

 

Abstract—Improvement of process efficiency and product 

quality is available through implementation of more complex 

control algorithms and more accurate process models.  It is 

especially critical for the glass industry production chain since 

glass production is a complex processes with high energy usage. 

The accuracy and robustness of advanced control algorithms is 

strictly dependent on the quality of the underlying 

mathematical model of the production process. 

 This paper presents the formalisation and an empirical 

investigation of the hypothesis that a simplified, Finite Element 

Method (FEM) - based model can capture the closed-loop 

process dynamics over longer time scales and is suitable for 

real-time applications.  The paper demonstrates how a trade-

off between model complexity and simulation time can be 

found.  

 
Index Terms—Real-time control, predictive control, Finite 

Element Method, molten glass model, model reduction. 

 

I. INTRODUCTION 

The use of models in control is motivated by the 

possibility of improving control by incorporating knowledge 

about the process into the controller design procedure. 

Modern control is essentially model-based, implying that the 

model is a unique interface between the theory and the real 

world. For example, observers and Kalman filters use a copy 

of a plant model for operation when implementing a state 

feedback. This method of controller implementation usually 

comprises a process model (linear, nonlinear) and a cost 

function.  The more explicit use of the model in the control 

configuration is seen in Model Reference Control or Model 

Predictive Control [1]. These controllers are not only model-

based but also model-driven, in the sense that the models are 

directly involved in the architecture of the control systems. 

Various issues related to models and modelling in control 

have been extensively worked on over the last two decades. 

The model must capture the process dynamics with 

sufficient accuracy to ensure good control performance. For 

example, most of the physical processes introduce 

nonlinearity into the process description. A linear model can 

only be a local valid approximation for the dynamics around 

the specified operating point. A variety of techniques are 

available for combining linear and nonlinear modelling 

methods [2]. 
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Control systems designers do not care very much about 

real-time implementations of the models [3]. In many cases 

they do not understand the control-timing constraints. The 

typical proposed solutions are: 'buy a faster computer” or 

“install more efficient data transmission network”. In fact, 

the Control Theory does not provide advice on how to 

design controllers to overcome the limitations of real data 

processing systems.   

Real time implementation of the models cannot be 

discussed separately from the broader issue of how to use 

them in an industrial environment. Most of the industrial 

control systems adopt a multilevel, vertical control hierarchy.  

Typically [4], the system is structured into three control 

levels (Fig. 1) which are: the direct (device) control level, 

supervisory level and management level.  
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Fig. 1. Multilevel structure of the industrial control system. 

 

The basic task of the direct (device) control level is to 

maintain the process states at the prescribed set values. The 

device controller level provides an interface to the hardware, 

either as separate modules or as microprocessors 

incorporated in the equipment to be controlled.  Here, 

mainly PID digital control algorithms are implemented in 

real time. High speed networks and fieldbuses are 

implemented to exchange in real time the information 

between the front-ends and the device controllers and, 

vertically, with the supervisory control level. This 

architecture has the advantage of locating the hard real-time 

activities as near as possible to the equipment. 

Classically, the supervisory level calculates set points for 

the controllers according to the defined criterion (Fig. 2).  

For this purpose more complex mathematical models of 

the process are employed at this level to find the optimal set-

points or trajectories for direct control devices. Industrial 

use of advanced control algorithms (predictive control, 
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repetitive control) is growing slowly but surely at the 

supervisory level.   

 

 
Fig. 2. Model-based digital supervisory control: desired trajectory w(k) 

is delivered by the upper level. Time scale separation: T0 < T'0.. 

 

A vertical control hierarchy implements time scale 

separation [5]. Timescale separation is a practical necessity 

when considering the objectives of control tasks at different 

levels. With a reasonable time scale separation between the 

levels (typically by a factor of 5-10 in terms of closed-loop 

response time), we can observe the following advantages: 

 The stability and performance of the lower (faster) level 

is not very much influenced by the presence of the upper 

(slower) control  level;  

 The performance of the upper (slower) level does not 

depend that much on the specific controller settings used 

in the lower layer; 

 Allow for ‘slow’ (but more accurate) implementation of 

models at the supervisory level.  

Technically, this control structure is represented by a 

number of data processing devices performing real-time 

tasks, coordinated by real-time operating systems. In most 

control applications in which the majority of tasks is 

periodic and the execution times have known upper bounds, 

it is possible to schedule tasks statically, based on explicit 

computer time allocation.   

Activation of more complex algorithms requires an 

extension of the ‘time slot’ required for this task. This could 

be obtained by increasing the basic time step (T0) or 

dividing the supervisory applications between the 

subsequent tasks. As a result of the first solution, a 

degradation of the control performance could be expected at 

the direct control level. The second results in an increase of 

the reference model application period (T’0). This leads to 

the well-known conclusion: the real-time characteristics of 

controllers must be compatible with the timing constraints 

of the applications. The problem of selecting the control task 

frequencies to optimise the control system performance 

subject to real-time constraints has been addressed  by 

several authors [3], [6]. However, its relations to the model 

complexity are rarely formulated and discussed in the 

current literature.   

Model reduction is a typical approach implemented to 

derive cost-efficient representations of complex systems for 

control applications.  It is important to assess the impact of 

model parameters on the quality of the solution and identify 

trade-offs between model complexity and real-time 

constraints. This is the main problem discussed in this paper. 

The proposed approach is illustrated using FEM modelling 

of the bottle manufacturing process. 

 

II.  PROCESS DESCRIPTION AND BASIC CONTROL 

METHODS 

The bottle manufacturing process can be divided into four 

main parts: furnace, refiner, forehearths and forming 

machine (Fig. 3). Raw materials are continuously introduced 

into the furnace that delivers molten glass at approximately 

1300°C into the refiner where the glass is refined. Then, the 

molten glass flows to the forehearths towards the forming 

machines. At the outlet a plunger pushes portions of the 

glass through a ring and automated scissors cut the ‘drops’ 

of glass loose from the ring. The resulting drop falls into a 

machine that forms a product. The above processes are 

integrated. Poor quality control in one area may not have an 

immediate noticeable effect but could well cause problems 

and incur costs further down the line. 

 

  
Fig. 3. Bottle manufacturing process. 

 

The forehearth is the end part of a glass melting furnace. 

After melting and conditioning in a refiner, the glass enters 

the forehearth whose main purpose is to stabilise the output 

temperature. This temperature depends on the type of 

product that is being manufactured and must be maintained 

at a constant value. So, the task of the forehearth is to 

provide a consistent weight of glass, at a precise temperature 

and viscosity, to the forming machine. 

In the forming process the time evolution and spatial 

distribution of the glass temperature are crucial since the 

glass viscosity depends greatly on the temperature. The 

main disturbances acting on the forehearths result from 

temperature variations in the furnace and glass flow changes.  

Controlling the glass temperature is key to achieving 

optimum glass viscosity and drop weight. Temperature 

variations as slight as one or two degrees can negatively 

impact the quality of the finished product and result in lost 

products.  

Another challenge is the change in the type of bottle to be 

produced (referred to as a ‘Job change’). A part of the outlet   

is changed, the pull rate becomes zero and the glass stops 

moving for approximately 20-30 minutes. As a result, the 

steady state of the glass furnace that feeds the feeder is 

disturbed. At this time no hot glass flows to the forehearths 

and the temperature decreases. Next, the outlet modification 

is finished and the glass melt is flowing freely (no cutting of 

drops) until the right glass melt temperature and chemical 

properties are reached. Then, the automated scissors start 

cutting again. It is important to reach the right glass 

temperature to form the new product as quickly as possible. 

International Journal of Modeling and Optimization, Vol. 5, No. 6, December 2015

367



This situation can require several hours of special attention 

by the control system engineers to adjust the PID controller 

parameters in order to stabilise the process. After a Job 

Change, the glass temperature can typically take between 4 

to 6 hours to stabilise at the set point and enable the forming 

machine to produce the bottles of an acceptable quality.  

 

III. FORE HEARTH CONTROL 

In Fig. 3 a forehearth example is shown with four zones. 

A typical forehearth control system is simple [7]. In each 

zone the glass temperature is controlled by an autonomous 

PI-controller. The output of temperature sensors in each 

zone is transmitted to a controller, usually to a single loop PI 

controller or a soft controller emulated by a SCADA system. 

PID controllers adjust the heating/cooling control actuators 

to bring the glass temperature back to a set point. The 

controllers are connected to a graphical operator interface 

via a proprietary network for data acquisition and off-line 

analysis. The matrix of 9 temperature sensors located at the 

end of the forehearth zone number 4 monitors the thermal 

homogeneity of the glass. There is no direct connection 

between the control loops in the various zones.  

 

 

Fig. 4. A typical forehearth control system. 

 

Theoretically, the operator only has to set the required 

temperature at the end of the forehearth channel and the 

control system should attend to everything else. In practice, 

it turns out that control of the molten glass thermal 

homogeneity is a difficult problem due to:  

 The response time of the temperature control loop is 

quite long; 

 The thermal and mechanical properties of the glass 

change with temperature producing nonlinear dynamics; 

 The combined heating/cooling control actuators are 

nonlinear. 

For this reason, operator action is necessary to determine 

the set points for each of the control zones. As the 

relationship between these values may significantly 

influence the thermal homogeneity of the glass at the end of 

the forehearth channel, his/her experience is an important 

operational factor. 

 

IV. ADVANCED CONTROL OF THE FOREHEARTH  

A large opportunity for improvement of the bottle  

manufacturing process efficiency and product quality is 

available through implementation of more complex control 

algorithms and more accurate process models inside and 

around the configuration, as presented in Fig. 4. Because of 

the different time scales and levels of complexity, the 

operation of the forehearth control system implements the 

general structure from Fig. 1 and explores several 

hierarchical levels: 

1) Process optimisation level: some process quality 

indices, such as energy consumption in steady-state, 

are formulated as an optimisation problem. The 

solution is glass melt temperature set points. It could 

also be automated by combining process FEM models 

and optimisation algorithms [8]. 

2) Predictive and multivariable process control [9]: A 

controller uses the process requirements from the 

optimiser level to calculate temperature set points or 

optimal trajectories for  multiple input signals (e.g. a 

set of fuel flow rates of the burners) that result in 

optimal time dependent behaviour of multiple outputs 

(e.g. a set of bottom temperatures).  

3) Direct control level: mostly PI or PID cascade 

controllers.  

 
Fig. 5. Multilevel hierarchical structure of a forehearth glass conditioning 

process advanced control system: C – controller, M – servomotor, G – 

position sensor, P – pressure sensor, T – temperature sensor, MPC – Model 

Predictive Control. 

 

For this purpose a multilevel hierarchical control system 

for forehearth zones has been considered. Its simplified 

structure is shown in Fig. 5. For a control algorithm at each 

particular level, all the levels beneath it can be considered as 

a generalised plant or control objects. The dynamical 

properties of such an equivalent plant differ considerably 

according to the location in the hierarchy. Hence, algorithms 

implemented at various levels require individual selection of 

the calculation time-steps.  

At the direct control level, simple cascaded SISO 

feedback loops are employed. As described in the previous 

section, the forehearth is divided into several zones and each 

zone is equipped with independent controllers. Slave 

International Journal of Modeling and Optimization, Vol. 5, No. 6, December 2015

368



controllers control the air-fuel mixture pressures as well as 

the cooling air dampers positions. Master controllers are 

engaged in molten glass temperatures loops. The dynamics 

of both mixture pressure and dampers position subsystems 

are relatively fast, hence a sampling period of the order of 

one second is justified. As uninterrupted control on this 

level is critical, PLC controllers running proprietary 

real-time operating systems are implemented. The dynamics 

governing temperature changes are considerably slow. It can 

be assessed based on Fig. 6 which presents the example 

temperature responses to abrupt changes of the air-fuel 

mixture pressure as recorded by a real industrial installation.  

The forehearth comprises several cascaded zones with 

molten glass flowing along them. That structure implies 

strong cross-couplings and hence the Multi-Input, 

Multi-Output (MIMO) Model Predictive Control (MPC) 

method can bring considerable performance improvement 

compared to the classical SISO approach. It is especially the 

case during transients accompanying ‘Job Change’ 

operation (glass assortment changes). 

 

 
Fig. 6. Example of temperature changes in response to fuel-air mixture 

pressure changes for a single forehearth section. 

 

A large number of industrial applications of the linear 

MPC algorithms confirm their practical usefulness [10]. 

Unlike direct control level techniques, the MPC methods 

incorporate a MIMO-type internal mathematical model of 

the plant.  This model is used to predict the behaviour of a 

process in a discrete time setting: it starts from the current 

time instant by taking into account the current state, and it 

proceeds over a future prediction horizon. At each control 

interval the MPC algorithm attempts to optimise the future 

process behaviour by solving the open-loop optimal control 

problem on-line for an assumed prediction horizon and 

implementing it for one step. This delivers the optimal set-

points or time trajectories in order to coordinate the 

operation of decentralised local controllers.   

Most of the classical MPC algorithms used for prediction 

linear models, linear constraints and a linear quadratic 

objective result in a QP-problem, which can also be 

efficiently solved.  However, when the process is nonlinear, 

a nonlinear model is a natural choice. Application of a 

nonlinear model for MPC calculation results in non-convex 

optimisation problems. This poses challenges for both MPC 

stability theory and numerical solution. During a single 

MPC step, the optimisation algorithm seeks to find the 

optima; the solutions are then sent to the forehearth model, 

where the objective function value is calculated through 

simulation and returned back to the optimisation algorithm 

for the next time calculation. In real-time applications, when 

on-line nonlinear optimisation must be used, such iterations 

may be computationally demanding, especially when the 

dynamics of the process are fast [11].  It may turn out that 

the time necessary for calculation is longer than the assumed 

control interval. So, the computational requirements of the 

model execution are one of the challenges of data-based 

MPC.   

With the configuration shown in Fig. 5, glass temperature 

measurements are selected as Controlled Variables (CV) for 

the MPC algorithm. Manipulated Variables (MV) from the 

MPC block are fed as set points to direct control level 

master cascaded controllers. Thus, from a MPC level 

perspective, the equivalent plant comprised both the 

forehearth and its cascaded SISO loops for all zones. The 

dynamics of this plant can be estimated based on a step 

response, as shown in Fig. 7. A simple linear first order 

transfer function equivalent model is characterised by a time 

constant of the order of tens of minutes. Hence, the MPC 

algorithm time step of minutes is recommended and one 

sufficient for supervisory forehearth control. Computations 

of the detailed Finite Element Method  3-D simulation 

models is very time-consuming: one steady state simulation 

of a complete forehearth can takes hours. The time demands 

of MPC algorithms indicate that the currently used detailed 

FEM simulation models are not suitable for model based 

Model Predictive Control of the considered process. 

 

  
Fig. 7. Example of glass temperature response to step setpoint changes 

for a single forehearth section. 

 

V. MODELS 

For controlling and optimising industrial processes 

simulation models have become increasingly important over 

the last few decades. The models are very helpful for a 

number of problems that are particularly associated with the 

production of glass bottles: the optimisation of construction 

parameters, the investigation of the influence of single 

parameters on quality, the optimisation of the process 

efficiency (e.g. minimised energy use), the design of control 

strategies and real-time control.  If we focus on the latter 

application, it can be observed that the accuracy and 

robustness of several control algorithms is entirely 

dependent on the quality of the underlying mathematical 
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model of the process. A model provides the controller with 

the dynamic behaviour of the process and determines the 

way by which the controller calculates process inputs 

(actuation signals) in order to stabilise the process, or to 

transfer the process from the current state to the desired state.  

Basically, the forehearth mathematical model consists of 

two main parts (sub-models) describing [12]: (a) the glass 

flow process (Naiver-Stokes Equation) and (b) the heat flow 

process in the glass (Heat Transfer Equation). The Partial 

Differential Equations (PDE) used for forehearth heat 

transfer  modelling describe the distribution of temperatures 

in molten glass in the defined domain and are parabolic type 

with  Neumann type boundary conditions [13].  Since the 

material parameters strongly depend on the temperature, 

both sub-models are strongly coupled. The sub-models are 

based on data for viscosity, density, thermal conductivity, 

heat capacity, absorption spectra and other relevant 

properties of the glass melt. The models are highly nonlinear 

due to the radiation and material parameters laws. An 

analytical  solution of PDEs describing this process does not 

exist.   

The literature [14] suggests that the Finite Element 

Method (FEM) gives the best results through   discretisation 

of the glass flow equations and the heat transfer equations.  

Computational Fluid Dynamics (CFD) provides a qualitative 

(and sometimes even quantitative) prediction of fluid flows 

by means of mathematical modelling (PDEs). Numerical 

methods (FEM discretisation and solution techniques) and 

software tools support the calculations. CFD models are 

derived from a physical knowledge of the glass flow and 

environment. These models have the advantage that no 

special plant tests are needed to obtain the models. This 

approach does not replace the identification completely but 

the time of experimentation and the overall cost can be 

reduced. If a time dependent solver is used, this provides a 

possibility to study the process dynamics.  

FEM models have a long tradition in the glass industry 

[12]. For example,  very precise CFD models are used at the 

design phase of the bottle manufacturing process (furnaces, 

forehearths) or to better understand the phenomenon 

involved in the glass flow. However, their computation time 

is very lengthy and, in many cases, inadequate for real-time  

applications. Therefore, the CFD models used for the 

control application must take into account the limitations 

imposed by real-time constraints.  It is expected that making 

the CFD models faster such that they can be used in real 

time will result in more advanced control applications in the 

glass industry. 

During the discretisation of CFD and heat transfer models 

in space and in time the PDE systems are transformed into 

sets of algebraic equations. At this stage it is possible to 

optimise the model in terms of computation time. It is 

associated with: 

 mesh generation (decomposition into cells/elements), 

 space discretisation (approximation of spatial derivatives), 

 time discretisation (approximation of temporal derivatives). 

For modelling and   analysis of the processes described by 

PDE, several possibilities are offered by COMSOL 

Multiphysics [15] - a specialised tool supporting numerical 

solutions of  the sets of partial differential equations by 

FEM.  

VI. IMPLEMENTING THE MODELS IN REAL-TIME 

The operation of the controllers supporting the structure 

from Fig.5 can be split into three main tasks: read inputs 

(referred as ‘sampling’ at the factory floor level), control 

algorithm computation and exchange results (‘actuation’).  

For advanced controllers, more tasks can be considered such 

as simulation (execution of the model tasks) and 

optimisation. The tasks are associated with the events (i.e. 

timer events) and are executed for each time step. The tasks 

usually share the same processor and exchange data with 

each other. Although a great variety of tasks scheduling 

policies is available [16], the periodic task scheduling 

method (fixed time step T0) is the most popular in control 

applications. 

 

 
Fig. 8. Timing models that can be used for the periodic sampled process. 

 

Fig. 8. illustrates typical timing of a controller that can be 

used for a regularly sampled process. Two tasks are 

considered: the simulation task (execution time of the model, 

i.e. the amount of time required to compute all equations 

and functions representing a process: execution time τs), and 

the control task i.e. implementing the simulation results 

(execution time: τc). The sensing and actuation are 

performed practically at the same sampling time (time delay 

can be neglected). The execution time of the simulation task 

depends on available computation power and the 

mathematical complexity of the model.   

Figures 8a) and 8b) illustrate two cases.  In a) the 

computing time is shorter than a fixed time-step, while in b) 

the computing time is longer.  This is commonly known as 

an ‘overrun’.  Real-time constraints are not fulfilled for case 

b). For a given time-step, simulator operations results 

performed during the first step in Fig. 8b are lost - they 

cannot be implemented by the controller task in real time.  

For a real-time simulation to be valid, the simulation task   

must accurately produce the internal variables and outputs 

of the simulation within the length of time no longer that its 

physical counterpart world [17].  

To permit the real-time simulator to perform all the 

operations necessary to make a real-time simulation relevant, 

including execution of the model, we have two possibilities: 

(1) to extend the time step, (2) to reduce the simulation time. 

Solution 1) is limited by the control algorithm design 

principles: it is possible for the estimated dynamics of the 

process to define a maximal, admissible control time step, 

which would guarantee acceptable control performance. 

Solution 2) leads to a search for the simulation model 
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performing with an acceptable resemblance to its physical 

counterpart, without the occurrence of overruns. 

 

VII. CASE STUDY 

FEM  simulation implemented on fine mesh grids allows 

for obtaining a very precise prediction of the glass flow 

process and  heat flow in the glass, but  at the cost of a large 

computation load.  In order to implement an FEM model-

based, real-time prediction control algorithm, the only 

solution is to use simpler but precise enough models.  

Using COMSOL Multiphysics, the FEM foreheath  model 

was solved for different parameters. After a number of 

numerical experiments it was found that in order to optimise 

the FEM model, the following parameters must be 

considered: 

 model granularity, referred to as the number of degrees 

of freedom (DOF). COMSOL computes a solution at 

every node of the mesh. A tighter mesh results in a 

higher resolution  but longer computing time; 

 time step -  a stationary model is solved quicker than a 

time dependent one but a time dependent problem is 

unavoidable as we wish to model the dynamics of the 

process; 

 mesh shape. A model of the highest granularity and 

uniform mesh (but long execution time) was used as a 

benchmark (model M0).  The temperature received in 

the steady-state (after 1000s) at the position of the matrix 

of 9 temperature sensors located at the end of the 

forehearth (zone number 4) was used to calculate the 

quality index in the form: 

2
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iT -  is the temperature simulated by the model x in the 

point i - number of  temperature sensors location. 

The second quality index shows how the reference 

temperature was reached for the different models. It also 

shows how the models simulate the operation of the local 

control loops:  
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refT - is the reference temperature at the end of the 

forehearth section number 4 (equal for each point), 

The local controllers were tuned to receive a stable output 

of the process. However, the tuning of the local controllers 

was not optimal from the perspective of the supervisory 

coordinated control. Table 1 presents the results for the three 

models (M0, M1, M2, M3). The calculation time is shown 

for the time horizon of at 2600s. 

 

TABLE I: COMPARISON OF MODELS 

Model M0 M1 M2 M3 

Granularity (no. of DOF) 16 989 4 937 8 981 12 198 

Quality index (Jx) 0 143.3 7 605 12631 

Quality index (Jx
ref) 41 250 8412 13663 

Calculation time [s] 462 39 342 195 

Fig. 9 presents the grids implemented for each model. Fig. 

10 shows the simulated profiles of temperature at the end of 

the forehearth. Fig. 11 shows examples of temperature 

transition simulated at the end of the forehearth (model M0). 

 
M0 

 
M1 

 
M2 

 
M3 

 
Fig. 9. FEM grids implemented for the models.  

 

The first conclusion is that the quality of the model 

strongly depends on the mesh selection. This effect has been 

well known from some time [18].  One of the main concerns 

in finite element analysis is the optimisation of the FEM 

mesh. In our application, Model 1, with DOF 4 937, delivers 

quite a good performance as concerns quality indices and 

calculation time. Since the quality of the finite element 

approximated solutions directly depends on the quality of 

the meshes, an additional process to improve the quality of 

the meshes is necessary for better FEM approximations. 

 
M0 

 
M1 

 
M2 

 
M3 

 
Fig. 10. Temperature profiles: steady state at the end of zone 4. 

 

 
Fig. 11. Example of temperature transition at the end of zone 4, Tc, Tf, 

Ti - temperature sensor locations 4,5,6, respectively.  

 

The next observation is that for the estimated dynamics of 

the considered forehearth process, model M1 can be 

implemented in real time. At the advanced process control 
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level, model M1 can be executed several times during a 

single step of the predictive controller. The estimated 

maximal admissible time step of the MPC controller is 

around 500s. It follows from the result of the simulation 

from Figure11: the steady-state is reached after 400-450s. 

After this time new optimal setpoints can be delivered by 

the MPC to the decentralised local controllers. It should be 

noted that for the assumed 500s time horizon of the 

predictive controller, the calculation time will be 

proportionally shorter than those given in Table I. 
Another observation related to the model was that the 

calculation time does not depend very strongly on the 

assumed internal time step of the analysed FEM models. 

The experiments were made for the steps from 5 up to 60 

seconds of internal COMSOL calculation steps, and any 

major influence on the quality indices was noted.  

 

VIII. CONCLUSIONS 

Glass manufacturing processes have comparatively slow  

dynamics but  are complex processes with high energy 

usage; especially, the forehearths parameters stabilizing  

process with multiple port gas burners cause the glass 

manufacturing industries to consume high amount of energy. 

Therefore, forehearths systems are facing great challenges in 

the reduction of natural gas consumption and emission by 

applying advanced control methods. The accuracy and 

robustness of an advanced control system is entirely 

dependent on the quality of the underlying mathematical 

model of the process and its environment. 

Finite element methods become now be a useful tool for 

any pre-study in the field of automatic control. They allow 

for the building of complex models and perform the 

identification stage [19] to expanding knowledge about 

system functioning, dynamics and cross coupling. Moreover, 

it is possible to apply such a tool to develop a completely 

functional virtual prototype, which consists of physical 

phenomena, motion dynamics and control methods.  

The main concept presented in this paper comes from two 

complementary design aspects. In model reference control, a 

more exact representation of a process provides better 

control performance. On the other hand, in a real-time 

environment a time interval assigned to the model solution 

task is limited.  Therefore, a trade-off between model 

complexity and calculation time must be found. For FEM 

applications it can be done not only by the reduction of the 

number of DOF but also by optimisation of the grid.  

In our solution concept we have proposed a real-time 

implementation of FEM for predictive supervisory control 

of the temperature in forehearths.  A model reduction 

example has been developed in order to ensure a simulation 

time which is sufficient for real-time control.   
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