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By providing both spatial and temporal information, remote 
sensing may function as a cost-effective source of data for preci-
sion agriculture with potentially positive benefits for both the 
farmer and the environment.1,2 amongst other bio- physical 
variables, the leaf area index (LAI) is an important indicator of 
actual crop growth, because it is related to ground coverage and 
photosynthetically active radiation (Par) interception efficiency.3,4 
remotely sensed maps of the LAI are therefore considered 
helpful for decision making and yield predictions.5,6 To assess 
crop productivity at regional to global scales, mapped temporal 
LAI profiles were, for example, assimilated into mechanistic crop 
growth models7 or integrated into Par interception formulae.8

The canopy LAI can be spectrally estimated by means 
of empirical–statistical methods9,10 or through inversion 
of  physically-based radiative transfer models.11–15 Most 
 empirical–statistical methods rely on vegetation indices, either 
formulated using classical red and near infrared (nIr) wave-
bands16 or optimised through band selection in the hyper-
spectral feature space.17–19 Still other studies use features 
in the red-edge to estimate canopy bio-physical variables20,21 
or establish multivariate regression approaches.22–24 The 
empirical–statistical approaches have the advantage that they 
are relatively simple and easy to use, while reasonably accu-
rate results can be obtained. The main drawbacks of these 
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methods relate to the time-consuming and labour-intensive 
collection of in situ calibration datasets, and the fact that the 
derived relationships are site- and sensor-specific.3 In the 
context of hyperspectral measurements, a sub-optimal use 
of the available spectral information is evident, in particular 
if the available spectral information is solely used for building 
(two-band) vegetation indices.

Compared to empirical–statistical approaches, radiative 
transfer models (rTM) consider explicitly the physical proc-
esses of light scattering and absorption within a plant canopy.25 
Hence, rTMs can, in principle, be more easily transferred to 
different measurement conditions and crop types and are 
particularly well suited for hyperspectral imaging spectros-
copy26 and multi-directional data sets.27 at least three sub-
models are required for using rTM:28 (i) a model describing 
the leaf optical properties, (ii) a model describing the spec-
tral reflectance of the underlying soil background and (iii) a 
model describing the scattering and absorption processes 
within the canopy. To model the leaf optical properties, several 
well-established models are available, such as ProSPECT,29 
lIBErTY30 or SloP.31 likewise, for simulating the radiative 
transfer in canopies, more or less complex models have been 
developed depending on what type of canopy is represented 
(for an overview see references 32 and 33). for homogeneous 
agricultural crops, the most widely used canopy model is the 
one-dimensional SaIl model.26,34,35 for simulating complex 
and mixed forest stands, ray tracing models such as DarT 
were developed.36 as these models are parameter intensive, 
combinations of geometrical–optical and analytical models 
such as InforM were published, requiring less parameters to 
be specified.37 for large scale sensors typically recording the 
spectral signature of mixed pixels, weighting solutions were 
developed (for example reference 38). To mimic the spectral 
reflectance of the underlying soil background, most studies 
simply scale a (typical) soil reflectance spectra15 or rely on 
the use of previously established soil lines.39 fewer studies 
developed and used soil reflectance parameterisations, for 
example based on Hapke’s soil phenomenological model.40,41

Besides the difficulty to correctly parameterise the under-
lying soil background reflectance, one has to deal with two 
main problems when using rTMs.25 first, an analytical solution 
of the inverse problem generally does not exist. Thus, a suit-
able inversion strategy has to be established.11,42 Second, the 
inversion process is generally ill-posed.12,43 The ill- posedness 
of the inverse problem leads to unstable model inversions, 
since important model parameters [especially LAI, soil bright-
ness and the average leaf inclination angle (ALA)] counter-
balance each other.44,45 To regularise the inversion, one may 
use prior information, for example derived from knowledge 
of crop type and development stage.12,25 alternatively, it is 
possible to obtain additional information from the data itself, 
for example by analysing the colour texture of pixels repre-
senting the same agricultural field.43,46

To invert rTMs, a range of techniques has been proposed 
(for reviews see references 47 and 48). Early attempts 
relied on numerical inversion procedures.11,49 With multiple 

 initialisations, the trapping in local minima can be avoided 
leading to stable results. However, this technique is too time 
consuming for operational applications. for this reason most 
studies rely on look-up-tables, luT15,39,50,51 or artificial neural 
nets (nn).13,52–54 Both inversion techniques use pre-calculated 
(synthetic) databases, speeding up the inversion process. In 
the luT approach the solution is directly found in the reflect-
ance space, by selecting the best match between the meas-
ured reflectance values and those simulated by the rTM.25 The 
nn approach consists in calibrating an inverse model over the 
synthetic learning data set. In other words, a response surface 
is fitted between the reflectance values and the variable(s) 
of interest (here LAI). look-up-tables are easy to implement. 
Drawbacks relate to the relatively large luTs required if a 
dense sampling of numerous rTM parameters is necessary. 
The nn approach has the advantage of being extremely fast. 
a drawback of nns relates to the fact that overfitting might 
occur, leading to poor generalisation. This happens in partic-
ular if too complex networks are employed,52,54 or if the noise 
structure of the remote sensing data is not correctly taken into 
account or even ignored.52,55,56

The main objective of the study was to present and test a 
robust rTM inversion procedure based on neural networks. 
In contrast to previous studies, special care was taken (1) to 
correctly mimic the soil background spectral variability found 
in the study area and (2) to streamline the rTM-generated 
synthetic database so that a small, compact net could be 
used for “learning” the mapping function. To correctly model 
the soil background reflectances, a simple soil reflectance 
parameterisation was calibrated using an existing (regional) 
soil database. To streamline the database of synthetic canopy 
reflectance spectra for nn training, only the cases that belong 
both to the simulated and the actual measurement spaces 
were retained (as suggested by Baret and Buis25 and Baret et 
al.38). The approach was validated using destructively sampled 
laI measurements taken four times in 2000 in several winter 
wheat fields in the western part of Germany.

Material
In 2000, four commercial winter wheat fields in the Trier area 
(Germany) were probed (figure 1). Measurements were taken 
between mid-april and end of June (Julian day: 115, 129, 160 
and 172). The test area is situated nW of Trier in an agricul-
tural region called the “Bitburger Gutland”. Eutric cambisols 
from airblown silt over limestone are the typical soils of the 
area.57 on each measurement date, a 5 × 5 m plot was estab-
lished in homogeneous parts of the wheat fields. Within these 
plots, three sub-plots were randomly chosen (40 × 40 cm) in 
which spectral and corresponding laI measurements were 
performed. The measurements from the three sub-plots were 
averaged to derive the observations used for modelling. on 
the first day of the measurement campaign, plot 4 could not 
be probed. Hence, the final data set consisted of 15 LAI and 
reflectance measurements.
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LAI measurements
To derive the LAI observations (m2 m–2), the above-ground plant 
material was harvested from the 40 × 40 cm sub-plots and 
brought to the laboratory. no distinction between leaves and 
other green plant material (for example, stems) was made, 
implying that the term LAI should, in the context of this study, 
be understood as plant area index (PAI). In the laboratory, the 
one-sided surface of the fresh material was determined using 
a commercial planimeter. from these measurements, the 

sub-plot (and plot-averaged) LAI was derived. Measured LAI 
values at plot level ranged between 1.8 and 8.1, with mean of 
5.1 and standard deviation of 2.2 (Table 1). The temporal evolu-
tion of the measured LAIs for the four winter wheat fields is 
shown in figure 2(a).

Canopy reflectance measurements
Before cutting the plants for the LAI measurements, the top 
of canopy (TOC) reflectance was recorded for each sub-plot. 
Spectral data were recorded between 350 nm and 2500 nm 
using an aSD field Spec Pro spectroradiometer (foV 25°) with 
a spectral resolution of 1 nm. The hand-held measurements 
were made from a height of about 1.5 m during favourable 
weather conditions around solar noon. The integration time 
was set to 10 s. no corrections as to the spatial non-uniformity 
of different detectors within the aSD instrument were applied, 
albeit recent research has shown that this issue can have 
significant implications.58

aSD readings were converted to bi-directional reflectances 
by means of a Spectralon® reference panel of known reflec-
tivity. for each sub-plot, five reflectance readings were taken 
and averaged, allowing the eventual detecting of outliers. a 
moving SG filter59 with a window width of ±5 nm and a poly-
nomial of second degree was applied to eliminate sensor 
noise. after smoothing, the spectra were averaged across 
the three sub-plots. for modelling, 13 bands were selected 
in proximity to the 10 “optimum bands” proposed by fourty 

Figure 1. The study region was the “Bitburger Gutland” in 
Germany, north-west of the city of Trier.

Figure 2. Field observations available for the 2000 winter wheat study: (a) temporal profiles of destructively sampled leaf area indices 
(LAI) for the four wheat plots (note the missing observation of field number 4), (b) corresponding field-measured canopy reflectance 
spectra in 13 wavelengths specified in Table 2, (c) experimental relation between LAI and NDVI (dots) together with an exponential fit 
(line).

Julian day (JD) Plot number
All 115 129 160 172 n°1 n°2 n°3 n°4

min 1.81 1.81 4.94 3.60 1.99 3.84 2.10 1.81 2.73
max 8.12 3.84 7.73 8.12 7.63 8.12 6.65 4.94 6.59
mean 5.05 2.58 6.22 6.24 4.54 6.83 5.25 3.08 5.04
stdv 2.22 1.10 1.18 1.90 2.64 2.01 2.13 1.48 2.04
nobs 15 3 4 4 4 4 4 4 3

Table 1. Descriptive statistics of the destructively measured leaf area index (LAI) of four winter wheat plots in year 2000. The table reports 
the minimum value (min), maximum (max), mean (mean), standard deviation (stdv) and the number of observations (nobs). Each observation 
corresponds to the average of three sub-plot measurements.
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and Baret60 plus three additional bands in the visible (corre-
sponding to the central wavelengths of landsat bands 1 to 3). 
The 13 wavelengths were fixed to the central wavelengths of 
the nearest HyMaP channels, for eventual later application of 
the trained network to the widely flown HyMaP sensor (Table 
2). The measured canopy spectra in these wavelengths are 
shown in figure 2(b). figure 2(c) gives an idea of the scatter 
between the field-measured LAIs and normalised difference 
vegetation index (NDVI).

Methods
The extensively exploited ProSaIl radiative transfer model 
was used to retrieve the LAI from the spectrometer data40 
(http://teledetection.ipgp.jussieu.fr/prosail/). ProSaIl is a 
combination of the SaIlH canopy reflectance model34,61 and 
the ProSPECT leaf optical properties model, version 4.29 Both 
sub-models are relatively simple and require only a limited 
number of input parameters. ProSaIl was successfully vali-
dated in forward and inverse modes, and across different 
crops including maize, sugar beet and wheat.26,33 To mimic 
the reflectance variability of the underlying soil background, 
a simple soil parameterisation (SoIlEMP) was developed and 
coupled with ProSaIl. Model inversions were performed using 
artificial neural nets. To streamline the simulated training 
data, we followed Baret and Buis.25 The general approach is 
outlined in figure 3. The different steps will be detailed in the 
following sub-sections.

Soil parameterisation
The canopy reflectance is known to be modulated by the under-
lying soil brightness.3 The soil effect is strongest for small 
canopy densities (LAI < 3) and in spectral regions with high leaf 
transmittance (figure 4). To correctly mimic the soil reflect-
ance variability found in the study region, a simple soil param-
eterisation (SoIlEMP) was developed. SoIlEMP considers (1) 
changes in the overall brightness and (2) changes in the shape 
of the reflectance curves related to variations in the inorganic 
carbon content of the soils in the study region. other factors 
possibly modifying the spectral shape of the soil reflectance in 
the study area were neglected.

To calibrate the SoIlEMP parameterisation a soil database 
of the study region was used.57 The database covers soils from 
the entire study region and consists of 134 soil spectra at 1 nm 
resolution and associated chemical measurements. from the 
database, the average soil spectra (r*

soil(l)) was calculated. This 

Spectral sampling for 
 radiative transfer  modelling 

(forward and inverse)

Corresponding channel 
number of the HyMap 

sensor
457; 549; 656; 896; 1089; 
1207; 1293; 1527; 1706; 2042; 
2201; 2254; 2288

3; 9; 16; 33; 46; 54; 60; 
74; 88; 102; 111; 114; 116 

Table 2. Spectral sampling applied to the experimental study. In 
total, 13 wavelengths were used (left). The listed wavelengths (in 
nm) are close to the ten “optimum” wavebands proposed by Fourty 
and Baret.60 The first three channels (corresponding to Landsat TM 
bands 1 to 3) were added to cover the visible range. Right: corre-
sponding HyMap channel number.

Figure 3. General flowchart of the NN-based inversion of the 
PROSAIL radiative transfer model. In the first step, the regres-
sion coefficients of the SOILEMP soil reflectance param-
eterisation are calibrated. For this purpose, measured soil 
reflectance spectra and laboratory measured soil inorganic 
carbon contents (Cinorg) are used [Equations (1) and (2)]. In 
the second step, the randomly drawn parameters (PARA) of 
the three sub-models representing the leaf, soil and canopy 
optical properties are used to generate a synthetic canopy 
reflectance database (REFL). In the third step, the synthetic 
canopy reflectance database (REFL) is streamlined (S), so that 
only those simulations are retained that match with measured 
spectra. The reduced database is hereafter subjected to a 
principal component analysis (PCA), yielding the transforma-
tion matrix (T) and the first six principal components (PC). 
These PCs are used in step 4 to train the neural network. Once 
trained, the neural net is applied in step 5 to measured canopy 
spectra, previously transformed into PCs to yield the estimated 
LAI (LAIest). These estimated LAI can be compared with the field 
measured LAI (LAImes) to assess the accuracy of the RTM inver-
sion for field measured canopy reflectance spectra.

http://teledetection.ipgp.jussieu.fr/prosail/
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average reflectance spectrum was then (iteratively) fitted into 
each measured soil spectra using a (multiplicative) brightness 
factor (SCalE). The residues (Rsd) between the fitted (scaled) 
and the original soil spectra were calculated for each wave-
length and modelled as a function of the inorganic carbon 
content (Cinorg; g cm–3):

 Rsd(l) = I(l) + S(l) × Cinorg (1)

The soil parameterisation therefore scales and shapes the 
average soil spectrum using a brightness factor (SCalE) and 
the inorganic carbon content (Cinorg):

 rsoil(l) = r*soil(l) × SCALE + Rsd(l) (2)

with I(λ), S(λ) and r*
soil(λ) being spectral constants.

albeit simple, SoIlEMP explained the major part of the 
total variance in the (regional) soil database [figure 5(a)]. 
The  coefficient of determination (R2) between measured soil 
reflectances and fitted values was 0.999 with a root mean 
squared error (RMSE) of 0.003 reflectance units (nobs = 17.018). 
only a few soil samples had spectral properties that were 
modelled with R2 lower than 0.995 [figure 5(b)], and most 
wavelengths were modelled with R2 > 0.98 [figure 5(c)]. lower 
accuracies were found in the visible spectral region, as the 
effects of iron oxides and other soil constituents that modify 
the soil reflectance at shorter wavelengths62–64 were not taken 
into account.

Direct and inverse canopy reflectance 
 modelling
Generation of training patterns
The coupled ProSaIl+SoIlEMP canopy reflectance model 
was run in forward mode with 5000 randomly chosen input 
parameter sets (Table 3). The distributions of the input param-
eters were defined according to the literature to represent 
more or less erectophile wheat canopies (ALA ~ 70°).42 a small 
random error was added to the simulated spectra to mimic 
sensor noise.38

Streamlining the training database and data 
compression
To prevent network overfitting, it is recommended to restrict 
as much as possible the number of neurons in the hidden 
layer.13,65 With compact networks, however, one automatically 
loses flexibility in the fitted response surface. This loss in flex-
ibility will be especially harmful if the reflectance/parameter 
spaces of the synthetic data set are unnecessarily large. In this 
case the nn will be forced to learn the relationship between 
input reflectances and rTM parameters outside the space it 
will encounter during network application. This will lead to a 
loss of approximation power in the reflectance space occupied 
by the reflectance measurements. following Baret and Buis,25 
we thus streamlined the synthetic database generated by the 
rTM. among the 5000 simulated spectra only those cases 
were retained that belong both to the simulated and actual 
measurement spaces. This was achieved by computing the 
mismatch (here minimum RMSE) between the ensemble of 

Figure 4. Sensitivity analysis illustrating the strength of the 
soil background effect on simulated TOC reflectances in 128 
HyMap channels and for ten different canopy densities (here 
expressed as LAI). A typical vegetation spectrum is indicated 
for orientation purposes. The strength of the soil background 
effect is expressed as R2 between soil brightness and TOC 
reflectance for a given spectral band and within a specific LAI 
range (for example, between 0 and 0.5, 0.5 and 1.0, ..., 4.5 
and 5.0). The synthetic database (nobs: 5000) specified in Table 
3 was used for analysis. Note that the wavelengths are only 
indicated for orientation purposes; the graphs are constructed 
band-by-band.

Figure 5. Calibration results of the empirical SOILEMP soil reflectance parameterisation. (a) Scatter plot between measured and fitted 
soil reflectances pooled across all soil samples and all wavebands, (b) sample-specific coefficient of determination (R2) between meas-
ured and fitted soil spectra, (c) wavelength-specific R2 between measured and fitted soil reflectances across all soil samples.
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actual measurements and each case in the simulated data-
base. Simulated spectra that were not matched by measured 
data were discarded. In this way, roughly 3000 reflectance 
spectra were retained. This (reduced) synthetic database was 
subjected to a PCa. The first six PCs covered more than 99.6% 
of the total spectral variance. only these PCs were used further. 
as a matter of course, later inversion of measured spectra 
required the same wavelength selection and compression 
(indicated through dashed lines in the flowchart of figure 3).

network training
The nn was set up under Matlab 7 (The Mathworks, natick, 
Ma, uSa) in a way that five parameters of the canopy reflect-
ance model were estimated simultaneously: LAI, canopy chlo-
rophyll content, leaf water content, leaf dry matter content and 
the soil brightness factor. By estimating five variables simul-
taneously, over-specialisation was avoided. analysis, however, 
considered only LAI as no reference measurements were avail-
able for the remaining variables. The nn was trained using the 
streamlined and compressed database described before. a 
compact network with just two neurons in the hidden layer was 
chosen. for robust training, the synthetic data set was divided 
into training data (2⁄3 of samples) and test data (1⁄3 of samples). 
The training data was used for computing the gradient and 
updating the network weights and biases. The error on the 
test data set was monitored during the training process. When 
the test data error increased for a specified number of itera-
tions, the training was stopped, and the weights and biases 
at the minimum of the test data error were returned. This 
way of network regularisation is known as “early stopping” 
and effectively prevents overfitting.50,65 further details of the 

network architecture and the employed network training are 
summarised in Table 4.

Baseline comparison: NDVI
for comparison purposes, the classical NDVI16 was used. To 
estimate LAI from NDVI, it was assumed that the relationship 
between the canopy LAI and the NDVI can be described by the 
following exponential relationship:25

 NDVI = NDVI¥ + (NDVIsoil – NDVI¥) × e–k × LAI (3)

To make the results of the empirical approach comparable 
to those of the physically-based technique, a jacknife approach 
(leave-one-out) was chosen for modelling. The three param-
eters of Equation (3) were fitted iteratively using 14 out of 15 
observations. The inverse of Equation (3) was then used to 
estimate the LAI from the NDVI value of the left-out sample. 
In case the measured NDVI was higher than the estimated 
infinite NDVI, the estimated LAI was set to the upper bound 
(LAI = 10). after calibration of the 15 empirical models, the 
cross-validated RMSE and R2 were calculated between the 
field measured LAI and the cross-validated estimates.

Results
The network-based inversion of the extended ProSaIl canopy 
reflectance model was generally successful (Table 5). The 
estimated LAIs compared well with the independent reference 
measurements, with most points falling close to the 1 : 1 line 
(figure 6). In total, 87% of the variance in the independent refer-
ence measurements was explained by the canopy  reflectance 

RTM parameter Abbreviation Units Distribution Rangea

Canopy parameter (SaIlH)

leaf area index LAI m2 m–2 uniform 0–10

average leaf angle ALA ° (degree) normal 70 ± 3

Hot spot parameter S m m–1 normal 0.1 ± 0.02

leaf parameter (ProSPECT)

leaf chlorophyll content Cab g cm–2 uniform 10–80

leaf water content Cw cm uniform 0.004–0.044

leaf dry matter contentb Cm g cm–2 normal 0.0008–0.016

leaf structure parameter N no dimension normal 2 ± 0.34

Soil parameter (SoIlEMP)

Soil brightness SCalE no dimension normal 1 ± 0.14

Inorganic carbon content Cinorg g cm–3 uniform 0–6

aIn cases, where the distribution is uniform. otherwise, the values indicate the mean ± std 
bCm is drawn such that the relative water content [RWC = Cw/(Cw + Cm)] is 0.8 ± 0.02.

Table 3. Specification of the parameters of the PROSAIL+SOILEMP model used to simulate TOC reflectance spectra in 13 wavelengths for 
modelling erectophile winter wheat canopies (nadir view; qz = 45°). A total number of 5000 parameter sets were randomly generated.
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model (nobs = 15), with a RMSE of 0.89 (LAI; m2 m–2) (Table 5). 
This corresponds to a relative RMSE of about 17%. When the 
NDVI was used for LAI retrieval, the cross-validated RMSE 
was more than twice as high: 1.91 m2 m–2 with R2 of 0.46. The 
classical NDVI approach failed in particular for samples with 
LAI > 3.5 due to saturation effects [figure 2(c)].

although field measured LAI were as high as LAI ~ 8, satura-
tion effects were only small when using the rTM approach 
(figure 6). However, a general tendency to underestimate LAI 
was noticed (i.e. Dmean = 0.32) (Table 5). The bias was particu-
larly strong during stem elongation (JD 129) suggesting that 
during this period the selected ALA (70 ± 3°) was too low. for 
the four individual wheat plots, the RMSE varied between 0.52 
(plot 3) and 1.28 (plot 4) with R2 between 0.69 (plot 2) and 0.99 

(plot 1) (Table 5 and figure 7). as only three to four measure-
ments were available per wheat field, these differences should, 
however, not be overvalued.

Discussion
accurate forward modelling is of prime importance when 
using radiative transfer models for LAI retrieval.49 The rTM 
should be well adapted for the type of canopy studied (for 
example regarding the canopy architecture) and should be 
correctly parameterised. for relatively homogeneous crops 
such as the studied winter wheat plots, ProSaIl is considered 
well suited.26,33 In fact, several studies demonstrated its good 

NN architecture NN training
Network type 
fully interconnected feedforward network 
 
Number of layers (and associated neurons) 
Three layers: input layer (six neurons), hidden layer (two 
neurons) and output layer (five neurons; only the output 
neuron representing the LAI was used for subsequent 
analysis) 
 
Transfer functions of neurons in hidden and output 
 layers 
Tan-sigmoid (hidden neurons) and linear (output neurons)

Training patterns 
linearly transformed synthetic ProSaIl+SoIlEMP 
canopy spectra (13 wavelengths reduced to six PCs) and 
associated model parameters (nobs ~ 3000) 
 
Backpropagation training algorithm 
levenberg–Marquardt algorithm 
 
Network performance function 
average squared error between network outputs and 
 targets 
 
Network generalisation 
automatic stop of network training when error on inde-
pendent test data set increased (“early stopping”) 
Simultaneous fitting of several output variables to prevent 
overspecialisation 
use of noisy training patterns to avoid overfitting 
 
Number of training iterations 
50 or less (i.e. when “early stopping” criterion applies)

Table 4. Main characteristics of the artificial neural net (MATLAB’s Neural Network Toolbox; Reference 65) employed for RTM inversion.

Julian day (JD) Plot number
All 115 129 160 172 n°1 n°2 n°3 n°4

R2  0.87  0.95  0.82  0.88  0.99  0.99  0.69  0.93  0.85
RMSE  0.89  0.57  1.37  0.77  0.51  0.58  1.07  0.52  1.28
PRMSE  17.6  22.2  22.1  12.3  11.1  8.5  13.1  16.9  25.4

Dmean  0.32  –0.53  1.22  0.49  –0.11  0.32  0.27  –0.00  0.83

nobs 15 3 4 4 4 4 4 4 3

Table 5. Statistics between independent reference LAI measurements and estimated LAI. The estimates were obtained using a neural net 
trained on linearly transformed synthetic canopy reflectance spectra, generated by the extended PROSAIL radiative transfer model. The 
reference measurements are from an independent validation data set (“Bitburger Gutland”). The table reports the coefficient of determina-
tion (R2), the root mean squared error (RMSE), the percental root mean squared error (i.e. PRMSE = RMSE / mean), the difference of mean 
[i.e. Dmean = mean(measured) – mean(estimated)] and the number of observations (nobs).
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simulation power both in the spectral domain and regarding 
the bidirectional reflectance distribution function (BrDf).33 
To further increase the simulation accuracy of the rTM in 
the forward mode, a regional soil reflectance parameterisa-
tion was developed and coupled with ProSaIl (figure 5). as 
demonstrated by a small sensitivity analysis (figure 4), these 
efforts are justified by the strong impact of the underlying soil 
brightness on the simulated canopy reflectance, in particular 
for wavelengths with high leaf transmittance (for example in 
the nIr) and for low to medium density canopies. Through 
calibration of the regional soil parameterisation, we were 
able to better mimic the spectral effects of the  underlying 

soil  background compared to the usual approach which 
simply scales a given soil spectrum. Compared to the use 
of more sophisticated soil reflectance models, for example 
based on Hapke’s theory,41 the proposed approach is easier to 
 implement.

To improve the inversion of rTMs and to prevent bias in the 
estimated model parameters, an appropriate band selec-
tion is recommended.37,47,66 We used as a basis a (10-band) 
set developed on ProSaIl by fourty and Baret60 (Table 2). 
Three bands in the visible were also added to this band set 
to cover this important spectral domain. Before modelling, 
the 13 bands were further condensed through PCa. The 
concentration on the most pertinent spectral bands avoided 
eventually occurring problems with bands not well simulated 
by ProSaIl.15,39 The use of a small number of (uncorrelated) 
spectral inputs is generally recommended in nn-based 
model inversions.47

The inversion of canopy reflectance models is seriously 
hampered by the ill-posedness of the inverse problem.25,67 The 
ill-posedness results mainly from counterbalancing effects 
between LAI, average leaf angle and soil brightness.43 With the 
present study, problems were minimised by fixing the average 
leaf angle (ala) to a value representative for erectophile wheat 
canopies (Table 3). In an operational application of (hyperspec-
tral) remote sensing, such a simple solution of the ill-posed 
inverse problem is unrealistic as a perfect knowledge of crop 
type and development stage cannot always be asserted. This 
makes continued research in this area necessary.46,68 This was, 
however, out of the scope of the present study. The good results 
obtained with a unique ala value of about 70°  demonstrate 

Figure 6. Scatterplot between modelled and independent 
LAI measurements. For modelling, the PROSAIL model was 
inverted using the proposed NN-based technique.

Figure 7. Time profiles of modelled (PROSAIL inversion) and measured LAI for four winter wheat plots in 2000.
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that this value is appropriate for winter wheat during most of 
the growing cycle (except stem elongation).

neural nets are recognised as universal function approxi-
mators.69 Their speed makes them particularly appealing 
candidates for processing large amounts of data encountered 
in imaging spectroscopy.70 However, to prevent network over-
fitting, the number of neurons in the hidden layer must be kept 
low. a drawback of compact networks is, of course, that they 
are less flexible concerning the fitted response surface. This 
loss in flexibility will be especially harmful if the reflectance/
parameter spaces of the synthetic data set are unnecessarily 
large. In this case the nn will be forced to learn the relation-
ship between input reflectances and rTM parameters outside 
the space it will encounter during network application. This will 
lead to a loss of approximation power in the reflectance space 
occupied by the reflectance measurements. following Baret 
and Buis25 and Baret et al.,38 in the present study the synthetic 
database generated by the rTM was streamlined using the 
field-measured reflectance spectra. This enabled using a 
very compact network with only two hidden neurons (Table 4), 
while keeping a good learning behaviour. overfitting and over-
specialisation were further reduced through a number of other 
recommended techniques:38,53,55,70 (i) early stopping, (ii) simul-
taneous retrieval of several rTM parameter and (iii) addition of 
noise to the synthetic spectra before network training.

The obtained RMSE of 0.89 m2 m–2 across four winter wheat 
fields and four measurement dates (Table 5) confirms the 
findings of several previous studies, for example RMSE = 0.8519 
and 0.64 for wheat,51 0.44 for wheat, maize and sunflower,71 
and 0.74 for wheat, maize and barley14 to mention only the 
most successful studies. only under exceptional circum-
stances, errors (here relative RMSE) lower than 10% can be 
achieved; more realistic errors seem to be between 10% and 
20%. on the other hand, our study clearly demonstrated that 
the physically-based approach using rTM outperformed the 
classical NDVI. for the latter approach the RMSE was more 
than twice as high as compared to the rTM inversion. In the 
jacknife approach, for several samples no adequate (exponen-
tial) models could be developed, due to the evident saturation 
effects [figure 2(c)].

a more detailed look on the rTM-based results shows 
that most points fall relatively close to the 1-to-1 line (figure 
6) with, however, some noticeable (negative) bias (Table 5). 
Part of this bias must be attributed to the fact that the field 
sampling included both green leaves and stems. Thus, in the 
stricter sense, the reference surfaces correspond to a “plant 
area index” (PAI) instead of to a “leaf area index”, with PAI > LAI. 
Concerning the spectral signature, however, a given stem 
surface has a much smaller impact compared to the same 
amount of leaves, because of their more or less vertical orien-
tation. This fact probably explains the observed offset between 
the field measured “LAI” and the retrieved values, observed for 
many of the higher LAI values. a second factor explaining the 
observed underestimation concerns the selected value of the 
average leaf angle. The ALA value was fixed to 70° independent 
of phenology. Such a fixed ALA is probably not appropriate 

for all observation dates. In fact, figure 7 and Table 5 show 
that the deviations between observed and simulated LAI were 
particularly strong during stem elongation (JD 129). Probably, 
during this period the selected ALA (70 ± 3°) was too low. a 
strong underestimation of LAI during the reproductive period 
was also found by Haboudane et al.19 no efforts were under-
taken to vary ALA as a function of plant phenology, mainly 
because not enough samples were available.

Conclusions
The study confirmed that hyperspectral information is neces-
sary to derive winter wheat LAI with acceptable accuracy 
from spectral data. The classical two-band NDVI failed to 
correctly estimate LAI. To fully exploit available hyperspectral 
 information, the use of radiative transfer models is preferred 
over empirical techniques (for example, PlS, PCr or MlSr). 
This statement is supported by several facts: (i) rTMs allow 
more physical insight into the system, (ii) the non-linear 
relations between canopy variables and spectral–directional 
features are implicitly taken into account, (iii) different band 
settings and observation geometries can be easily handled 
and (iv) the rTMs rely, to a lesser extent, on in situ data for 
model calibration.

our results prooved that neural nets can be efficiently used 
for rTM inversion. However, a successful implementation of the 
network-based approach requires some attention. Care is neces-
sary as these universal function approximators tend to overfit the 
data. This happens generally if too many neurons in the hidden 
layer are used. In this respect, the described approach proofed 
successful. The streamlined synthetic database permitted the 
development of a compact and robust neural net with only two 
neurons in the hidden layer but a good generalisation capacity. 
Compared to completely independent reference measurements, 
the LAI was estimated with a R2 of 0.87 and a RMSE of 0.89 m2 m–2 
(nobs = 15). although the field measured LAIs were as high as 
LAI ~ 8, almost no saturation effects were observed. Moreover, 
the temporal patterns were also relatively well reconstructed. 
only during stem elongation, significant undererstimations of 
the  estimated LAIs were observed, highlighting the need for ALA 
values varying with crop phenology.

The relatively high accuracies found in the study demonstrate 
that the coupled SaIlH+ProSPECT canopy reflectance model 
is well suited for the estimation of winter wheat LAI and its 
temporal evolution. The effective use of the canopy reflectance 
model required, however, an accurate parameter isation of the 
underlying soil reflectance. In this study, a simple empirical 
soil reflectance parameterisation was integrated into ProSaIl. 
Prior to integration, the parameterisation was calibrated on 
soil spectra typical for the study region. at present, the param-
eterisation considers variations in overall brightness (non-
specifically related to changes in soil moisture, soil roughness 
and organic carbon content) and allows some variations in 
the spectral shape related to the soil composition (here inor-
ganic carbon content). In particular for studying incomplete 
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canopies, a better description of the underlying soil optical 
properties seems mandatory. future research should focus on 
the development of a (physically-based) soil reflectance model 
allowing the simulation of spectral– directional reflectances 
with only a few parameters, similar to the ProSPECT model 
for leaf optical properties.
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