
Titre:
Title: Runtime latency detection and analysis

Auteurs:
Authors: Julien Desfossez, Mathieu Desnoyers et Michel R. Dagenais

Date: 2016

Type: Article de revue / Journal article

Référence:
Citation:

Desfossez, J., Desnoyers, M. & Dagenais, M. R. (2016). Runtime latency 
detection and analysis. Software: Practice and Experience , 46(10), p. 1397-
1409. doi:10.1002/spe.2389

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: https://publications.polymtl.ca/2989/

Version: Version finale avant publication / Accepted version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title: Software: Practice and Experience

Maison d’édition:
Publisher: Wiley

URL officiel:
Official URL: https://doi.org/10.1002/spe.2389

Mention légale:
Legal notice:

This is the peer reviewed version of the following article: Desfossez, J., Desnoyers, M. & 
Dagenais, M. R. (2016). Runtime latency detection and analysis. Software: Practice and 
Experience, 46(10), p. 1397-1409. doi:10.1002/spe.2389, which has been published in 
final form at https://doi.org/10.1002/spe.2389. This article may be used for non-
commercial purposes in accordance with Wiley Terms and Conditions for Self -Archiving.

Ce fichier a été téléchargé à partir de PolyPublie, 
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

https://publications.polymtl.ca/2989/
https://doi.org/10.1002/spe.2389
https://doi.org/10.1002/spe.2389
http://publications.polymtl.ca/


Runtime latency detection and analysis

J. Desfosseza,∗, M. Desnoyersb, M.R. Dagenaisa

aÉcole Polytechnique de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4
bEfficios, Inc., 4200 Boulevard St-Laurent, suite 680, Montréal, Québec, H2W 2R2

Abstract

Detecting latency-related problems in production environment is usually done at the application level with
custom instrumentation. This is enough to detect high latencies in instrumented applications but does
not provide all the information required to understand the source of the latency and is dependent on the
manually deployed instrumentation. The abnormal latencies usually start in the kernel due to contention on
physical resources or locks. Hence finding the root cause of a latency may require a kernel trace. This trace
can easily represent hundreds of thousands events per second. In this paper, we propose a methodology
to identify and analyze latency problems that occur at the kernel level. We introduce a new kernel-based
approach that enables kernel developers to track latency problems with a cost compatible with production
requirements and trigger actions based on these events to allow them to understand and fix this class of
problems.

Keywords: Latency, Tracing, Cloud Computing, Real-Time

1. Introduction

Monitoring resources usage is a mandatory practice
in production environments. The tools commonly de-
ployed extract metrics from the servers to graph the
usage of the resources over time and eventually gen-
erate alerts. The resources monitored include pro-
cessor, memory, network and disk usage. The load
average is also a metric commonly used to detect if
a server is saturated. When the servers are in a con-
trolled state with predictable resources usage, this
monitoring is enough to detect the major problems.
The latency-specific monitoring is usually per-

formed in production-critical application. For exam-
ple, a web server can compute the time difference
between a request is received and served to provide
metrics and alerts based on this value. This process
implies that the application developers add this in-
strumentation in their code and that the monitoring
tools interface with this information source. Adding

instrumentration in an application adds some cost
so it is usually done at high level (FIXME: ref web
server metrics) or is only enabled one fraction of the
time (FIXME: ref zipkin) to provide an overview and
eventually a breakdown of where the time is mostly
spent. This allows to sample the latencies without
impacting too much the production and it can orient
the research of the root cause for high usage services.

But there are cases where a latency is caused by
an uninstrumented application, by a resource con-
tention, by a scheduling problem, by an external de-
pendency (for example: interrupt handlers and vir-
tualization). Covering all of these cases with custom
instrumentation increases significantly the amount of
instrumentation and software maintenance to per-
form at each deployment and update.

To circumvent this problem, some systems de-
ployment include a phase of micro-benchmarking
(FIXME: ref RT, Netflix) where the operators ver-

Preprint submitted to Elsevier March 17, 2015



ify that the machine corresponds to the requirements
before starting the production on it. But these bench-
marks cannot be run again during the production, so
if the conditions change during the production, they
can only rely on the existing monitoring information
to detect the change and react. In a virtualized envi-
ronment such as cloud computing (FIXME: ref), the
contention on the physical resources can change be-
cause of other virtual machines spawned on the same
physical machine.
Finally, in a production environment, the most

interesting latencies are the highest ones, the out-
liers, the ones that are very rare but cause serious
problems on the end-user applications and can re-
veal serious unhandled problems. The probability
of detecting these problems with a sampling based
technique is low and they are completely invisible in
average-based monitoring. FIXME: definition out-
liers, 6-sigma, etc.
When trying to understand this class of sporadic

low-level high latency problems that are difficult
to reproduce outside of production condition, sys-
tem administrators face a problem in their problem-
solving methodology. They can usually identify what
is the problematic subsystem by running some of the
usual diagnostics tools on the server (FIXME: ref
Brendan Gregg book), but after that, they are ei-
ther bound to do a trial and error test on solution
ideas (update the kernel, other softwares, etc), or try
to capture more information on the faulty subsystem
and hope for the problem to reappear even though
they changed the experiment conditions (FIXME:
heisenbug).
At this stage, tracing is the class of tools used.

It can be at the process-level (strace, perf [7]), at
the network layer (tcpdump [9]), and the kernel-level
(ftrace [6], perf , LTTng [15], SystemTap [17]), or
completely ad-hoc added just for the occasion in the
target application (with printf(), logger, etc). All of
these tools have their own share of advantages and
drawbacks, but one common factor for all these tools
is the additional work on the target system caused by
the instrumentation and the trace extraction. This is
enough to change the resources usage, the scheduling,
the locking, and change completely the experiment
conditions. When all of this is in place, the problem

has to be detected again while tracing. Depending
on how long it takes for the problem to reappear, the
traces can be huge and require an expert to under-
stand them (FIXME: needle in the haystack).
In this paper, we are trying to find the best way

to detect latency outliers and extract background in-
formations to understand the root cause. This study
serves as the basis for developping latency tracker.
This module aims at measuring and executing actions
on high latencies while providing these guaranties:

• Provide a flexible framework for instrumenting
various parts of the kernel.

• Work in every kernel execution contexts (includ-
ing NMI and MCE handlers).

• Scale on concurrent workloads with a small and
predictable overhead.

• Work in production environment as background
monitoring.

The result is a scalable approach to generic runtime
latency detection.
We start by surveying the existing related work in

Section 2, we then present the proposed architecture
in Section 3, we present some analyses implemented
with this new mechanism in 4 and we measure the
overhead in Section 5. Finally, we discuss the results
and ideas for the future in Section 6.

2. Related Work

2.1. Latency analysis

With the amount of large online services growing
up, a lot of research is already in progress to eliminate
as much latency as possible throughout the stack.
The kernel itself is known to be a major factor in
the latency of network applications. The intent here
is to serve the more concurrent clients as possible
with the smallest number of server. Applications like
Chronos [10] remove the kernel and the network stack
from the critical path of network applications and
reduce the latency of certain applications by a factor
of twenty. A complete breakdown of the latency of all
the components involved in a network communication

2



is presented in [11] and it clearly shows that most of
the time is spent in the network stack.
Identifying latencies in specific subsystems is useful

to fix one particular bottleneck, but when operating
real services, the load usually relies on the perfor-
mance of multiple subsystems and it can be difficult
to get an overview of where the time is spent. In
[12], Leverich et al. classify the latencies of real-world
co-located applications in three categories: queueing
delay, scheduling delay and thread load imbalance.
In addition, they explain most of the delays and it
gives insights on the parameters to take into account
when trying to optimize the usage of servers while
still keeping a fast response time. In the case studied,
they manage to co-locate computing services (such as
analytics) on memcached cache servers in a architec-
ture inspired by the Facebook use-case.
Under usage of computing resources is a common

problem, in this 29-days trace of a Google cluster [18],
we see that the main factor is a lack of accurate es-
timate of resources request, but in more interactive
applications, we see that engineers and cloud load
balancer tend to leave a lot of headroom because of
the unknown high-impact latencies that might occur.
For example, in a study on server utiilization in public
clouds ([13]), we see that the estimated server utiliza-
tion on Amazon EC2 is below 20% because we don’t
have a reliable way to guarantee a certain quality of
service in terms of responsiveness.
Maximising the usage of servers while maintaining

a low latency is also of interest for the energy effi-
ciency research. For example, in [14], researchers at
Google, identified patterns of usage, estimated real
world Service Level Objectives and built dynamic
controllers to dispatch the work while respecting the
expectations of the users in terms of latency.
We can see that a lot of research is currently done

in optimizing the high-impact delays in the produc-
tion chain, but we did not find any paper or project
working to actually detect and explain the latency
outliers in real world production environments.

2.2. Latency measurements

In order to measure the time spent in serving a
request in production, we need an efficient request
tracking mechanism. SystemTap [17] is an efficient

tool for dynamically hooking analyses in the critical
path of a subsystem in the kernel. The language al-
lows to quickly create a custom analysis probe. It is
often used for statistics because it is designed to avoid
perturbating the system too much (a lot of work is
done in the compiled code to account the time spent
in each probe and return if it is higher than a specified
threshold). We experimented with it for our use-case
and identified that its generic design makes it diffi-
cult to scale an analysis for concurrent applications.
Since we are tracking entry and exit events that can
occur randomly on any processor, the safe approach
used in SystemTap to lock the associate arrays im-
poses a high impact on our workload. Moreover, the
scripting environment is self-contained which makes
it difficult to emit tracepoints and be called directly
from an external module or the kernel itself. The re-
sults from our experiments in scaling is available in
Section 5.
To measure the entries and exits of various subsys-

tems in the kernel, we could use the tracepoint in-
frastructure with one the kernel tracers (perf, ftrace,
LTTng) and compute the metrics offline, but the
amount of data to extract can be in the order of
megabytes/sec which is too much for only identify-
ing outliers.
The other methods to measure the performance

of a system rely on polling the proc filesystem, but
it usually consist of usage metrics that are used to
show the average usage of the system. Most of the
common production monitoring tools such as Ganglia
[16], SMILE [21], or Parmon [2] rely on local agents
or the SNMP protocol to read these counters.
Ftrace has latency analyses targetted specifically

for real-time systems [19]. They are hardcoded in
the kernel and provide an interesting view of what
caused the interrupts or the preemption to be dis-
abled for some time, with a trace leading to this
event. This kind of analysis is exactly what we are
trying to achieve but for a more general purpose that
hard realtime systems.
The other realtime analyses we know of are micro-

benchmarks ([3], [1]) aimed at certifying that a hard-
ware architecture satisfies the response-time needs
for a certain application. Tools like hackbench and
cyclictest, part of the rt − test tools suite, are of-

3



ten used for this purpose, but cannot be run with
production data, since they are benchmarking tools.

3. Architecture

In this paper, we propose a generic approach to
track latency events in production environments.
Our main goal is to provide an efficient way for de-
velopers and advanced users to measure the delay
between two or more related events and act on this
measurement from the critical path. So in this sec-
tion, we are trying to find the best way to keep track
of thousands of concurrent events and provide enough
flexibility and background information to allow the
users to understand the source of the latency.
This work aims to find the appropriate balance

between generating too much data for offline post-
processing and intruding too much on the critical
path.
This high-level architecture of our work is pre-

sented in Figure 1.

Figure 1: Latency tracker architecture

As shown in Figure 1, our approach is split in
three parts: the collection of data in the critical path
(Kernel execution), the detection of high latency (la-
tency tracker) and the extraction of the kernel trace

(kernel tracer). We first detail the collection and ex-
traction of data and then focus on the algorithms
and the design decisions that consitute the core of
the tracking mechanism.

3.1. In-memory data collection

In order to collection the background history effi-
ciently, we use the LTTng tracer configured in ”flight-
recorder” mode, but the overall solution is not depen-
dant on any particular tracer. LTTng since version
2.3 has the ability to record the trace only in mem-
ory in a ring-buffer. This process removes completely
the cost of the I/O operations required to extract the
trace on disk or on the network. When an external
factor detects that an interesting condition happened
(the user manually or a coredump handler for now),
we can trigger a ”snapshot” which takes all the con-
tent of the ring-buffer and extracts it in trace files
(local or remote). Then the user can run analyzes
(manual or automatic) on a trace that contains only
a relatively small window of data around the interest-
ing event. The analyzes can be simple statistics such
as (FIXME: ref python analysis scripts) to more ad-
vanced critical path analysis (FIXME: ref fgiraldeau).
The total buffer size per-channel is calculated in

Equation 1.

buf size = num subbuf ∗ subbuf size (1)

The relationship between the number of events in
a snapshot and the configuration of the tracer can be
approximated by the Equation 2.

avg nb events = buf size/avg event size (2)

Therefore, the period covered by a snapshot is ap-
proximated by the Equation 3.

snapshot period = avg nb events/event rate (3)

For example, if we enable only the sched switch
on an idle 8-core server, with the default configura-
tion of 4 sub-buffers of 256kB per-cpu, the snapshots
contain around 15000 events which cover a period of
30 seconds (around 60 bytes/event). On the other

4



hand, with the exact same configuration but with a
high scheduling load on all cores, the snapshots have
the same amount of events but only cover a period of
5 seconds.
For the latency tracking analysis, we use this fea-

ture to keep a relatively short history of trace data
around the interesting events. The parameters such
as the sub-buffer size and enabled events are config-
ured depending on the conditions and the problems
we are trying to solve.

3.2. Callbacks: data extraction

The callbacks are the action called when the de-
lay between two events is higher than a predefined
threshold, and when the timeout is reached. The call-
back is a function provided by the user of the module.
For the case of high delay, the function is called dur-
ing the exit event, so it is in the critical path of the
tracked system. For that reason, the action executed
here need to be as fast as possible to avoid starting a
feedback loop of latencies. The advantage of calling
it from this site, is that the user gains full control over
the execution and can extract accurate information
about the current state of the process or the system.
For example, in the use-case we defined earlier, we

want the callback to record an event in an active trac-
ing session to mark the exact time where the high la-
tency was detected and then extract the trace buffers
that contains this event and as much history as pos-
sible. Emitting an event in the context of the target
application is fast enough (328-338 ns/event [5]) to be
run directly in the callback since it is usually multiple
orders of magnitude less than the latency threshold,
but collecting the snapshot is a more intrusive oper-
ation that requires the communication between two
user-space daemons over unix sockets, so we need to
delegate another task to perform this operation in the
background and give back the control to the kernel
as soon as possible.
To handle this problem, we created a special

procfs file. This file is owned by the tracking mod-
ule. When a user-space process reads this file, it is
put in a wake-up queue. When we detect a high la-
tency, we wake up all the processes in the queue and
make the read operation return. When the process
returns from the read or poll, it knows an important

event happened and can handle it all in user-space
without blocking the kernel. Since the wake up can
happen in the context of the scheduler (for example
in the wakeup-latency analysis), we have to create an
irq work and work from the IRQ context to avoid
calling sched wakeup during a sched switch which
results in a deadlock.
Since the system is most likely loaded when the

callback is activated, there is a risk that the user-
space program will not be scheduled soon enough to
extract enough background information in the snap-
shot as possible before it is overwritten by the tracer,
so it is important to set a real-time priority for this
task if its result is critical.
Finally, to avoid feedback loops, we implemented

a simple rate limiter set to one snapshot per second.

3.3. Latency tracker

Once we have a way to collect efficiently a short
history around an interesting event, we need to auto-
matically detect the interesting conditions and trig-
ger the recording of the snapshot. This part is the
most important original contribution of our work.

3.3.1. Design principles

The objective is to trigger an action whenever a
high latency is detected inside the kernel. The action
is provided by the user and can be, for example, to
extract the tracing buffers, generate alerts, compute
advanced statistics, record a stack trace, etc. The
cost of this additional tracking must be bounded and
low enough to run in production.
In order to do that, we developed a kernel module

([4]) that exposes new functions to the kernel. These
functions are designed to be called from anywhere in
the kernel: hardcoded in the source code, or from
a tracepoint handler, a kprobe callback, a netfilter
hook, etc. Moreover, these functions can be called
from any context including system calls, timers and
interrupt handlers.
The module uses a common key to track the time

difference between two punctual events (the entry
and the exit) and take actions depending on the de-
lay between the two events. The key depends on the
context and can be in any form (string, structure, in-
teger, etc) as long as it is the same in the two events.

5



In Algorithm 1, we present the basic usage of the
tracker. In this example, we use the static instru-
mentation already existing in the Linux kernel and
connect two probes. These probes only extract the
parameters sector and dev and use these as a key
to track the request. The latency tracker module
then handles the storing and matching of the key.
If the delay between the two events, is higher than
threshold, then the callback function cb is executed.

Algorithm 1 Block latency tracker example

function Init

tracker ← latency tracker create();
tracepoint probe reg(”block rq issue”);
tracepoint probe reg(”block rq complete”);

function probe rq issue(e)
key.d← e.dev;
key.s← e.sector;
t← theshold;
latency tracker event in(tracker, key, t, cb);

function probe rq complete(e)
key.d← e.dev;
key.s← e.sector;
latency tracker event out(tracker, key);

In addition, the module provides a timeout param-
eter in order to call the callback function if the exit
event has not been called before a user-defined expiry
time. This function allows to perform off-CPU pro-
filing (FIXME: ref Brendan) and some focused sam-
pling which is particularly useful to detect high laten-
cies while they are happening (before the exit event
arrives). It is for example a good place to take a
stack trace of the blocked process and sample exter-
nal counters. The callback function receives a param-
eter to let it know if it was called for a timeout or a
normal high latency, so the user has the control re-
garding the operation to take depending on the case.
Also, the key is not deleted until the exit event hap-
pens, so the user callback gets the control two times
when a timeout has been reached.
Moreover, at any point in time during the lifetime

of a pending event, it is possible to query the la-
tency tracker to see if a key is currently active. This
opens up the possibility of creating ”stateful trac-

ing events”. For example a probe can be hooked on
any kernel function with a kprobe, when the callback
is called, the probe can check if the current process
has an pending latency event and extract additional
information specifically related to this condition. Be-
fore this active state tracking, we had to extract the
data every time the callback was hit and process the
result after the fact which resulted in additional noise,
overhead and processing time.

3.3.2. Memory allocation

To allow the calls to work in all of these differ-
ent states, we need to make sure our module does
not trigger any page fault which could lead to dead-
locks in certain situations. In order to do that, we
allocate the memory required to store the keys in
the hash table when the module is loaded and en-
sure that it is ready to be used. The user evaluates
the maximum number of keys that should be used
concurrently and all the memory is allocated by the
module before starting the work. The free memory
is organized in a simply linked free list.
In some production cases, the user does not know

how much concurrent keys can co-exist and we don’t
want to miss interesting events because of misconfig-
uration. To solve this problem, if the impact is toler-
able, the free list can be dynamically resized outside
of the critical path. In order to do that, we set a
special flag when allocating the element stored in the
middle of the list. When we start using this element,
we set a flag in the tracker. Periodically, a timer han-
dler (also used for garbage collection) checks if this
flag is set and if it is, starts a workqueue to resize the
list (up to a maximum size defined by the user). The
algorithm for this process is detailed in Algorithm 2.
We have to use a timer to start the workqueue

process, even though the workqueue is itself an in-
dependant task, because when queueing a new work,
the Linux kernel informs the scheduler that the task
needs to run using a sched wakeup which is a func-
tion we are interested in when tracking scheduling
wakeup latencies. Even though the code is reentrant,
we want to limit the impact we have on the server in
the critical path of waking up a task.
Since our workload can be executed in parallel, we

need to protect the access to the free list. We experi-

6



Algorithm 2 Freelist allocation and resize

function freelist init(tracker, size)
list← tracker.list
for i = 0; i < size; i++ do

e← alloc(latency tracker event)
if i == size/2 then

set resize flag(e)

list add(list, e)

tracker.size← size
function freelist get new(tracker)

if list empty(tracker.list) then
return NULL

e← list first(tracker.list)
if has resize flag(e) then

tracker.need resize← True
return e

function tracker timer handler(tracker)
if tracker.need resize then

queue work(tracker.resize work)

function tracker resize work(tracker)
size← tracker.size
size← min(size ∗ 2, tracker.max size)
freelist init(tracker, size)

mented with two linked-list implementations built-in
the Linux kernel and three locking strategies (along
with the various hash tables algorithms detailed in
Section 3.3.3).

We first experimented with a basic linked-list pro-
tected by an IRQ-safe spinlock, this experiment
helped us create the first prototype of the module
and identify the problematic concurrency situations.
We then took a look at the strategy SystemTap uses
to protect their associative arrays and ported this
mechanism to protect the free list and the hash table.
SystemTap uses a rwlock and loops on a writetrylock
every 10 micro-seconds until it obtains the lock. We
noticed a similar performance than the spinlock ap-
proach, but the rwlock creates less pressure on the
CPU than the spinlock which is interesting in case
of hyperthreading cores which share some resources,
the down-side is the risk of starvation.

Since the free list is a significant contention point,
we experimented with the lock-free linked-list of the
Linux kernel (protected by RCU) and improved sig-
nificantly the overall performance (all results in Sec-
tion 5).

3.3.3. Hash table

We are looking to compare arbitrary data at en-
try and exit sites to track the state of any operation
that can be expressed as a request. Hence, the core
of the tracking mechanism is a generic hash table in-
side the kernel. To give the maximum performance
to users, the hashing and matching functions can be
customized to perform best depending on the type
of key used. Because of the possibility of preemp-
tion, thread migration, interrupt handling, etc, the
table is shared among the processors. Our intent is
to find the best locking strategy to limit the overhead
we add in the critical path. One important aspect of
this workload is that the usage of the hash table is
typically symmetric for each key: one insertion, one
lookup immediately followed by a removal. But this
process can happen in parallel with thousands of ac-
tive keys, so we can’t just use a list of active keys, the
lookups need to happen in O(logn). In addition, the
user must be able to handle the case of duplicated
entries.

7



The Linux kernel already provides multiple choices
of locking strategies and hash table implementations,
Since our use-case is the worst-case of a hash table
and can be called from any context, we studied closely
the algorithms of every options available both in term
of speed and scalability.

The default hash table of the Linux kernel requires
a lock (IRQ-safe in our case) for each operation.
We identified that a stategy based on write trylock
(from rwlock) is more efficient for this use-case than
a spinlock on hyperthreaded CPU cores. However,
the impact is still high for parallel workloads (details
in Section 5).

Since 3.17, the relativistic hashtable (rhashtable
[20]) is included in the mainline Linux kernel. This
hashtable has the advantage of being resizable, which
is an important feature for the future of our work, but
also lock-free for the read-side. Thanks to RCU , we
only need to lock the table when inserting new ele-
ments which is half of our workload. Moreover, from
the benchmarks provided by the authors, the per-
formance seems better than the default hash table
(FIXME: ref). But after experimenting with it, we
identified a high overhead starting at 16 concurrent
processors (FIXME: explanation with perf results).
We didn’t use the resize capability of this table be-
cause the resize operation is triggered in the context
of usage which can be problematic for our operating
conditions.

The last hash table we used comes from the
userspace-RCU library (FIXME: ref), that we ported
to the kernel. This hashtable is completely lock-free
and helped us achieve our best scalability results.
This hash table can also be resized and the resize
operation can be performed outside in a separation
execution context, so it is another advantage for this
structure.

3.3.4. Locking

Here is a summary of the various linked-list, hash
tables and locking algorihms that we compared for
this study to identify the best combination for our use
case. The Id is used as a legend for the performance
graph.

Id Free list Hash table Locking

A basic list basic HT spinlock
B basic list basic HT try lock
C lockless list basic HT spinlock
D lockless list basic HT try lock
E basic list rHT spinlock
F basic list rHT try lock
G lockless list rHT spinlock
H lockless list rHT try lock
I basic list urcuht spinlock
J basic list urcuht try lock
K lockless list urcuht N/A

Table 1: Locking and data structure tested

4. Use-cases implemented

4.1. Off-CPU profiling

Based on this architecture, we created a kernel
module to track the time a process spends not run-
ning and record its kernel stack when it returns on
a CPU. That way, we know at runtime all the pro-
cesses that are blocked and we can then confirm if it
is a normal delay or not. It can help identify locks
imbalance, resources shortage and other concurrency
issues.
Here is the result with a threshold set at 5 seconds,

we see a thread of the rsyslogd daemon that was
waiting on a read system call.

offcpu: in:imklog (743) 5395165 us

[<ffffffff817256d9>] schedule+0x29/0x70

[<ffffffff810be37a>] do_syslog+0x4fa/0x5c0

[<ffffffff81232964>] kmsg_read+0x44/0x60

[<ffffffff812243dd>] proc_reg_read+0x3d/0x80

[<ffffffff811bdd05>] vfs_read+0x95/0x160

[<ffffffff811be819>] SyS_read+0x49/0xa0

[<ffffffff81731d7d>] system_call_fastpath+0x1a/0x1f

Using some simple visualisation scripts [8], we can
also generate a flamegraph like presented in Figure 2
for the same data.

4.2. Scheduler wake up latency

For real-time systems, it is important to have a
boundary on the delay between the time the sched-
uler decides a process should be running and the time
it actually runs. So we used our new architecture to

8



Figure 2: Latency flame graph

compute the time difference between a sched wakeup
and a sched switch on the same PID. We used the
callback to record a LTTng snapshot when the delay
was above a threshold of 5 milliseconds. We let run
this analysis for 24 hours on an active web and mail
server and identified interesting latency patterns that
would have been really hard to understand without
this new method. Thanks to the small trace gener-
ated when a latency occurs, these new results led us
to create new analyses tools that focus on explaining
these latencies. The details of these results will be
part of another study.

4.3. Syscall calls latency

Another useful module implemented with this new
tracking mechanism is a system call latency tracker.
We created a module that hooks on system call en-
tries and exits and compute the time difference be-
tween the two events. If above a threshold, we gen-
erate an event that can record a LTTng snapshot. In
addition, we used the feature to check the state of a
current process. So at each sched switch, we check if
the current process has been blocked in a system call
for more than the threshold. If true, we extract its
kernel stack. This allows us to see exactly where a
system call is blocked inside the kernel every time this
process gets some CPU time. FIXME: graph and/or
SVG.

5. Measurements

In order to evaluate the performance of our ap-
proach and decide if it is suitable for a usage in pro-
duction, we first measure the overhead introduced by
the tracing in memory and by the tracking of laten-
cies by our module under a variety of loads in micro

benchmarks targetting specific resources. We then
evaluate the whole methodology by deploying our so-
lution in a real world use case, we intend to detect
the high latencies and find the optimal parameters to
have enough background information to understand
the source of the problem and control the memory
footprint.

5.1. Flight-recorder mode

- flight-recorder mode alone - flight-recorder pa-
rameters tweak (size/events vs snapshot duration)

5.2. Latency tracker overhead

5.2.1. CPU overhead

In this experiment, we evaluated the impact of
the hash table and the linked list implementations
and locking on a highly-concurrent workload while
increasing the number of CPUs available. The test
machine is a quad-socket AMD Opteron(TM) Proces-
sor 6272, so the kernel sees 64 CPUs, but the AMD
Bulldozer architecture is a partial Simultaneous Mul-
tithreading (SMT) architecture, so the FPU and L2
cache are shared between pairs of core, but the in-
teger cores are independant. Before running the 64-
cores tests, we evaluated that the overhead of running
our workload on shared cores is between 10-15% than
running on independant CPU cores. Up-to 32 simul-
taneous CPUs we ran on independant cores to limit
this side-effect, but for the test at 48 and 64 cores,
we had to use shared cores.
The test consists of running hackbench 100 times

and compute the statistics about how long it takes
to complete. Hackbench spawns 10 groups of pro-
cesses and tries to exchange 100 bytes back and forth
between the senders and receivers over 40 different
sockets. So it consists of 400 tasks trying to run si-
multaneously which represents a high concurrency on
the scheduler. When increasing the number of CPUs
available between 1 and 64, we see a linear speedup.
The graph ?? shows the results with all the combi-
nations detailed in Table 1.

5.2.2. I/O overhead

We tried to quantify the overhead imposed when
tracking the block-related events like explained in Al-
gorithm 1, but we were unable to find a significant

9



overhead. We used the fileio test of sysbench in var-
ious combinations (sequential read, sequential write,
random read and random write) on SSD and rotating
drive.

6. Conclusion and Future Work

Conclusion

7. Acknowledgments

This work was made possible by the financial sup-
port of Ericsson, EfficiOS and NSERC. We are grate-
ful to Naser Ezzati for the reviews.

8. References

[1] Wolfgang Betz, Marco Cereia, and Ivan Cibrario
Bertolotti. Experimental evaluation of the linux
rt patch for real-time applications. In Emerg-
ing Technologies & Factory Automation, 2009.
ETFA 2009. IEEE Conference on, pages 1–4.
IEEE, 2009.

[2] Rajkumar Buyya. Parmon: a portable and scal-
able monitoring system for clusters. Software-
Practice and Experience, 30(7):723–740, 2000.

[3] John M Calandrino, Hennadiy Leontyev, Aaron
Block, UC Devi, and James H Anderson. Lit-
musˆ rt: A testbed for empirically comparing
real-time multiprocessor schedulers. In Real-
Time Systems Symposium, 2006. RTSS’06. 27th
IEEE International, pages 111–126. IEEE, 2006.

[4] Julien Desfossez. latency-tracker source code.
https://github.com/jdesfossez/latency tracker,
2014.

[5] Mathieu Desnoyers. Low-impact operating sys-
tem tracing. PhD thesis, École Polytechnique de
Montréal, 2009.

[6] Jake Edge. A look at ftrace.
http://lwn.net/Articles/322666/, 2009.

[7] Jake Edge. Perfcounters added to the mainline.
http://lwn.net/Articles/339361/, 2009.

[8] Brendan Gregg. stack trace visualizer.
https://github.com/brendangregg/FlameGraph,
2014.

[9] Van Jacobson, Craig Leres, and S McCanne. The
tcpdump manual page. Lawrence Berkeley Lab-
oratory, Berkeley, CA, 1989.

[10] Rishi Kapoor, George Porter, Malveeka Tewari,
Geoffrey MVoelker, and Amin Vahdat. Chronos:
predictable low latency for data center applica-
tions. In Proceedings of the Third ACM Sympo-
sium on Cloud Computing, page 9. ACM, 2012.

[11] Steen Larsen, Parthasarathy Sarangam, Ram
Huggahalli, and Siddharth Kulkarni. Archi-
tectural breakdown of end-to-end latency in a
tcp/ip network. International journal of parallel
programming, 37(6):556–571, 2009.

[12] Jacob Leverich and Christos Kozyrakis. Recon-
ciling high server utilization and sub-millisecond
quality-of-service. In Proceedings of the Ninth
European Conference on Computer Systems,
page 4. ACM, 2014.

[13] Huan Liu. A measurement study of server uti-
lization in public clouds. In Dependable, Au-
tonomic and Secure Computing (DASC), 2011
IEEE Ninth International Conference on, pages
435–442, Dec 2011.

[14] David Lo, Liqun Cheng, Rama Govindaraju,
Luiz André Barroso, and Christos Kozyrakis.
Towards energy proportionality for large-scale
latency-critical workloads. In Proceeding of the
41st annual international symposium on Com-
puter architecuture, pages 301–312. IEEE Press,
2014.

[15] M. R. Dagenais M. Desnoyers. The lttng tracer :
a low impact performance and behavior monitor
for gnu/linux. In Proceedings of Ottawa Linux
Symposium 2006, pages 209–223, 2006.

[16] Matthew L Massie, Brent N Chun, and David E
Culler. The ganglia distributed monitoring sys-
tem: design, implementation, and experience.
Parallel Computing, 30(7):817–840, 2004.

10



[17] Vara Prasad, William Cohen, FC Eigler, Mar-
tin Hunt, Jim Keniston, and J Chen. Locat-
ing system problems using dynamic instrumen-
tation. In 2005 Ottawa Linux Symposium, pages
49–64. Citeseer, 2005.

[18] Charles Reiss, Alexey Tumanov, Gregory R
Ganger, Randy H Katz, and Michael A Kozuch.
Towards understanding heterogeneous clouds at
scale: Google trace analysis. Intel Science and
Technology Center for Cloud Computing, Tech.
Rep, page 84, 2012.

[19] Steven Rostedt. Finding origins of latencies us-
ing ftrace. Proc. RT Linux WS, 2009.

[20] Josh Triplett, Paul E McKenney, and Jonathan
Walpole. Resizable, scalable, concurrent hash
tables via relativistic programming. In USENIX
Annual Technical Conference, page 11, 2011.

[21] Putchong Uthayopas, Surachai Phaisithben-
chapol, and Krisana Chongbarirux. Building a
resources monitoring system for smile beowulf
cluster. In Proceedings of HPC Asia98 Confer-
ence, Singapore, 1998.

11


	2016_Desfossez_Runtime_latency_detection_analysis

