare to that using
PCA?

To answer RQ1, we assess the accuracy of JSM,
Trustrace, and VSM in terms of precision and recall by
applying them on four systems seeking to reject the four
null hypotheses:
• H01: There is no difference in the precision of the

recovered traceability links when using Trustrace or
VSM.

• H02: There is no difference in the precision of the
recovered traceability links when using Trustrace or
JSM.

• H03: There is no difference in the recall of the
recovered traceability links when using Trustrace or
VSM.

3. http://www.factrace.net
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• H04: There is no difference in the recall of the
recovered traceability links when using Trustrace or
JSM.

To answer RQ2, we use the DynWing and PCA
weighting techniques and compute the F1 score of
Trustrace to analyse which weighting technique provides
better results. We try to reject the two null hypotheses:
• H05: DynWing does not provide automatically bet-

ter λi(rj , cs) than a PCA-based weighting technique
for TrustraceV SM .

• H06: DynWing does not provide automatically bet-
ter λi(rj , cs) than a PCA-based weighting technique
for TrustraceJSM .

3.3 Variables
We use precision, recall, and F1 score as dependent
variables. All measures have values in the range [0, 1]:

Precision =
|{relevant links} ∩ {retrieved links}|

|{retrieved links}|

Recall =
|{relevant links} ∩ {retrieved links}|

|{relevant links}|

The F1 score is the harmonic mean of precision and
recall, which is computed as:

F1 =
2

1
R
+ 1

P

where R is the recall, P is the precision, and F1 is the
harmonic mean of R and P . We use the F1 score to
compare DynWing and PCA because F1 equally weighs
precision and recall. Thus, it shows which weighting
technique provide the best precision and recall values.

We use the approaches, either single IR technique, i.e.,
JSM and VSM, or Trustrace, as independent variables.
The independent variable corresponding to Trustrace
also includes varying values of λi using the DynWing
and PCA-based weighting techniques.

3.4 Objects
We select the four open-source systems, jEdit 4.3, Pooka
v2.0, Rhino 1.6, and SIP Communicator 1.0-draft, because
they satisfy our key criteria. First, we choose open-
source systems, so that other researchers can replicate
our evaluation. Second, all systems are small enough so
that we could recover and validate their traceability links
manually in previous work [2], while still being a real-
world system.

jEdit4 is a text editor for developers written in Java.
jEdit includes a syntax highlighter that supports over 130
file formats. It also allows developers to add additional
file formats using XML files. It supports UTF-8 and many
other encoding techniques. It has extensive code folding
and text folding capabilities as well as text wrapping that
takes indentation into account. It is highly customisable

4. http://www.jedit.org

and can be extended with macros written in BeanShell,
Jython, JavaScript, and some other scripting languages.
jEdit version 4.3 has 483 classes, measures 109 KLOC,
and implements 34 requirements.

Pooka5 is an e-mail client written in Java using the
JavaMail API. It supports reading e-mails through the
IMAP and POP3 protocols. Outgoing emails are sent us-
ing SMTP. It supports folder search, filters, and context-
sensitive colors. Pooka version 2.0 has 298 classes,
weighs 244 KLOC, and implements 90 requirements.

Rhino6 is an open-source JavaScript engine entirely
developed in Java. Rhino converts JavaScript scripts into
objects before interpreting them and can also compile
them. It is intended to be used in server-side systems
but also can be used as a debugger by making use of the
Rhino shell. Rhino version 1.6 has 138 classes, measures
32 KLOC, and implements 268 requirements.

SIP Communicator7 is an audio/video Internet phone
and instant messenger that supports some of the most
popular instant messaging and telephony protocols, such
as AIM/ICQ, Bonjour, IRC, Jabber, MSN, RSS, SIP, Ya-
hoo! Messenger. SIP Communicator version 1.0-draft has
1, 771 classes, measures 486 KLOC, and implements 82
requirements.

3.5 Oracles

We use four oracles, i.e., OraclejEdit, OraclePooka,
OracleRhino, and OracleSIP, to compute the precision and
recall values of JSM, Trustrace, and VSM when applied
on our four object systems.

For Pooka and SIP, the first author and another Ph.D.
student created traceability links between the require-
ments of the two systems and their source code classes.
They read the requirements and manually looked for
classes in the source code that implement these require-
ments. They used Eclipse to search for the source code
and stored all manually-built links in FacTrace database.
The second and third authors used the FacTrace voting
system to accept or reject all manually-built links. At no
point of the process did we use any automated technique
or software repository to create the oracles. This process
is the same as used in our previous work [2], [22].

For jEdit and Rhino, we use the same oracles as previ-
ous researchers: (Eaddy et al. [23] and Dit et al. [24]),
which helps mitigating threats to the validity of our
evaluation.

3.6 Pre-processing

We now detail how we gather and prepare the input
data necessary to perform our empirical evaluation of
Trustrace.

5. http://www.suberic.net/pooka/
6. http://www.mozilla.org/rhino/
7. http://www.jitsi.org
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<logentry revision="1741">
<author>akp</author>
<date>2008-10-18T16:14:08.529138Z</date>
<paths>

<path kind="" action="M">/trunk/pooka/todo</path>
<path kind="" action="M">/trunk/pooka/src/net/

suberic/pooka/gui/NewMessageDisplayPanel.java
</path>
<path kind="" action="M">/trunk/pooka/src/net/

suberic/pooka/NewMessageInfo.java
</path>

</paths>
<msg>

fixing a bug where the cc: on reply-all doesn’t
get cleared out if the cc field is set to empty.

</msg>
</logentry>

Fig. 3. Excerpt of Pooka SVN Log

3.6.1 Requirements
jEdit contains 34 requirements. These requirements were
manually identified and extracted from the jEdit source
code repository [24]. In previous work [2], we used PRE-
REQUIR [7] to recover requirements for Pooka and SIP.
We recovered 90 and 82 requirements for both systems,
respectively. Rhino contains 268 requirements that we
extracted from the related ECMAScript specifications by
considering each ECMAScript section as a requirement.

3.6.2 Source Code
We downloaded the source code of jEdit v4.3, Pooka
v2.0, Rhino v1.6, and SIP v1.0-draft from their respective
CVS/SVN repositories. We made sure that we had the
correct files for each system before building traceability
links by setting up the appropriate environments and
by downloading the appropriate libraries. We thus could
compile and run all the systems.

3.6.3 CVS/SVN Commit Messages
Figure 3 shows an excerpt of a commit of Pooka. There
are 3, 762, 1, 743, 3, 261, and 8, 079 SVN commits for jEdit,
Pooka, Rhino, and SIP, respectively. We performed the
data pre-processing steps described in Section 2.2.1 on
all SVN commits with the help of FacTrace.

After performing the pre-processing steps, we ob-
tained 2, 911, 1, 393, 2, 508, and 5, 188 SVN commits for
jEdit, Pooka, Rhino, and SIP, respectively. There were
many SVN commits that did not concern source code
files. Also, some commit messages contained both source
code files and other files. For example, revision 1604
in Pooka points only to HTML files except for one Java
file, FolderInternalFrame.java. Therefore, we only
kept the Java file and removed any reference to the
HTML files. We stored all filtered SVN commit messages
and related files in a FacTrace database.

3.6.4 Bug Reports
We cannot use jEdit [24] and Pooka bug reports because
the first system does not have a publicly-available bug
repository and the second one has too few recorded bugs
(16). Rhino is part of the Mozilla browser and its bug

reports are available via the Mozilla Bugzilla bug tracker.
We extracted all the 770 bugs reported against Rhino and
used Histrace to link them with the CVS repository as
described in Section 2.2. Histrace automatically linked
457 of the bug reports to their respective commits. In the
case of SIP, we downloaded 413 bug reports. SIP devel-
opers did not follow any rule while fixing bugs to link
bug reports and commits. Hence, there was no bug ID in
the commit messages. However, developers referenced
SVN revision numbers in the bug reports’ comments,
e.g., bug ID 237 contains the revision ID r4550. We tuned
the regular expression of Histrace to find the revision
IDs in the descriptions of the SIP bug reports. Histrace
thus extracted all the bug IDs and linked them to SVN
commits. Overall, Histrace automatically linked 169 bugs
reported against SIP to their respective commits.

3.6.5 Last Pre-processing Step

We automatically extracted all the identifiers from the
jEdit, Pooka, Rhino, and SIP requirements, source code,
filtered CSV/SVN commit messages, and filtered bug
reports, using FacTrace. The output of this step are four
corpora that we use for creating traceability links as
explained in Sections 2.2 and 2.3.

3.7 IR Techniques

To build the sets of traceability links, we use the VSM
(from the algebraic family of techniques) and JSM (from
the probabilistic family of techniques) techniques. Abadi
et al. [15] performed experiments using different IR tech-
niques to recover traceability links. Their results show
that the Vector Space Model and the Jensen–Shannon
model outperform other IR techniques. In addition, these
two techniques do not depend on any parameter. Thus,
we use both JSM and VSM to recover traceability links
and compare their results in isolation with those of
Trustrace. These techniques both essentially use term-by-
document matrices. Consequently, we choose the well-
known TF/IDF measure [3], [25], [26], [27] for VSM
and the normalised term frequency measure [15] for
JSM. These two measures and IR techniques are state-of-
the-art IR techniques. In the following, we explain both
techniques in details.

3.7.1 Vector Space Model

Many traceability recovery techniques use VSM as base
algorithm [3], [28], [29]. In VSM, documents are repre-
sented as vector in the space of all the terms. Different
term weighting schemes can be used to construct these
vectors. We use the standard TF/IDF weighting scheme
[28]: a document is a vector of TF/IDF weights. TF is
often called the local weight. The most frequent terms
will have more weight in TF , but this by itself does
not mean that they are important terms. The inverse
document frequency, IDF , of a term is calculated to
measure the global weight of a terms and is computed
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as IDF = log2

(
|D|
|d:ti∈d|

)
. Then, TF/IDF is defined as:

(TF/IDF )i,j =
ni,j∑
k nk,j

× log2

(
|D|

|d : ti ∈ d|

)
where ni,j are the occurrences of a term ti in document
dj ,
∑
k nk,j is the sum of the occurrences of all the terms

in document dj , |D| is the total number of documents d
in the corpus, and |d : ti ∈ d| is the number of documents
in which the term ti appears.

Once documents are represented as vectors of terms in
a VSM, traceability links are created between every two
documents with their own similarity value depending
on each pair of documents, e.g., a requirement and a
class. The similarity between two documents is mea-
sured by the positive cosine of the angle between their
corresponding vectors (because the similarity between
two documents cannot be negative). The ranked list of
recovered links and a similarity threshold are used to
divide links into a set of candidate links to be manually
verified [3].

3.7.2 Jensen–Shannon Model

JSM is an IR technique proposed by Abadi et al. [15].
It is driven by a probabilistic approach and hypoth-
esis testing technique. JSM represents each document
through a probability distribution, i.e., a normalised
term-by-document matrix. The probability distribution
of a document is:

p =
n(w, d)

Td

where n(w, d) is the number of times a word appears
in a document d and Td is the total number of words
appearing in d. The empirical distribution can be mod-
ified to take into account the term’s global weight,
e.g., IDF . After considering the global weight, each
document distribution must be normalised. Once the
documents are represented as probability distribution,
JSM computes the distance between two documents’
probability distribution and returns a ranked list of links.
JSM ranks target documents via the “distance” of their
probability distributions to that of the source documents:

JSM(q, d) = H

(
pq + pd

2

)
− H(pq) +H(pd)

2

H(p) =
∑

h(p(w))

h(x) = −x log x

where H(p) is the entropy of the probability distribu-
tion p, and pq and pd are the probability distributions
of the two documents (a “query” and a “document”),
respectively. By definition, h(0) ≡ 0. We compute the
similarity between two documents using 1− JSM(q, d).
The similarity values are in ]0, 1].

3.8 Building Sets of Traceability Links
First, we use JSM and VSM to create traceability links,
i.e., R2CJSM and R2CV SM , between requirements and
source code. Second, we apply Histracecommits, as de-
scribed in Section 2.2, to process jEdit, Pooka, Rhino, and
SIP CVS/SVN commit messages (T1), and requirements
to create the traceability link set R2CT1. We process SIP
and Rhino bug reports (T2) to create the traceability link
sets R2CT2 using Histracebug .

For example, we trace Pooka requirement “it should
have spam filter option” to the SVN commit mes-
sage “adding prelim support for spam filters”, SVN
commit revision number 1133. Then, we recover all
the source code classes related to this commit, i.e.,
SpamSearchTerm.java and SpamFilter.java. Fi-
nally, we create a direct traceability link between the
files SpamSearchTerm.java and SpamFilter.java
to the requirement “it should have spam filter option”.

Third, we apply Trumo as described in Section 2.3
using traceability links recovered with JSM and VSM. We
thus compute two sets R2C: (R2CJSM and R2CV SM ),
one with each IR technique. We then apply the Trumo
equation via CVS/SVN commit messages and–or bug
reports to discard/re-rank links by computing new sim-
ilarity values using Equation 3. These values help to an-
swer RQ1 and to attempt rejecting our null hypotheses.

3.9 Weighting Technique
We use DynWing as presented in Section 2.4 and com-
pare with principal-component analysis (PCA) [9]. We
use these two weighting techniques on the recovered
traceability links of jEdit, Pooka, Rhino, and SIP to answer
RQ2 and attempt rejecting our null hypotheses.

3.9.1 Principal component analysis
Principal-component analysis (PCA) is a mathematical
analysis used in a recent case study on traceability [9] to
combine different IR techniques and to define weights
for each technique. PCA defines a single static weight
for each expert.

PCA uses an orthogonal transformation to convert a
set of correlated variables into a set of values of un-
correlated variables, called principal components. This
transformation is defined in such a way that the pro-
portion of variance for each principal component (PC) is
PC1 > PC2 > . . . PCn. The number of PCs is less than
or equal to the number of original variables.

Gethers et al. [9] compute the weights for different
IR techniques using PCA as follows: (1) they use the
value of the proportion of variance based on the PC with
the highest correlation and (2) they normalise values
to obtain weights for each technique. For example, if
PC1’s proportion of variance is 71.29% and CVS/SVN
has a correlation of 0.99, we would assign 71.29% to
CVS/SVN. Likewise, if a bug report has a higher corre-
lation than PC1 when compared to other PCs, it would
also receive a value of 71.29%. After assigning values of
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proportions of variances to all experts, we normalise the
values so their sum equals to one.

3.10 Experimental Settings

We must choose only one setting before applying
Trustrace: our global trust of the experts. This global trust
helps DynWing to assign weights to each link according
to our a-priori trust in each expert as mentioned in
Section 2.4. In our empirical evaluation, we define the
global trust as:

λcommits ≥ λbugs ≥ λp+1 > 0

This global weight ensures that DynWing gives
more weight to the Histracecommits expert than to the
Histracebugs expert. We choose to favor Histracecommits
based on the quality of the semantic information con-
tained in the commit messages, the bug reports, and the
source code classes, as further discussed in Section 5.1.

3.11 Analysis Method

We use OraclejEdit, OraclePooka, OracleRhino, and OracleSIP
to compute the precision and recall values of the links
recovered using JSM, Trustrace, and VSM. JSM and VSM
assign a similarity value to each and every traceability
link whereas Trustrace uses its model, defined in Sec-
tion 2.3, to reevaluate the similarity values of the links
provided by a baseline technique.

To answer RQ1, we perform several experiments with
different threshold values on the recovered links to
perform statistical tests on precision and recall values.
We use a threshold t to prune the set of traceability links,
keeping only links whose similarities values are greater
than or equal to t ∈ [0, 1]. We use different values of t
from 0.01 to 1 per steps of 0.01 to obtain different sets
of traceability links with varying precision and recall
values, for all approaches. We then perform paired-
statistical tests to measure the improvements brought
by Trustrace. In the paired-statistical tests, two chosen
approaches must have the same number of data points.
Therefore, we keep the same threshold t values for both
approaches. For example, if VSM discards all traceability
links whose textual similarity values are below the 0.7
threshold, then we also use the same 0.7 threshold for
Trustrace.

Then, we assess whether the differences in precision
and recall values, in function of t, are statistically signif-
icant between the JSM, Trustrace, and VSM approaches.
To select an appropriate statistical test, we use the
Shapiro-Wilk test to analyse the distributions of our data
points. We observe that these distributions do not follow
a normal distribution. Thus, we use a non-parametric
test, i.e., Mann-whitney test, to test our null hypotheses
to answer RQ1.

An improvement might be statistically significant but
it is also important to estimate the magnitude of the
difference between the accuracy levels achieved with

a single IR technique and Trustrace. We use a non-
parametric effect size measure for ordinal data, i.e.,
Cliff’s d [27], to compute the magnitude of the effect
of Trustrace on precision and recall as follows:

d =

∣∣∣∣ (x1 > x2)− (x1 < x2)

n1n2

∣∣∣∣
where x1 and x2 are precision or recall values with JSM,
Trustrace, and VSM, and n1 and n2 are the sizes of the
sample groups. The effect size is considered small for
0.15 ≤ d < 0.33, medium for 0.33 ≤ d < 0.47 and large
for d ≥ 0.47.

To answer RQ2, we use PCA and DynWing to as-
sign weights to the traceability links recovered using
Trustrace. We use different values of t from 0.01 to 1
per steps of 0.01 to obtain different sets of traceability
links with varying F1 scores. We use the Mann-whitney
to reject the null hypotheses H05 and H06.

4 RESULTS

We now present the results and answers to our two
research questions.

4.1 RQ1: How does the accuracy of the traceability
links recovered by Trustrace compare with that of
approaches based on JSM and VSM alone?
Figure 4 shows the precision and recall graphs of JSM,
Trustrace, and VSM. Trustrace provides better precision
and recall values than the two IR techniques by them-
selves. Table 1 shows the average precision and recall
values calculated by comparing the differences between
the JSM, Trustrace, and VSM approaches. Trustrace with
DynWing has a better precision and recall than the
other weighting techniques. The recall value for Pooka
improves on average but without statistical significance
when compared to VSM results. In the case of SIP with
only the Histracebugs expert, recall values decrease with
statistical significance when compared to VSM values,
as discussed in Section 5.1. There is no statistically-
significant decrease in recall when compared to JSM
results. We explored the reason for the recall values
to decrease in the case of SIP with Histracebugs. We
found that only 4% of SIP SVN commits are linked to
bug reports. Therefore, we did not find much evidence
for many links and this lack of evidence yielded many
links from the baseline set to be removed, following our
constraints in Equation 1, and, consequently, a lower
recall.

We performed the statistical tests described in Section
3.11 to verify whether or not the average improvements
in precision and recall are statistical significant. We have
statistically-significant evidence to reject H01 and H02.
Table 1 shows that the p-values for the precision values
are below the standard significant value, α = 0.05. The
reported figures show that, for most values of precision
and recall, we can reject H03 and H04 in all but three
cases (in bold in Table 1). Thus, we cannot claim to
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Fig. 4. Precision and recall values of JSM, Trustrace, and VSM, with the threshold t varying from 0.01 to 1 by step of
0.01. The X axis shows recall and Y axis shows precision.

TABLE 1
Precision and recall values for jEdit, Pooka, Rhino, and SIP, Mann-whitney test results, and Cliff’s d results

Precision Recall
VSM TrustraceV SM p-value Effect Size VSM TrustraceV SM p-value Effect Size

jEdit 59.55 69.14 <0.01 0.59 5.81 8.31 <0.01 0.67
Pooka 42.28 52.46 <0.01 0.37 11.14 12.52 0.99 0.24
Rhino (Histracecommits only) 71.79 92.76 <0.01 0.92 6.82 9.52 <0.01 0.92
Rhino (Histracebugs only) 71.79 93.73 <0.01 0.92 6.82 9.20 <0.01 0.92
Rhino 71.79 94.49 <0.01 0.84 6.82 12.33 <0.01 0.96
SIP, (Histracecommits only) 15.84 25.97 <0.01 0.61 15.61 15.79 <0.04 0.55
SIP, (Histracebugs only) 15.84 42.97 <0.01 0.37 15.61 11.07 <0.01 0.63
SIP 15.84 24.28 <0.01 0.34 15.61 21.60 <0.01 0.48

JSM TrustraceJSM p-value Effect Size JSM TrustraceJSM p-value Effect Size
jEdit 52.82 71.12 <0.01 0.82 13.62 15.91 <0.01 0.88
Pooka 33.11 45.48 <0.01 0.47 13.33 16.45 <0.01 0.19
Rhino (Histracecommits only) 77.37 87.16 <0.01 0.15 15.56 16.18 <0.01 0.77
Rhino (Histracebugs only) 77.37 90.88 <0.01 0.47 15.56 17.33 <0.01 0.59
Rhino 77.37 91.79 <0.01 0.47 15.56 18.26 <0.01 0.59
SIP (Histracecommits only) 15.83 21.29 <0.01 0.46 19.34 21.44 <0.01 0.60
SIP (Histracebugs only) 15.83 37.94 <0.01 0.33 19.34 14.24 <0.56 0.25
SIP 15.83 27.67 <0.01 0.29 19.34 27.00 <0.01 0.92

always reject H03 and H04: in two cases for VSM and
one for JSM, recall values do not improve.

We use Cliff’s d as introduced in Section 3.11 to
measure the effect of Trustrace over single IR techniques.
Table 1 shows that Trustrace has a large effect on the
improvements in precision and recall values in 66%,
medium in 19%, small in 9% of the improvements.
Only in the case of SIP, i.e., 6%, with only Histracebugs,
Trustrace recall values decreased with one large and one
small effect size. Overall, the obtained effect size values
indicate a practical improvement with Trustrace.

We answer RQ1: How does the accuracy of the
traceability links recovered by Trustrace compare with
that of approaches based on JSM and VSM alone?
as follow: Trustrace helps to recover more correct
links than IR techniques alone. When two experts are
available, Trustrace is always better. Only in one case,
and with just a single expert, due to a lack of external
source of information, recall went down.

4.2 RQ2: How does the accuracy of the traceability
links recovered using DynWing compare to that using
PCA?

When comparing DynWing with a PCA-based weighting
technique, Figure 5 shows that DynWing provides better
results than PCA. PCA tends to provide higher precision
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Fig. 5. Precision and recall values, with the threshold t varying from 0.01 to 1 by steps of 0.01. The X axis shows
precision values and Y axis recall values. DW represents the DynWing results.

TABLE 2
F1 values for jEdit, Pooka, Rhino, and SIP, and Mann-whitney test results

TrustraceV SM

Histracecommits Histracebugs Histracecommits+bugs

DynWing F1 PCA F1 p-value DynWing F1 PCA F1 p-value DynWing F1 PCA F1 p-value
jEdit 8.56 7.50 <0.01 – – – – – –
Pooka 10.52 7.42 <0.01 – – – – – –
Rhino 12.18 11.61 <0.01 12.01 8.29 <0.01 36.91 10.55 <0.01
SIP 9.07 6.78 <0.01 6.57 6.51 <0.01 12.64 7.67 0.027

TrustraceJSM

jEdit 9.60 8.49 <0.01 – – – – – –
Pooka 8.02 6.60 <0.01 – – – – – –
Rhino 13.21 12.33 <0.01 13.16 12.71 <0.01 40.72 15.18 <0.01
SIP 9.07 6.78 <0.01 8.11 6.15 0.02 11.39 7.84 0.127

than recall in some cases whereas DynWing tends to find
a better balance between precision and recall in all cases.

We performed a Mann-whitney test to analyse if Dyn-
Wing statistically provides better F1 scores or not. Table
2 shows that p-values are below the standard significant
value α = 0.05 for TrustraceV SM . Thus, we reject H05.
In the case of JSM, for SIP, using two experts does not
yield any difference between DynWing and PCA-based
weighting. Thus, we cannot reject H06 because in one
case DynWing and PCA-based weighting provide the
same results.

Thus, we answer RQ2: How does the accuracy of the
traceability links recovered using DynWing compare
to that using PCA? as follow: DynWing provides
better weights for different experts than a PCA-based
weighting technique. However, it is possible that in
some cases PCA-based weighting provides the same
(but not better) results as DynWing.

5 DISCUSSION
We now provide qualitative analyses of our results and
discuss observations from our empirical evaluation of
Trustrace. We also return to our three conjectures.

5.1 Dataset Quality Analysis
Figure 4 shows that Trustrace has a better accuracy,
on average, when compared to JSM and VSM for jEdit
and Rhino but less for Pooka and SIP. We explain the
differences in improvements by the many other factors
that can impact the accuracy of traceability-recovery
approaches, as discussed elsewhere [10]. One of these
factors is quality of source code identifiers. If there is a
low similarity between the identifiers used by require-
ments and source code, then no matter how good an
IR-based technique is, it would not yield results with
high precision and recall values.

To analyse the quality of the identifiers in our datasets
and measure their similarity values, we use our previous
approach, Coparvo [22], which helps to identify poor
semantic areas in source code. We want to compute the
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similarity value between the set of requirements R, all
merged into a single document Rall =

⋃
j rj , and the

set of classes C, all merged into Call =
⋃
j cj . We build

the normalised term-by-document matrix to avoid any
effect from the document lengths. Then, we use JSM and
VSM to compute the similarity between

⋃
j rj and

⋃
j cj .

The similarity between these sets shows how close two
documents are in terms of semantics.

Fig. 6. Similarity between merged requirements and
source code documents

Figure 6 indeed shows that in the case of Pooka and
SIP both JSM and VSM return low similarity values.
Low similarity values among different documents would
result into low precision and recall values for the trace-
ability links [10]. Figure 6 shows that JSM provides better
similarity values between documents than VSM. Figure
4 shows the JSM tends to provide better precision and
recall values than VSM.

A second factor from Ali et al. [10] is the knowledge of
the developers who wrote the requirements. In our em-
pirical evaluation, we recovered requirements for Pooka
and SIP using Prereqir [7]. All the requirements were
written by subjects who use e-mail clients and instant
messengers on a regular basis, not by developers of
such systems. Therefore, the subjects used non-technical
terms in their requirements, which have little semantic
similarity with the source code.

jEdit is an open-source Java text editor targeting the
Java programming language. Although some jEdit users
must be Java developers, we could not find any indica-
tion that all new feature requests were written by Java
developers. Moreover, it is likely that jEdit users are
not all Java developers. Users can ask for new features
or report bugs in its online bug-tracking system. If a
new requested feature is considered important by the
community then it is included in a following version
of jEdit. In this paper, we considered such features
requested by users as genuine requirements. Yet, users
used technical terms to define requirements, which result
into higher similarity values with the source code than
Pooka and SIP.

In the case of Rhino, we used the ECMAScript speci-
fications as requirements. ECMAScript specifications are

detailed and written by technical writers. Thus, the
similarity values between Rhino requirements and source
code is higher than those of the other three datasets. We
also observe that CVS/SVN commit messages are not
always informative. Developers often did not provide
relevant messages for the CVS/SVN commits or only
some very generic message, e.g., “changed”, “updated
files”, and–or “fixed bug”. Yet, the CVS commit mes-
sages of Rhino were better than those of the other three
datasets.

Thus, we can say that high semantic similarity be-
tween requirements, source code, CVS/SVN commit
messages, and bug reports affect the results of any
requirements traceability approach. However, Table 1
shows that even with low similarity values between
documents, Trustrace improves the precision and recall
values of the recovered links.

5.2 DynWing vs. MSW vs. PCA

Manually tuning the weights used to combine the opin-
ions of experts allows favoring precision over recall
or vice-versa. However, this manual tuning requires
a labelled corpus, i.e., an oracle, that is almost never
available. Consequently, previous approaches [2], [8]
used multiple-static weights (MSW) to define a range of
weights to tune their approaches. We analysed the links
recovered when using MSW to compare DynWing with
carefully manually-tuned weights.

We use MSW in Trumo, then compute the precision
and recall of the obtained links in comparison to our
four oracles: (OraclejEdit, OraclePooka, OracleRhino, and
OracleSIP ) to find the optimal λ values for Equation (3)
in the Trustrace model in Section 2.3, for jEdit, Pooka,
Rhino, and SIP, respectively. We use different λ values
to assess which λ value provides better results. We use
λ ∈ [0, 1] values with a 0.1 increment.

We observe in Figure 5 that DynWing is close to
the optimal solution that MSW provides but, still, there
is room for improvement in terms of precision and
recall. For example, in the case of Pooka, with only
Histracecommits, DynWing (cross signs) provides on av-
erage 52.46 and 12.52 precision and recall values whereas
MSW provides on average 51.31 and 14.63: DynWing
increased the recall value by 2.11 at the price of a de-
crease in precision by 1.14. In the case of Rhino and SIP,
we only show the average precision and recall of two
experts in the graph for the clarity of the graph. Figure
5 and Table 1 show that using more than one expert
provides better results than the MSW weighting tech-
nique. However, Figure 5 shows that for each system,
the ranges of weights vary. Thus, we cannot identify one
range of weights that would yield traceability links with
reasonable precision and recall values for all the four
systems. As the number of experts increases, it would
become more difficult to identify the most appropriate
weights or range of weights. Instead, DynWing would
relieve project managers from choosing static weights.
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We observe that treating each and every link inde-
pendently helps to increase precision and recall. Some
researchers [8], [9] performed several experiments using
various weights to provide a range of weights that
work well with their approaches/datasets. However, we
cannot generalise such kinds of weights, because every
dataset is unique [10]. In addition, a range of weights is
only a start to recover traceability links and, without an
oracle, it is impossible to identify what weights and–or
ranges of weights are suitable. Moreover, Figure 5 shows
that we cannot provide a reasonable range using MSW
in the cases of Pooka and SIP: the MSW weight range for
JSM is not suitable for VSM. Thus, we cannot impose the
same weight range on all the datasets and IR techniques
as proposed by other researchers [8], [9].

Gethers et al. [9] proposed a PCA-based weighting
technique that does not require an oracle to define
weights. Figure 5 shows that the PCA-based weighting
technique favors precision over recall. Sometimes it pro-
vides better results than DynWing in term of precision
only. DynWing increases both precision and recall.

This comparison of DynWing with MSW also supports
the answer of RQ2 that DynWing tends to provide a bet-
ter trade-off between precision and recall. We conclude
that DynWing does not require any previous knowledge
of an oracle and that treating each link separately and
assigning weights on a per-link basis provides better pre-
cision and recall values than other weighting techniques.
The achieved improvements are statistically significant
and, most of the times, with large effect sizes.

5.3 Number of Experts
Figure 4 shows the results of two experts only, in the case
of Rhino and SIP, for the sake of clarity. All the detailed
figures and results are available online8. We only include
one figure of two experts as an example in this paper to
show that adding more experts does impact precision
and recall positively.

Figure 7 shows that using one expert provides better
results than an IR-based technique alone. As we increase
the number of experts, the graph shows a clear improve-
ment in precision and recall. Table 1 reports that, in
the case of Rhino and SIP, using two experts increases
the precision and recall values more than using a single
expert. It supports the idea that increasing the number
of experts increases the precision and recall values.

5.4 Other Observations
The empirical evaluation supports our claim that
Trustrace combined with IR techniques is effective in
increasing the precision and recall values of some base-
line requirements’ traceability links. Our novel approach
performs better than JSM and VSM.

While creating OraclePooka and OracleSIP, we tagged
some requirements as unsupported features. While we

8. http://www.ptidej.net/download/experiments/tse12/
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Fig. 7. Rhino precision and recall graph for Trustrace
using one and two experts. The X axis shows precision
values and the Y axis recall values.

performed the empirical evaluation, we found that His-
trace produced links to some unsupported features. We
manually verified these links and found that the source
code related to these features indeed existed. We up-
dated our oracles accordingly, which are the ones used
in the previous sections.

For example, in Pooka, we declared the drag-and-drop
requirement as an unsupported feature. Yet, Histrace
produced some traceability links to this requirement. We
manually verified these links and found that developers
implemented the drag-and-drop feature partially but
named it “dnd” while commenting “this is drag and
drop feature” in some related SVN commit messages.
This example shows that Trustrace can indeed help
developers in recovering missing links from human
mistakes and the limitations of automated approaches.
In the cases of jEdit and Rhino, we did not find such
missing links.

This observation shows that Histrace not only helps to
recover traceability links but also may help in evolving
traceability links: if a developer creates traceability links
and, after some years, wants to update the traceability
links, then she does not need to create/verify all the links
again. She could run Histrace and–or Trustrace to obtain
possible missing links that she can verify.

5.5 Practical Applicability of Trustrace
Trustrace enables practitioners to automatically recover
traceability links between requirements and source code.
The current model of Trustrace is general in the sense
that all the conceptual steps of Trustrace, shown in
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Figure 1, can be changed. Indeed, Histrace could be
customised to accommodate other software repositories,
e.g., mailing lists. Trumo could be applied to other prob-
lems, e.g., feature location. For example, we recently cus-
tomised Trumo to address bug location in combination
to binary-class relationships. The most important aspect
of Trustrace is that it does not require the tuning of
some parameters for every dataset on which it is applied.
DynWing is an automatic weighting scheme that assigns
weights to the different experts at runtime. In contrast, a
project manager would need to guess and assign weights
to each expert.

The Trustrace model could be implemented in any
software development environment. It does not require
particular inputs or parameter tuning. Trustrace could
mine any software repository and use them as experts
to recover traceability links. A project manager could
also use the output of Trustrace for other purposes than
requirement traceability as well. For example, Trustrace
could tell a project manager which requirements require
more maintenance, in particular which requirements are
causing more bugs and CVS/SVN commits.

5.6 Revisiting the Conjectures

In the introduction, we stated three conjectures regarding
the use of other sources of information, of a trust model,
and of a dynamic weighting technique to improve the
accuracy of the requirement traceability links recovered
using an IR technique.

Within the limits of the threats to the validity of the
results of our empirical study, we conclude that our
conjectures are true. Indeed, our empirical study shows
that the requirement traceability links recovered through
mining software repositories, i.e., CVS/SVN repositories
and Bugzilla bug-tracking systems, can be considered as
experts whose opinions can be used in a trust model to
discard/re-rank the links provided by an IR technique.
The experts’ opinions must be combined dynamically,
i.e., on a per-link basis, to reap the full benefits of the
trust model.

To the best of our knowledge, this paper is the first
stating these conjectures and reporting on the benefits of
combining software repositories to improve the accuracy
of requirement traceability links. It is also the first use
of a dynamic weighting technique in combination with
a trust model. We expect that other software repositories
could be useful during the traceability recovery process
and that other models of trust and weighting techniques
could even further improve the accuracy of the links
recovered by an IR technique.

5.7 Threats to Validity

Several threats potentially impact the validity of our
experimental results.

Construct validity.

Construct validity concerns the relation between the-
ory and observations. We quantified the degree of in-
accuracy of our automatic requirement traceability ap-
proach by means of a validation of the precision and
recall values using manually-built oracles. First, two
authors created manual traceability oracles and then the
third author verified their content to avoid inaccuracy in
the oracles. We manually verified some of the automat-
ically recovered links by our approach to discover any
imperfection in manually-built oracles. We improved the
oracles after applying Trustrace and discovering missing
links.

Internal Validity.
The internal validity of a study is the extent to which

a treatment’s effects change the dependent variable.
The internal validity of our empirical study could be
threatened by our choice of the λ value: other values
could lead to different results. We mitigated this threat
by studying the impact of λ on the precision and recall
values of our approach in Section 4 and using MSW- and
PCA-generated λ values. The global trust over an expert
could also impact the validity of results. We mitigated
this threat by using the same setting for all the experi-
ments and found the same trends of improvements.

External Validity.
The external validity of a study relates to the extent to

which we can generalise its results. Our empirical study
is limited to four systems, i.e., jEdit, Pooka, Rhino, and
SIP. Yet, our approach is applicable to any other systems.
However, we cannot claim that the same results would
be achieved with other systems. Different systems with
different SVN commit logs, requirements, bug descrip-
tions, and source code may lead to different results. Yet,
the four selected systems have different SVN commit
logs, SVN commit messages, requirements, bug reports,
and source code quality. Our choice reduces the threat
to the external validity of our empirical study.

Conclusion validity.
Conclusion validity threats deal with the relation be-

tween the treatment and the outcome. The appropriate
non-parametric test, Mann-Whitney, was performed to
statistically reject the null-hypotheses, which does not
make any assumption on the data distribution. We also
mitigated this threat by applying Shapiro-Wilk test to
verify the distribution of our data points to select an
appropriate statistical test and effect size.

6 RELATED WORK

Traceability recovery and Web trust models are related
to our work.

6.1 Traceability Approaches
Sherba et al. [30] proposed an approach, TraceM, based
on techniques from open-hypermedia and information
integration. TraceM manages traceability links between
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requirements and architecture. An open hypermedia sys-
tem enables the creation and viewing of relationships
in heterogeneous systems. TraceM allows the creation,
maintenance, and viewing of traceability relationships
in tools that software professionals use on a daily basis.
Maider et al. [31] proposed an approach to support
automated traceability maintenance by recognizing de-
velopment activities. Development activities are formally
specified and changes to certain model elements trig-
ger a LinkUpdateManager. This manager is responsi-
ble for updating traceability links that are related to
the changed elements. However, the authors did not
mention how traceability links are actually created and
updated. Poshyvanyk et al. [8] combined a scenario-
based probabilistic ranking of events and an IR tech-
nique that uses latent semantic indexing for feature
location. Their empirical study shows that combining
different approaches can perform better than a single IR
technique.

Andrea et al. [32] proposed an approach helping devel-
opers to keep source code identifiers and comments con-
sistent with high-level artifacts. The approach computes
textual similarity between source code and related high-
level artifacts, e.g., requirements. The textual similarity
helps developers to improve their source code lexicon.
Maletic et al. [6] proposed an XML-based traceability
query language, TQL. TQL supports queries across mul-
tiple artifacts and multiple traceability link types. TQL
has primitives to allow complex query construction and
execution support

Zou et al. [33] performed empirical studies to investi-
gate Query Term Coverage, Phrasing, and Project Glos-
sary term-based enhancement methods that are designed
to improve the performance of a probabilistic automated
tracing tool. The authors proposed a procedure to au-
tomatically extract critical keywords and phrases from
a set of traceable artifacts to enhance the automated
trace retrieval. Gethers et al. [9] proposed an integrated
approach to combine orthogonal IR techniques, which
have been statistically shown to produce dissimilar re-
sults. Their approach combines VSM, JSM, and relational
topic modelling. Their proposed approach uses each IR
technique as an expert and uses a PCA-based weighting
scheme to combine them.

The precision and the recall [3] of the links recovered
during traceability analyses are influenced by a variety
of factors, including the conceptual distance between
high-level documentation and low-level artifacts, the
way in which queries are formulated, and the applied
IR technique. Comparisons have been made between
different IR techniques, e.g., [29] and [15], with incon-
clusive results. On several data sets, the vector space
model and Jensen–Shannon similarity model perform
favorably in comparison to more complex techniques,
such as latent semantic semantic analyses [15] or latent
dirichlet allocation [17]. Yet, algebraic models, e.g., the
vector space model [3] and probabilistic model, e.g., the
Jensen–Shannon similarity model, [15] are a reference

baseline for both feature location [8], [34] and traceability
recovery [3], [29].

Kagdi et al. [35] presented a heuristic-based approach
to recover traceability links between software artifacts
using the software system’s version history. Their ap-
proach assumes that, if two or more files co-change [36]
in the system history, then there is a possibility that they
have a link between them. However, it is quite possible
that two files are co-changing but that they do not have
any semantic relationship. It is also likely that some
documents evolve outside the system’s version control
repository and, in such a case, their approach cannot
find a link from/to these documents, e.g., requirement
specifications. In addition, their approach does not anal-
yse the contents of the CVS/SVN commit logs and files
that were committed in CVS/SVN. More importantly,
in co-change-based traceability [35], [36], [37], if two or
more files have a link but they were not co-changed, then
these approaches fail to find a link. Our proposed novel
approach is not dependent on co-changes and overcomes
these limitations.

Table 3 summarises the related works on traceability
recovery approaches. The column external information
in Table 3 shows whether the approach uses any exter-
nal information, e.g., execution traces, software reposito-
ries, human knowledge, or not. Multiple expert column
shows if the current approach accommodates more than
one expert opinion. The automated weights column
shows if the approach is capable of assigning weights
to each expert. Only [9] provides automated support for
assigning weights to multiple experts. In [9], the authors
proposed a PCA-based weighting scheme for multiple
experts. We compared DynWing with this PCA-based
weighting scheme. Our results show that DynWing can
provide better results than the PCA-based weighting
scheme. To the best of our knowledge, all the above men-
tioned approaches use textual similarity among various
software artifacts to recover traceability links. The work
presented in this paper is complementary to existing IR-
based techniques, because it uses current state-of-the-
art techniques to create links and uses a trust model to
filter out false-positive links and increase the trust over
remaining links.

6.2 Web Trust Model
Our proposed novel approach is influenced by the Web
trust model [11], [12], [13], [14]. There are two types of
trust in e-commerce: first, a customer’s initial trust [14]
when she interacts with a Web site for the first time and,
second, the Web site’s reputation trust [38] that develops
over time and after repeated experiences. When cus-
tomers hesitate to buy things online, they may ask their
friends, family, and other buyers to make sure that they
can trust a Web site. Many researchers investigated [11],
[13], [14], [38], [39] the problem of increasing customers’
trust in a Web site. Some researchers [11], [13] suggested
that using other sources of information can increase the
trust in a Web site.
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Approaches External Info. Soft. Repo. Multiple Experts Automated Weights Tool Support
Trustrace 3 3 3 3 3
[9] 7 7 3 3 7
[30] 7 7 7 7 3
[31] 7 7 7 7 3
[6] 7 7 7 7 7
[8] 7 7 3 7 7
[35] 3 3 7 7 7

TABLE 3
Related Work Summary

Berg et al. [11] attempted to develop the equivalent
of symbolons, for e-commerce. Their study deals with a
specific type of electronic medium, the World Wide Web.
In particular, it focuses on the so-called web assurance
services, which provide certification of the legitimacy
of websites. The authors highlight business-to-consumer
commerce, but also pay attention to the challenges
regarding web assurance services in the business-to-
business environment.

Palmer et al. [13] presented an empirical investigation
of how firms can improve customers’ trust by exploring
and using Trusted Third Parties (TTPs) and privacy
statements. Their exploratory data shows that the use
of TTPs and privacy statements increase a customer’s
trust in a Web site. Wang et al. [40] presented a novel
content trust learning algorithm that uses the content of
a Web site as a trust point to distinguish trustable Web
contents and spam contents.

McKnight et al. [12] empirically tested the factors that
may influence initial trust in a web-based company. The
authors tested a trust building model for new customers
of a fictitious legal advice web site and found that
perceived company reputation and perceived site quality
both had a significant positive relationship with initial
trust with the company.

Koufaris et al. [14] propose a model to explain how
new customers of a web-based company develop ini-
tial trust in the company after their first visit. The
authors empirically tested their hypothesis using a
questionnaire-based field study. The results indicate that
perceived company reputation and willingness to cus-
tomise products and services can significantly affect
initial trust.

Our proposed approach uses traceability from re-
quirements to source code as initial trust. Then uses
CVS/SVN commit logs and also uses bug reports, mail-
ing lists, temporal information and so on, as reputation
trust for a traceability link. As the reputation of a link
increases, the trust in this link also increases.

7 CONCLUSION

The literature [32], [3], [41] showed that information
retrieval (IR) techniques are useful to recover traceability
links between requirements and source code. However,
IR techniques lack accuracy (precision and recall). In this
paper, we conjectured that: (1) we could mine software

repositories to support the traceability recovery process;
(2) we could consider heterogeneous sources of informa-
tion to discard/re-rank the traceability links provided
by an IR technique to improve its accuracy; and, (3)
we could use an automatic, per-link experts’ weighting
technique to avoid the need of manually-built oracles to
tune weights.

To support our conjectures, we proposed a new ap-
proach, Trustrace, to improve the precision and recall
values of some baseline traceability links. Trustrace is
based on mining techniques, on a trust model, and a
dynamic weighting technique. Trustrace consists of three
parts:

1) Histrace is a technique to create experts support-
ing the identification of traceability links between
requirements and source code. We implemented
two instances of Histrace: Histracecommits uses
CVS/SVN commit messages and Histracebugs uses
bug reports to build traceability links between re-
quirements and source code. The rationale of His-
trace is that commits and bugs are tied to changed
source-code entities and, thus, can be used to infer
traceability links between requirements and source
code.

2) Trumo, inspired by Web-trust models [11], [12],
[13], [14], improves the precision and recall val-
ues of some baseline traceability links. It uses
any traceability-link recovery approach and var-
ious experts’ opinions, i.e., Histracecommits and
Histracebugs, to discard and–or re-rank the trace-
ability links provided by the recovery approach,
thus improving their accuracy. Figure 1 shows that
Trumo indeed improves the accuracy of traceability
links recovered by either JSM or VSM.

3) DynWing combines and assigns weights to the His-
trace experts’ opinions using a dynamic weighting
technique that considers each link separately. Ex-
perts’ opinions are then used by Trumo to re-rank
the traceability links. We compared the DynWing
weighting technique with a PCA weighting tech-
nique and a multiple-static weighting technique
and reported that DynWing provides better results
in terms of precision and recall.

Trustrace is the first approach to integrate time infor-
mation (from CVS/SVN commit logs) and bug infor-
mation (from Bugzilla reports) to recover requirement
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traceability links. We applied Trustrace on jEdit, Pooka,
Rhino, and SIP to compare its requirement-traceability
links with those recovered using only the JSM or VSM
techniques, in terms of precision and recall. We showed
that Trustrace improves with statistical significance the
precision and recall values of the traceability links. We
also compared DynWing with a PCA-based weighting
technique in term of F1 score. We thus showed that
our trust-based approach indeed improves precision and
recall and also that CVS/SVN commit messages and bug
reports are useful in the traceability recovery process.

We thus conclude that our conjectures are supported:
the accuracy of the traceability links between require-
ments and source code recovered by an IR technique
are improved by (1) mining software repositories and
considering the links recovered through these repos-
itories as experts, (2) using a trust model inspired by
Web-trust models to combine these experts’ opinions,
and (3) weighting the experts’ opinions on a per-link
basis for each link recovered by the IR technique.

In future work, we plan to implement more instances
of Histrace, in particular using e-mails and threads of
discussions in forums. We will use our Trumo model in
other software engineering fields, in particular, test-case
prioritisation using various prioritisation approaches,
anti-pattern detection using users’ feedback, and concept
location using execution traces. We will deploy Trustrace
in a development environment and perform experiments
with real developers to analyse how effectively Trustrace
can help developers in recovering traceability links. We
also plan to use advanced matching techniques between
bug reports and CVS/SVN commit messages, such as
those in [19], [20].
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[8] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol, and
V. Rajlich, “Feature location using probabilistic ranking of meth-
ods based on execution scenarios and information retrieval,” IEEE
Transactions on Software Engineering, vol. 33, no. 6, pp. 420–432,
2007.

[9] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D. Lucia, “On
integrating orthogonal information retrieval methods to improve
traceability recovery,” in Software Maintenance (ICSM), 2011 27th
IEEE International Conference on, sept. 2011, pp. 133 –142.
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Montréal. The primary focus of his Ph.D. thesis is to develop tools and
techniques to improve the quality of software artifacts’ traceability. His
research interests include software maintenance and evolution, system
comprehension, and empirical software engineering. He is member of
the IEEE.
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