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Algorithm for the Instantaneous Frequency
Estimation Using Time-Frequency

Distributions with Adaptive Window Width
LJubǐsa Stankovíc, Senior Member, IEEE, Vladimir Katkovnik, Member IEEE

Abstract—A method for minimization of the mean square error
(MSE) of the instantaneous frequency estimation using time-
frequency distributions, in the case of a discrete optimization
parameter, is presented. It does not require knowledge of the
estimation bias. The method is illustrated on adaptive window
width determination in the Wigner distribution.

Index Terms—Estimation, instantaneous frequency, spectral
analysis, time-frequency analysis, Wigner distribution, window
optimization.

I. INTRODUCTION

I NSTANTANEOUS frequency (IF) estimators based on
maxima of time-frequency representations have variance

and bias that are highly dependent on the lag window width.
Provided that signal and noise parameters are known, by
minimizing the estimation mean squared error (MSE), the
optimal window width may be determined. However, those
parameters are not available in advance. It is especially true
for the IF derivatives that determine the estimation bias.
Here, we present an adaptive algorithm, for the lag window
width determination, that does not require knowledge of the
estimation bias. It is assumed that the window width takes
dyadic values. The discrete nature of the window width
is essential for the algorithm derivation. Sliding pair-wise
confidence intervals are used, instead of the intersections
of all previous confidence intervals, considered in [4] and
[5], from which the idea for the algorithm originated. The
efficiency of the algorithm developed here is illustrated on the
Wigner distribution (WD) based IF estimator, [6]. Thus, this
letter may be considered as a theoretical supplement, which
resulted in a modified version, of the algorithm presented in
[6]. The theory and algorithm presented here are not limited
to time-frequency analysis and may be quite generally used
for a window (bandwidth) selection in different problems.
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II. WINDOW WIDTH OPTIMIZATION

Consider a noisy signal

(1)

with being a signal and being a white complex-
valued Gaussian noise with mutually independent real and
imaginary parts of equal variances Consider the problem
of instantaneous frequency, estimation from
discrete-time observations (1). We will assume that the IF
estimation is based on maximization of a time-frequency
distribution; i.e.,

(2)

with being the basic interval
along the frequency axis. The time-frequency distribution is
denoted by since the WD is used for the algorithm
demonstration. However we wish to emphasize that a wide
class of time-frequency representations can be used in (2).
Let be the estimation error. The
mean squared error is used for the accuracy
characterization at the given instantIf the estimation errors
are small then provided some quite nonrestrictive assumptions
the mean squared error for a wide variety of the commonly
used time-frequency representations (e.g. the spectrogram, the
WD and its higher order, including polynomial, versions,
as well as in many nontime-frequency problems), can be
represented in the following form [5]–[7]:

(3)

where is a width of the symmetric lag window such that
for and
are the variance and the bias of estimation, re-

spectively. Parameter depends on the IF derivatives.
The window width is related to the number of samples as

where is the sampling interval. In particular,
for the WD with the rectangular window and

in (3) [7], [6].
It is clear that the MSE (3) has a minimum with respect

to The corresponding optimal value of is given by
the formula However, this
relation is not very useful in practice, mainly because on the
right-hand-side it contains the bias parameter depending
on the derivatives of the IF which is to be estimated. The
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main topic of this work is a development of the method that
produces (or due to the discrete nature of a value
of the window width as close as possible to without
using For the optimal window width according to (3),
assuming throughout the paper without loss of generality that
the bias is positive, the following holds:

(4)

Asymptotically, at least, the IF estimate is a random
variable distributed around with and standard
deviation Thus we may write the relation:

(5)

where the inequality holds with probability depending
on parameter

Let us introduce a set of discrete window-width values,

(6)

The following arguments can be given in favor of such a
discrete set. First of all, the discrete scheme for window widths
is necessary for an efficient numerical realization. Second,
implementations of the time-frequency distributions are almost
always based on the FFT algorithms. The most common are
the radix-2 FFT algorithms that correspond to when set

gives the dyadic window width scheme, In the
realizations the smallest window width should correspond
to a small number of signal samples within it. For example,
for the radix-2 fast Fourier transform (FFT) algorithms
with

Now we are going to derive an algorithm for the determi-
nation of the optimal window width without knowing
the bias, using the IF estimates (2) and the formula for the
IF estimate’s variance only. It is based on the following
statements.

Let be a set of dyadic window width values, i.e.,
in (6). Assume that the optimal window width for

a given instant belongs to this set, Define
the upper and lower bounds of the confidence intervals

of the IF estimates as

(7)

where is an estimate of the IF, with the window
width and is its variance.

Let the window width be determined as a width
corresponding to the largest when
two successive confidence intervals still intersect, i.e.,
when

(8)

is still satisfied.
Then, there exist values ofand such that

and for
when with the corresponding probability

that (5) is satisfied.

Proof: Provided that the window widths
belonging to can be represented as follows

where corresponds to the window width we are
looking for. Note also that we use two indices for the window
widths, one (in the form which denotes the indexing
which starts from the narrowest window width, and the other

(used in the form of an argument; i.e., or where
the indexing starts from window width (when
The bias and variance for any according to (3), (4), may
be rewritten as

(9)

From (9) we can conclude that for the bias is
much smaller as compared to the variance, thus the estimate

is spread around the exact value with a small bias
and large variance. The standard definition of a confidence
interval of the estimate for a given is

In order to take into
account the biasedness of the estimate the confidence
interval is modified in the following way:

(10)

where is to be found.
It is obvious that for because in this

case the bias is small and the segment is wider than
as i.e., for all

(with probability For the variance is small but
the bias is large. It is clear that there always exists such a large

that for any given
The idea behind of the algorithm is that in can be

found in such a way that the largestfor which the sequence
of the pairs of the confidence intervals and
has at least a point in common is Such a value of

exists because the bias and the variance are monotonically
increasing and decreasing functions of, respectively. As soon
as this value of is found, an intersection of the confidence
intervals and works as an indicator of the
event i.e., the event when is found. The
algorithm given in the form (7), (8) tests the intersection
of the confidence intervals, where (8) is a condition that
two sequential intervals and is the last pair of the
confidence intervals having at least a point in common.

Now let us find this crucial value of According to the
above analysis, only three values of and along with
the corresponding intervals and should be
considered. The confidence intervals and should
haveand the intervals and should not haveat least
a point in common. Assuming that relation (5) holds, consider
the worst possible cases for the corresponding bounds. These
worst-case conditions for and are that the minimal
possible value of upper bound, denoted by is
always greater than or equal to the maximal possible value of
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 1. Time-frequency analysis of a noisy signal. (a) Wigner distribution withN = 16: (b) Wigner distribution withN = 256: (c) Estimated instantaneous
frequency using the Wigner distribution withN = 8: (d) Estimated instantaneous frequency using the Wigner distribution withN = 256: (e) Wigner distribution
with adaptive window width. (f) Adaptive window width as function of time. (g) Estimated instantaneous frequency using the Wigner distribution withthe
adaptive window width. (h) Absolute mean error as a function of the window width; line represents the mean absolute error value for the adaptive windowwidth.

the lower bound denoted Analogous conditions
hold for and These conditions may be written as

(11)

According to (5) and (10) this results in

(12)

Having in mind (9), it can be verified that

(13)
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is the smallest satisfying the first inequality in (12).
With from (13) the second inequality in (12) is satisfied for

(14)

For the WD, which is considered as an example, we have
It gives and

The lower bound for is determined by the condition that
Thus, we see that the conditions (11), along with

the condition that can be easily satisfied. Taking,
for example, a value of such that we
get that all conditions of the statement are satisfied, as well
as, for the Gaussian distribution of the error

With (13) and (14) being satisfied we have
for and for with

probability This completes the proof.
A search of the optimal window width over a finite set

is a simplified optimization, because consists of a relatively
small number of elements. However, the discrete set of
inevitably leads to a suboptimal window width value due to
the discretization of since, in general, the optimal window
width does not belong to i.e., it cannot be written as

It is important to note that this discretization of
effect would also exist even if we knew in advance all of the
parameters required for the optimal window width calculation,
and decided to use radix-2 FFT algorithms in the realization.
Then we should find and then use the nearest one of the
form Thus, the discretization of effect is present in any
case. It always results in worse values of the MSE, but that
is the price of the algorithm efficiency. Fortunately, this loss
of the accuracy is not significant in many cases, because the
MSE (3) has a stationary point for the optimal window width

(and the MSE varies very slowly for the window
width values close to

III. EXAMPLE

The discrete pseudo-WD with the rectangular lag-window
is calculated using the standard FFT routines, as

In the example, we
assumed a signal of the form

with a given IF,
and the phase

The signal amplitude was and
[dB], The time interval considered was

with A set of window widths
corresponding to the following number of signal samples

is considered. The WD is
calculated from the smallest toward the wider window widths.
All distributions are interpolated up to the largest number
of samples in order to have the same number of frequency
samples and to reduce the quantization error whose variance
is and may also be included as a part of
total estimation variance.

The IF is estimated using (2). According to the estimated IF
and the segments (10) are

defined with, for example, when

The estimation of signal and noise parametersand
can be done using The
variance is estimated by where

with and being the real and imaginary part of
It is assumed that is large, as well as is small.

For this estimation, we used signal oversampled by factor of
four. The adaptive window width is determined as the
width corresponding to the largest when
(8) is still satisfied, i.e., when still

The WD’s with constant window widths and
are presented in Fig. 1(a) and (b), respectively.

The IF estimates using the WD’s with constant window widths
and are given in Fig. 1(c) and (d). Fig. 1(e)

shows the WD with adaptive window width whose values
determined by the algorithm are given in Fig. 1(f). We can
see that when the IF variations are small, the algorithm uses
the widest window width in order to reduce the variance.
Around the point where the IF variations are large,
the windows with smaller widths are used. The IF estimate
with adaptive window width is presented in Fig. 1(g). Mean
absolute error, normalized to the discretization step, is shown
in Fig. 1(h) for each considered window width. Line represents
its value for the adaptive window width. Additional examples
and realization details may be found in [6].

We can conclude that the adaptive window width estimation,
using the algorithm derived in this letter, has lower error than
the best constant-window case, which, by the way, is also not
known in advance.
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