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Abstract— High computing performance of algorithm analysis
is essential in many hyperspectral imaging applications, including
automatic target recognition for homeland defense and security,
risk/hazard prevention and monitoring, wild-land fire tracking
and biological threat detection. Despite the growing interest in
hyperspectral imaging research, only a few efforts devoted to
designing and implementing well-conformed parallel processing
solutions currently exist in the open literature. With the recent
explosion in the amount and dimensionality of hyperspectral
imagery, parallel processing is expected to become a requirement
in most remote sensing missions. In this paper, we take a nec-
essary first step towards the quantitative comparison of parallel
techniques and strategies for analyzing hyperspectral data sets.
Our focus is on three types of algorithms: automatic target
recognition, spectral mixture analysis and data compression.
Three types of high performance computing platforms are used
for demonstration purposes, including commodity cluster-based
systems, heterogeneous networks of distributed workstations and
hardware-based computer architectures. Combined, these parts
deliver a snapshot of the state of the art in those areas, and offer a
thoughtful perspective on the potential and emerging challenges
of incorporating parallel computing models into hyperspectral
remote sensing problems.

I. INTRODUCTION

Hyperspectral imaging has been transformed in less than
30 years from being a sparse research tool into a commod-
ity product available to a broad user community [1]. The
development of computationally efficient techniques able to
transform massive volumes of hyperspectral data sets, col-
lected on a daily basis, into scientific understanding is critical
for space-based Earth science and planetary exploration. To
address the computational needs introduced by hyperspectral
imaging applications, a few efforts have been directed towards
the incorporation of high-performance computing models and
platforms in remote sensing missions. For instance, the Cen-
ter of Excellence in Space and Data Information Sciences
(CESDIS), located at NASA’s Goddard Space Flight Center
in Maryland, developed the concept of Beowulf cluster with
the aim of creating a cost-effective parallel computing system
from commodity components to satisfy specific computational
requirements for the Earth and space sciences community [2].
Although most dedicated parallel machines for hyperspectral
image information extraction and mining have been chiefly
homogeneous in nature [3], a current trend in the design of sys-
tems for analysis and interpretation of high-dimensional data
sets is to utilize highly heterogeneous distributed platforms [4],

which can benefit from local (user) computing resources and
provide incremental scalability of hardware components, along
with high communication speeds, at lower prices. In addition
to cluster-based and distributed parallel computing facilities,
critical hyperspectral imaging applications require analysis al-
gorithms able to provide a response in (near) real-time. For this
purpose, low-weight and low-power electronic components are
mandatory to reduce payload and data transmission overheads.
To achieve these goals, reconfigurable hardware platforms
such as field programmable gate arrays (FPGAs) have opened
many innovative perspectives, such as the possibility of on-
board data processing and compression. In this paper, we
provide a quantitative and comparative assessment of repre-
sentative hyperspectral analysis algorithms for automatic target
recognition and spectral mixture analysis. In addition, we also
discuss a new parallel, exploitation-based algorithm for on-
board hyperspectral data compression. Three different parallel
computing platforms are used for demonstration purposes:
a Beowulf cluster made up of 256 processors at NASA’s
Goddard Space Flight Center, a heterogeneous network of
16 distributed workstations at University of Maryland, and a
Xilinx Virtex-II FPGA.

II. PARALLEL TARGET DETECTION ALGORITHMS

Two unsupervised target detection algorithms for hyper-
spectral imagery are considered in this section. These are the
unsupervised fully constrained least squares (UFCLS) algo-
rithm [1], and the iterative error analysis (IEA) algorithm [5].
The inputs to all discussed algorithms are a hyperspectral
image F with n dimensions, where F(x, y) denotes the pixel
vector at spatial coordinates (x, y), and a number of targets to
be detected, t. The output in all cases is a set of target pixel
vectors, denoted by t(1), t(2), . . . , t(t).

A. Parallel implementation of UFCLS (P-UFCLS)

The UFCLS [1] generates a set of t targets using the concept
of least square-based error minimization. Our parallel version
of UFCLS (called P-UFCLS) assumes that p processors are
available and uses a master-slave implementation, in which
a master processor coordinates the activities carried out by
worker processors. The algorithm uses the following steps:

1) The master divides the original image cube F into p−1
chunks (the input data is partitioned so that each chunk
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contains entire pixel vectors only). Then, the master
sends the p − 1 partitions to the workers.

2) Each worker finds the brightest pixel in its local partition
using t(1)i = arg{max(x,y)F(x, y)T ·F(x, y)}, where the
superscript T denotes the vector transpose operation and
i = 1, 2, . . . , p − 1. Each worker then sends the spatial
locations of the pixel identified as the brightest ones in
its local partition back to the master.

3) Once all the workers have completed their parts, the
master finds the brightest pixel of the input scene,
t(1), by applying the argmax operator in step 2 using
only the pixels at that the spatial locations provided by
the workers and selecting the one that results in the
maximum score. Then, the master sets U = t(1) and
broadcasts this matrix to all workers.

4) Each worker calculates the least squares-based error for
each pixel vector in the input data represented in terms of
a fully constrained linear mixture of all the spectra in U.
The workers then find the pixel vector with largest error
score and sends its spatial coordinates and associated
error to the master.

5) The master obtains a second target t(2) by selecting the
pixel vector with largest associated error score from the
pixel vectors at the spatial locations provided by the
workers and broadcasts U = {t(1), t(2)} to the workers.

6) Repeat from step 4 to incorporate a new target pixel
t(3), t(4), . . . , t(t) to U until a set of t target pixels have
been extracted.

B. Parallel implementation of IEA (P-IEA)

The IEA [5] is similar to the UFCLS algorithm in the
sense that both of them make use of least square-based error
minimization to search for possible targets. While the P-
UFCLS algorithm finds a pixel with the largest vector length
to be used as its initial pixel to start the algorithm, our
P-IEA calculates (in parallel) the sample mean vector for
initialization. Another difference is that the P-UFCLS does
not need any prior knowledge except the number of targets, t,
to terminate the algorithm. As for the P-IEA, two additional
parameters need to be incorporated. The first one is NR, the
number of pixels in R(i), which denotes the set of pixels with
the largest errors in the resulting error images, E(i), at the
worker processors, i = 1, 2, . . . , p− 1. The second parameter
is θ, a spectral angle threshold used to find a set of spectrally
similar pixels that will be averaged to generate new target
pixels throughout the process. In this work, we set NR = 1
and θ = 0 to allow comparisons with P-UFCLS.

III. PARALLEL ENDMEMBER EXTRACTION ALGORITHMS

Two algorithms for endmember extraction have been im-
plemented by parallel approximations [6]: the pixel purity
index (PPI) [7] and the N-FINDR [8] algorithm. The inputs to
all discussed algorithms are a hyperspectral image F with n
dimensions and a number of endmembers to be extracted, e.
The output in all cases is a set of endmember pixels, denoted
by {ei}e

i=1.

A. Parallel PPI-like algorithm (P-PPI)

Boardman’s PPI algorithm proceeds by generating a large
number of random, n-dimensional unit vectors called skewers
through the dataset. Every pixel in the input data is projected
onto each skewer, and the number of times a given pixel is
selected as extreme defines its purity index. Our master-slave
parallel version (called P-PPI) is given by the following steps:

1) The master divides the original image cube F into p−1
chunks and sends them to the p−1 workers. The master
also generates a random set of s skewers denoted by
{skewerj}s

j=1 and broadcasts them to the workers.
2) All data samples in each local partition are projected

onto each skewerj to find sample vectors at its extreme
positions. As a result, an extrema set for each skewerj ,
denoted by S(skewerj), is formed at the worker pro-
cessors i = 1, 2, . . . , p − 1. If we assume that function
I
(i)
S is a logic function that returns ’1’ if a given

pixel in the local partition is selected as extreme and
’0’ otherwise, we can obtain the number of times a
given pixel is selected as extreme as: N

(i)
PPI(F(x, y)) =

∑
j I

(i)
S(skewerj)

(F(x, y)). Each worker then selects those

pixels with N
(i)
PPI(F(x, y)) above a threshold parameter

t, and sends their spatial locations to the master.
3) The master collects all the partial results and generates

a unique set of final endmembers by using the spectral
angle distance to retain only spectrally distinct pixels,
until a final set of {ei}e

i=1 endmembers is generated.

B. Parallel N-FINDR-like algorithm (P-FINDR)

Winter’s N-FINDR algorithm identifies the set of pixels
which define the simplex with the maximum volume. A ran-
dom set of pixel vectors is first selected, and their correspond-
ing volume is calculated. A trial volume is then calculated
for every pixel in each endmember position. If a replacement
results in a volume increase, the pixel replaces the endmember
and the procedure is repeated until no more replaces occur. A
parallel approximation of this algorithm follows.

1) The master divides the original image cube F into p−1
chunks and sends them to the p − 1 workers. It also
selects a random set of e pixels from the input data and
labels them as initial endmembers {e(0)

i }e
i=1. Finally, the

master calculates V {e(0)
1 , e(0)

2 , . . . , e(0)
e }, the volume of

the simplex defined by {e(0)
i }e

i=1, and broadcasts this
value to the workers.

2) The workers calculate the volume of e simplices
V {F(x, y), e(0)

2 , ..., e(0)
e }, ..., V {e(0)

1 , e(0)
2 , .., F(x, y)} in

parallel, each of which is formed by replacing an end-
member with the sample vector F(x,y). Each worker
performs replacements using pixels in its local partition.

3) If none of these e recalculated volumes is greater than
V {e(0)

1 , e(0)
2 , . . . , e(0)

e }, then no endmember is replaced.
Otherwise, the master replaces the endmember which
is absent in the largest volume among the e simplices
generated in step 2 with the vector F(x,y).
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4) Repeat from step 2 until no replacements occur. The final
combination gives the final set of endmembers {ei}e

i=1.

IV. PARALLEL ALGORITHM FOR DATA COMPRESSION

In this section, we develop a new lossy compression
technique able to reduce significantly the large volume of
information contained in hyperspectral data while, at the same
time, retaining mixed pixels and sub-pixel targets which are
crucial in many applications. Since the standard approach for
linear spectral unmixing (LSU) is an embarrasingly parallel
problem (i.e., it can be parallelized with no data depen-
dencies), we take advantage of this algorithm to produce,
for each pixel vector F(x,y), a set of fractional abundances
{a1(x, y), a2(x, y), . . . , ae(x, y)} that can be used as a fin-
gerprint of F(x,y) with regards to e endmembers, obtained in
this work by the P-FINDR algorithm. Below, we describe the
parallel algorithm and outline its FPGA-based implementation.

A. P-FINDR/P-LSU compression algorithm

1) Use the P-FINDR algorithm to obtain a set of endmem-
bers {ei}e

i=1.
2) Use an embarrasingly parallel version of linear spectral

unmixing (P-LSU) to approximate each pixel vector
F(x, y) = e1 ·a1(x, y)+e2 ·a2(x, y)+ . . .+ee ·ae(x, y).

3) Construct e fractional abundance images, one for each P-
FINDR-derived endmember, and apply lossless predic-
tive coding to reduce spatial redundancy, using Huffman
coding to encode predictive errors.

B. FPGA implementation

The algorithm above has been implemented in hardware
using a standard systolic array-based architecture in which
skewers are fed from top to bottom, and pixel vectors are
fed from left to right [9]. Three types of processing nodes
were used: dot nodes, which perform the individual products
for the skewer projections, and max and min nodes, which
respectively compute the maxima and minima projections after
the dot product calculations have been completed. Part of
the systolic array design is also employed to carry out the
unmixing. Here, in order to obtain the abundance fractions for
each pixel vector F(x, y), the systolic computes its product
with (MT · M)−1 · MT , where M = {ei}e

i=1.

V. EXPERIMENTS

Before providing an an assessment of the effectiveness of
the proposed parallel hyperspectral algorithms in the context
of a mineral mapping application, we first provide a brief
overview of the parallel computing architectures used in
experiments.

A. Parallel computing architectures

Thee high performance computing platforms were used:

1) Beowulf cluster. We have used Thunderhead, a Beowulf
cluster at NASA’s Goddard Space Flight Center, com-
posed of 256 dual 2.4 Ghz Intel Xeon nodes, each
with 1 GB of memory and 80 GB of main memory,

TABLE I

SPECTRAL ANGLE-BASED SIMILARITY SCORES BETWEEN USGS MINERAL

SPECTRA AND PIXELS PRODUCED BY PARALLEL ALGORITHMS

P-UFCLS P-IEA P-PPI P-FINDR
Processing time (seconds) 972 1120 2745 695

Alunite 0.116 0.116 0.099 0.081
Buddingtonite 0.106 0.125 0.106 0.084

Calcite 0.105 0.105 0.105 0.105
Chlorite 0.125 0.144 0.125 0.096
Kaolinite 0.136 0.136 0.136 0.136
Jarosite 0.134 0.134 0.112 0.102

Montmorillonite 0.110 0.108 0.106 0.089
Muscovite 0.113 0.115 0.108 0.094
Nontronite 0.102 0.102 0.102 0.099
Pyrophilite 0.099 0.102 0.094 0.090

interconnected via 2 GHz optical fibre Myrinet (see
http://thunderhead.gsfc.nasa.gov for details).

2) Heterogeneous network of workstations. We have also
used a heterogeneous network which consists of 16 dif-
ferent SGI, Solaris and Linux workstations, distributed
among different locations and arranged in four relatively
fast communication segments, interconnected by three
slower communication links [10]. Implementations in
both the Beowulf cluster and the heterogeneous network
were carried out using C++ with calls to message
passing interface (MPI).

3) Field programmable gate array. We have also used a
Virtex-II XC2V6000-6 FPGA, which contains 33, 792
slices and 144 multipliers (of 18×18 bits). The synthesis
in the FPGA board was performed using Handel-C
(see http://www.celoxica.com), a design and prototyping
language based on pseudo-C programming style.

B. Parallel performance evaluation

The hyperspectral data set used in experiments is the well-
known AVIRIS Cuprite scene, available online (in reflectance
units) from http://aviris.jpl.nasa.gov/html/aviris.freedata.html.
The scene comprises a relatively large area, with 20-meter
pixels and 224 narrow spectral bands between 0.4 and
2.5 µm. The reflectance spectra of ten U.S. Geological
Survey (USGS) ground-truth mineral spectra: alunite, bud-
dingtonite, calcite, chlorite, kaolinite, jarosite, montmoril-
lonite, muscovite, nontronite and pyrophilite (all available from
http://speclab.cr.usgs.gov) were used for evaluation purposes.
Table I tabulates the spectral angle mapper scores obtained
after comparing library spectra with the corresponding end-
members extracted by the parallel algorithms (the smaller the
scores across the five minerals considered in Table I, the better
the results). The number of pixels to be extracted in all cases
was set to 16 after calculating the intrinsic dimensionality
of the data. For illustrative purposes, Table I also reports
processing times (in seconds) using one single processor of
the Thunderhead cluster. It can be seen from the table that
all tested parallel target detection and endmember extraction
algorithms were able to identify highly pure instances of the
ten ground-truth minerals, with P-FINDR producing the most
highly pure signatures. However, processing times measured
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TABLE II

PROCESSING TIMES USING DIFFERENT PROCESSORS ON THUNDERHEAD

4 16 36 64 100 144 196 256
P-UFCLS 312 95 34 17 12 8 6 5

P-IEA 345 103 39 20 14 10 7 6
P-PPI 1013 251 99 52 34 24 18 15

P-FINDR 199 46 24 15 9 6 5 4
P-LSU 123 31 15 8 6 4 3 2

TABLE III

PROCESSING TIMES ON THE 16-PROCESSOR HETEROGENEOUS NETWORK

P-UFCLS P-IEA P-PPI P-FINDR P-LSU
Time (seconds) 116 139 272 54 42

on a single processor were significant in all cases.
To empirically investigate the scaling properties of the

parallel algorithms, their performance was tested by timing the
programs over various numbers of Thunderhead (see Table II).
Results in Table II reveal that multi-processor runs of the par-
allel algorithms can significantly reduce the single-processor
times given in Table I. The P-LSU achieved speedups close
to optimal, while both P-IEA and P-UFCLS scaled slightly
better than P-PPI and P-FINDR. This is because parallel
target detection algorithms involved less data dependencies
than parallel endmember extraction algorithms.

On the other hand, Table III tabulates the processing times
obtained in the 16-processor heterogeneous network. Here, the
data partitioning step was modified for all parallel algorithms
so that the size of the data chunk sent by the master processor
to each worker processor was adaptively established in run-
time, taking into account the relative speed of each heteroge-
neous processor and the capacity of communication links. As
we can see from Table III, the measured times were slightly
higher than those reported for 16 processors on Thunderhead,
which is a homogeneous system made up of identical proces-
sors and communication links. However, we experimentally
tested that load balance among the different processors in the
heterogeneous network was highly efficient, as a consequence
of our adaptive data partitioning and distribution framework.
With the above considerations in mind, results in Table III are
very encouraging, in particular, given the inherent complexity
of heterogeneous, Grid-like networks of computers.

Although Tables II and III demonstrate that the proposed
parallel implementations can be effectively ported to large-
scale multiprocessor systems, many applications demand a
response in real-time. In this regard, onboard compression
systems for hyperspectral imagery are essential in order to
overcome data downlink restrictions introduced by the ever
growing dimensionality of remotely sensed data sets. Although
the idea of mounting clusters/networks of workstations aboard
airborne and satellite hyperspectral imaging facilities has been
explored in the past, mission payload requirements clearly
demand low-weight electronics and hardware components.
As an efficient alternative to the implementations discussed
above, we have tested the performance of our P-FINDR/P-LSU
data compression algorithm on the considered Xilinx Virtex-

II FPGA. First, we conducted several experiments to evaluate
the performance of the compression algorithm and observed
that compression ratios above 60 : 1 could be achieved with
no apparent degradation in the quality of spectral information
(including mixed pixels and sub-pixel targets). The algorithm
mapped nicely on the FPGA, and was able to compress the
full AVIRIS Cuprite data in only 40 milliseconds. Out of
the total 33, 792 slices available in the FPGA, only 36%
were required for the implementation of our algorithm, which
indicates that there is still room in the FPGA for additional
implementations. The reconfigurability of FPGA boards also
opens the appealing possibility of adaptively selecting one out
of a pool of algorithms to be applied on the fly, i.e., as the
data is collected, from a ground control station on Earth.

VI. CONCLUSIONS

In this paper, we have examined different implementations
of hyperspectral image processing algorithms, with the pur-
pose of evaluating the possibility of obtaining results in valid
response times and with adequate reliability across several
types of last-generation parallel computing platforms. Exper-
imental results demonstrate that massively parallel Beowulf
clusters and low-cost heterogeneous networks of workstations
offer an unprecedented opportunity to explore methodologies
in fields (e.g., data mining) that previously looked to be
too computationally intensive due to the immense volumes
of information in remote sensing databases. To address the
real-time computational requirements introduced by many
applications, we have also developed an FPGA-based al-
gorithm for onboard, hyperspectral data compression. This
paper constitutes a first step towards a standardized, cross-
platform assessment of parallel and distributed algorithms for
hyperspectral imaging.
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