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Algorithm for the Instantaneous Frequency
Estimation Using Time-Frequency
Distributions with Adaptive Window Width

LJub8a Stankow, Senior Member, IEEEVIadimir Katkovnik, Member IEEE

Abstract—A method for minimization of the mean square error II. WINDOW WIDTH OPTIMIZATION
(MSE) of the instantaneous frequency estimation using time-
frequency distributions, in the case of a discrete optimization
parameter, is presented. It does not require knowledge of the _ _ .
estimation bias. The method is illustrated on adaptive window a(nl) = s(nT) + ¢(nT), s(t) = Aexp(jé(t)) (1)
width determination in the Wigner distribution.

Consider a noisy signal

with s(nT") being a signal and(nT") being a white complex-
Index Terms—Estimation, instantaneous frequency, spectral valued Gaussian noise with mutually independent real and
analysis, time-frequency analysis, Wigner distribution, window imaginary parts of equal variance$/2. Consider the problem
optimization. of instantaneous frequencw(t) = ¢/(¢), estimation from
discrete-time observations (1). We will assume that the IF
|. INTRODUCTION estimation is based on maximization of a time-frequency

NSTANTANEOUS frequency (IF) estimators based OHistribution; e.,
maxima of time-frequency representations have variance &(t) = arg[ max WD(t,w)] (2)
and bias that are highly dependent on the lag window width. wCle

Provided that signal and noise parameters are known, \Ryh Q. = {w: 0 < |w|<7/(27)} being the basic interval
minimizing the estimation mean squared error (MSE), th@ong the frequency axis. The time-frequency distribution is
optimal window width may be determined. However, thosgenoted by D(#,w), since the WD is used for the algorithm
parameters are not available in advance. It is especially tig¢monstration. However we wish to emphasize that a wide
for the IF derivatives that. determme the estimation biagiass of time-frequency representations can be used in (2).
Here, we present an adaptive algorithm, for the lag windowst A&(t) = w(t) — &(t) be the estimation error. The
width determination, that does not require knowledge of thgean squared erraB{(A&(t))2} is used for the accuracy
estimation bias. It is assumed that the window width tak@®aracterization at the given instantf the estimation errors
dyadic values. The discrete nature of the window widthre small then provided some quite nonrestrictive assumptions
is e§sent|al .for the algorithm d(_arlvatlon. Sl|d|ng pair-wiSehe mean squared error for a wide variety of the commonly
confidence intervals are used, instead of the intersectiqfiged time-frequency representations (e.g. the spectrogram, the
of all previous confidence intervals, considered in [4] angyp and its higher order, including polynomial, versions,

[5], from which the idea for the algorithm originated. Theys well as in many nontime-frequency problems), can be
efficiency of the algorithm developed here is illustrated on th%presented in the following form [5]-[7]:

Wigner distribution (WD) based IF estimator, [6]. Thus, this

letter may be considered as a theoretical supplement, which E{(L&(1)?) = % + B(t)R" (3)

resulted in a modified version, of the algorithm presented in K

[6]. The theory and algorithm presented here are not limiteghere 2 is a width of the symmetric lag window such that

to time-frequency analysis and may be quite generally usedt) = 0 for |¢t|>h/2; o%(h) = V/h™ and bias(t,h) =

for a window (bandwidth) selection in different problems. /B(¢)h» are the variance and the bias of estimation, re-
spectively. ParameteB(t) depends on the IF derivatives.
The window widthh is related to the number of samples as
N = h/T, whereT is the sampling interval. In particular,

Manuscript received December 23, 1997. The work of Starmkavils for the WD with the rectangular window: = 3,7 = 4, and
supported in part by the Alexander von Humboldt Foundation. The associdte = 6027/ A? in (3) [7], [6].

editor coordinating the review of this manuscript and approving it for |t is clear that the MSE (3) has a minimum with respect
publication was Prof. D. L. Jones.

LJ. Stankow is with the Ruhr University Bochum, Signal Theory Group,tO h. The correspondlng optlmal value df is given b_y
D-44780 Bochum, Germany, on leave from the University of Montenegréhe formulah,p () = [mV/(nB(¢))]* ™+, However, this

81000 Podgorica, Montenegro, Yugoslavia. . __relation is not very useful in practice, mainly because on the
V. Katkovnik is with the Statistics Department, University of South Africa, . ht-hand-side i . he bi d di

Pretoria, South Africa. right-hand-side it contains the bias pgrame%t) epending
Publisher Item Identifier S 1070-9908(98)06885-0. on the derivatives of the IF which is to be estimated. The

1070-9908/98$10.001 1998 IEEE



STANKOVIC AND KATKOVNIK: INSTANTANEOUS FREQUENCY ESTIMATION 225

main topic of this work is a development of the method that Proof: Provided thath.,, € H, the window widths
producesh,,(t) (or due to the discrete nature 6f a value belonging toH, can be represented as follows

of the window width as close as possible/ig, (¢)) without
using B(t). For the optimal window width according to (3),

assuming throughout the paper without loss of generality thgherep = 0 corresponds to the window width,,;, we are

h(p) :hopt2p7 = "'7_27_17071727"'

the bias is positive, the following holds: looking for. Note also that we use two indices for the window
. m widths, ones (in the form A,) which denotes the indexing
bias(t, hopt) = 4/ —0(hopt)- (4)  which starts from the narrowest window width, and the other

_ _ . p (used in the form of an argument; i.é(p) or D(p)) where
Asymptotically, at least, the IF estimai®,(t) is a random the indexing starts fronk,,, window width (whenp = 0).
variable distributed around(t) with bias(t, 2) and standard The bias and variance for aryp), according to (3), (4), may

deviationos(h). Thus we may write the relation: be rewritten as

|lw(t) — (@n(t) — bias(t, h))| < ro(h) (5) o(h(p)) =277 25 (hop),
where the inequality holds with probabilit#”(~<) depending bias(t, h(p)) —opn/2 To(h ) 9)
on parameters. ’ Von

Let us introduce a set of discrete window-width values, From (9) we can conclude that fgr < 0 the bias is

h € H, much smaller as compared to the variance, thus the estimate
H={h,lh, =ah,_1,s=1,2,3,---,J,a>1}. (6) wp(t) is spread around the exact valuét) with a small bias
. . . and large variance. The standard definition of a confidence
The following arguments can be given in favor of such gterval of the estimatéy, (1), for a givenh(p), is D(p) =
discrete set. First of all, the discrete scheme for window Widtr[@h(p) (t)— ko (h(p)), ) (t)+ra(h(p))]. In order to take into
is necessary for an efficient numerical realization. Secorgkcount the biasedness of the estimajg, (¢) the confidence

implementations of the time-frequency distributions are almogkeryal D(p) is modified in the following way:
always based on the FFT algorithms. The most common are

the radix-2 FFT algorithms that correspondate- 2, when set D(p) =[@ny)(t) — (k + Ar)a(h(p))

H g_ives the dyadic Window width s_chemles = hg2%. In the “Wn(py () + (5 + Ar)o(h(p))] (10)

realizations the smallest window width, should correspond )

to a small numbeN, of signal samples within it. For example,where A« >0 is to be found. o

for the radix-2 fast Fourier transform (FFT) algorithiNg = 4 It is obvious thato(t) € D(p) for p < 0 because in this

with N, = 2N,_1,s = 1,2,---,.J. case the bias is small and the segméitp) is wider than
Now we are going to derive an algorithm for the determil(p) @sAx>0; i.e., D(p) N D(p+1) # 0 for all p < 0

nation of the optimal window widtth,,,, without knowing (With probability P(x)). For p > 0 the variance is small but

the bias, using the IF estimates (2) and the formula for th@e bias is large. Itis clear that there always exists such a large

IF estimate’s variance only. It is based on the following thatD(p) N D(p+1) = @ for any givenAx.
statements. The idea behind of the algorithm is thats in D(p) can be
Let H be a set of dyadic window width values, i.e found in such a way that the largesfor which the sequence
a = 2 in (6). Assume that the optimal window width for of the pairs of the confidence interval3(p) and D(p + 1)
has at least a point in common js= 0. Such a value of

a given instantt belongs to this seth.,; € H. Define A exists b he bi dth X icall
the upper and lower bounds of the confidence intervals = eX|§ts ecause the o1as an .t € vanance are monotonically
_ : increasing and decreasing functionshofespectively. As soon

D, = [Ls,Us] of the IF estimates as ) . ) ; ;
as this value ofAx is found, an intersection of the confidence
Ly =&y, (t) — (5 + Ar)o(hs) intervals D(p) and D(p + 1) works as an indicator of the
U, =& (8) + (5 4+ Ar)o(hs) (7) eventp =0, i.e, the event wheth, = hqy is found. The
X _ _ _ _ algorithm given in the form (7), (8) tests the intersection
where;, (t) is an estimate of the IF, with the window  of the confidence intervals, where (8) is a condition that

width & = h,; and o (h;) is its variance. two sequential interval®, and D, is the last pair of the
Let the window width:,+ be determined as a width  confidence intervals having at least a point in common.
corresponding to the largest (s = 1,2,---,J) when Now let us find this crucial value aAx. According to the
two successive confidence intervals still intersect, i.e., above analysis, only three valuespof 0, 1, and2 along with
when the corresponding interval®(0), D(1), and D(2) should be
D, A Dopr1 #0 ®) considered. '!'he confidence intervdl¥0) and D(1) should
haveand the interval€(1) and.D(2) should not havet least
is still satisfied. a point in common. Assuming that relation (5) holds, consider
Then, there exist values efand Ax such thatD, N the worst possible cases for the corresponding bounds. These
Dsyy # 0 and Doy N Dy = () for s = s, worst-case conditions fab(0) and D(1) are that the minimal

whenh,+ = hept, With the corresponding probability  possible value of upper bound, denoted fayn{U(0)}, is
P(r) ~ 1 that (5) is satisfied. always greater than or equal to the maximal possible value of
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Fig. 1. Time-frequency analysis of a noisy signal. (a) Wigner distribution witk= 16. (b) Wigner distribution withV = 256. (c) Estimated instantaneous
frequency using the Wigner distribution wifti = 8. (d) Estimated instantaneous frequency using the Wigner distributionWith 256. () Wigner distribution
with adaptive window width. (f) Adaptive window width as function of time. (g) Estimated instantaneous frequency using the Wigner distributtba with
adaptive window width. (h) Absolute mean error as a function of the window width; line represents the mean absolute error value for the adaptiwelttindow

the lower bound denotethax{L(1)}. Analogous conditions  bias(h(1)) + (2x + Ar)o(h(1))

hold for D(1) and D(2). These conditions may be written as < bias(h(2)) — (26 + Ar)a(h(2)). (12)
min{U(0)} > max{L(1)}
max{U(1)} < min{L(2)}. (11) Having in mind (9), it can be verified that
According to (5) and (10) this results in — gn/2 1
AV /—2’"/2f (13)
bias(h(0)) + Aro(h(0)) > bias(h(1)) — Aro(h(1)); n 2m/2 41
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is the smallestAr > 0 satisfying the first inequality in (12). The estimation of signal and noise parametersand o?
With Ax from (13) the second inequality in (12) is satisfied focan be done usingA|? + 62 = (1/N) SM_ |z(nT)[2. The
— gn/2 _ 1 variance is estimated b§? = (62, 4+ 62;)/2 wheres.,.; =

K< \/i2(m/21)—(2("""")/2 —1). (14) {median(|z, ;(nT)—z, ;(n—1)T)|: n=2,---,N)}/0.6745,

" 2241 with z,.(nT") andz;(nT) being the real and imaginary part of
For the WD, which is considered as an example, we hagénT’). It is assumed thaiV is large, as well ag” is small.
m = 3,n = 4. It gives Ax = 1.9194 and k< 9.8983. For this estimation, we used signal oversampled by factor of
The lower bound fork is determined by the condition thatfour. The adaptive window widtlh,+ is determined as the
P(x) = 1. Thus, we see that the conditions (11), along witwidth corresponding to the largest(s = 1,2,---,J) when
the condition thatP(x) ~ 1, can be easily satisfied. Taking,(8) is still satisfied, i.e., when still
for example, a value ok such that6 <~ + Ax <11.8 we . .
get that all conditions of the statement are satisfied, as well |@n, () = @n )] < (5 + AR)[o(hs) + 0 (hsyr)]-
asLP(m) >0.9999Afor the Gaussian distribution of the eImor . WD's with constant window widthsV, = 16 and
AL(t) = w(t) — o(t).

. : - N, = 256 are presented in Fig. 1(a) and (b), respectively.
With (13) and (14) being satisfied we hal&p) N D(p.+ The IF estimates using the WD’s with constant window widths
1) #0, forp<0andD(p) N D(p+1) =0, for p > 1, with SR )
. : N, =8 and N, = 256 are given in Fig. 1(c) and (d). Fig. 1(e)
probability P(x) ~ 1. This completes the proof. [ | : : . .
. . X - shows the WD with adaptive window width whose values
A search of the optimal window width over a finite s&t

. T R . . determined by the algorithm are given in Fig. 1(f). We can
is a simplified optimization, becaug€ consists of a relatively — .

) see that when the IF variations are small, the algorithm uses
small number of elements. However, the discrete set of

o . . . the widest window width in order to reduce the variance.

inevitably leads to a suboptimal window width value due t . . o
: o ) . . . round the point»T" = 0.5, where the IF variations are large,

the discretization of: since, in general, the optimal window

width ., does not belong td: i.e., it cannot be written as the windows with smaller widths are used. The IF estimate

hopt = 2°7". It is important to note that this discretization /of with adaptive window width is presented in Fig. 1(g). Mean

effect would also exist even if we knew in advance all of th%bsolute error, normalized to the discretization step, is shown
. . . . - In Fig. 1(h) for each considered window width. Line represents
parameters required for the optimal window width calculatlori}S value for the adaptive window width. Additional examples
and decided to use radix-2 FFT algorithms in the realization, o ! S
Then we should find,,; and then use the nearest one of th%nd realization details may be fo_und n [6]. . . .
form 2°T. Thus. the dgcretization df effect is present in an We can conclude that the adaptive window width estimation,
) ' : P y u?ing the algorithm derived in this letter, has lower error than
case. It always results in worse values of the MSE, but tht

is the price of the algorithm efficiency. Fortunately, this IOSE%]e best constant-window case, which, by the way, is also not

. A ) nown in advance.
of the accuracy is not significant in many cases, because the
MSE (3) has a stationary point for the optimal window width

h = hope (and the MSE varies very slowly for the window ACKNOWLEDGMENT
width values close tg = hops). The authors are very thankful to the Associate Editor and
reviewers for remarks that helped in preparing the final version
1. EXAMPLE of this letter.

The discrete pseudo-WD with the rectangular lag-window
is calculated using the standard FFT routinesi#a®(k, ) =
FT{w,(nT)x(IT + nT)x*(IT — nT')}. In the example, we [1] M. G. Amin, “Minimum variance time-frequency distribution kernels
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