
Robustness Modelling and Verification of a
Mix Net Protocol

Efstathios Stathakidis1, Steve Schneider1 and James Heather2

1 {e.stathakidis, s.schneider}@surrey.ac.uk
Computing Department, University of Surrey, Guildford, UK

2 james@chiastic-security.co.uk
Chiastic Security Ltd, Guildford, UK

Abstract. Re-encryption Mix Nets are used to provide anonymity by
passing encrypted messages through a collection of servers which each
permute and re-encrypt messages. They are used in secure electronic
voting protocols because they provide a combination of anonymity and
verifiability. The use of several peers also provides for robustness, since
a Mix Net can run even in the presence of a minority of dishonest or in-
correctly behaving peers. However, in practice the protocols for peers to
decide when to exclude a peer are complex distributed algorithms, and
it is non-trivial to gain confidence that the Mix Net will be robust and
live in the presence of faulty or malicious peers. In this paper we model
and analyse the algorithm used by Ximix, a particular Mix Net imple-
mentation, using the CSP process algebra and the FDR model checker.
We model and analyse the protocol in the presence of a realistic intruder
based on Roscoe and Goldsmith’s perfect Spy [1]. We show that in the
current implementation the protocol does not satisfy the robustness re-
quirement. Finally, we propose a method of making it robust, and verify
in FDR that the proposed solution is sound and provides this robustness.
Along the way, we highlight the omissions and deviations from the origi-
nal RPC proposal; Mix Net protocols are extremely fragile, and small and
seemingly benign changes may result in security flaws. Our experimental
results show that, with our modification, Ximix guarantees termination
and produces a correct output in the presence of an intruder who can
corrupt a minority of mix servers.

Keywords: Mix Nets, formal methods, model-checking, CSP, FDR

1 Introduction

Since ancient times, elections have been the most important aspect in ensuring
democracy. A voting system should provide voters with secrecy of the ballot while
assuring the integrity of the election.the voter with the assurance that her vote
has been cast as intended and included in the tally without being modified, whilst
guaranteeing the secrecy of the vote. Recent proposals for secure electronic voting
aim to provide end-to-end verifiability using cryptographic techniques, and can

use anonymising Mix Nets to provide secrecy of the ballot (by anonymising which
voter has cast any particular vote) while also providing the assurance that the
votes have been decrypted correctly. The upcoming elections in the State of
Victoria, Australia, will be the world’s first large-scale political elections where
a verifiable electronic voting system will be used. A key component in achieving
this is the Mix Net and, of course, this should be robust and produce its required
output. However, this key liveness property is generally not analysed in the
literature, and it is one that the Victorian system’s Mix Net (Ximix) is required
to provide.

A Mix Net is a cryptographic protocol, which unlinks the correspondence be-
tween its input vector of encrypted values and the permuted vector of decrypted
values given as output, thus providing anonymity to the communicating entities.
The first Mix Net was introduced by Chaum [2] for constructing anonymous mail
systems. In its general construction, a Mix Net consists of a sequence of servers
M1 . . .Mn , also called mix servers, that collectively execute a protocol. Based on
the way the mix servers operate on the input ciphertexts, Mix Nets are classified
as decryption and re-encryption Mix Nets. However, most of those proposed in
the literature fall into the second category. We briefly explain how a re-encryption
Mix Net works; for more details about decryption and re-encryption Mix Nets,
we refer the reader to [2, 3].

The first re-encryption Mix Net was introduced by Park et. al [4]. In this
type of Mix Net, a joint public-key is generated by combining the public-keys
of the mix servers. The inputs are encrypted under the joint public-key and
then submitted to the Mix Net. Each mix server, in turn, re-encrypts its inputs,
shuffles them using its own secret permutation and fresh randomnesses and then
posts them onto a publicly accessible Web Bulletin Board (WBB). Once all the
mix servers have finished their mixing, the decryption phase starts, where the
final list of ciphertexts is decrypted in a distributed manner to achieve robustness
and then posted on the WBB for public verification. To ensure correctness of
the execution, each mix server produces a zero-knowledge proof, which is posted
on the WBB alongside the mixed and decrypted messages.

Owing to their importance in providing anonymity to the communicating
parties, Mix Nets play a significant role in building systems where security re-
quirements, such as privacy, should hold. Their main application is in electronic-
voting [5–8], but they have been also used in other real-life applications, such as:
electronic cash payments, RFID tags and anonymousWeb browsing. In electronic
voting schemes, Mix Nets are used to ensure that no one can track and reveal
a voter’s vote, thereby guaranteeing the privacy of the vote and the anonymity
of the voter. However, this is not always enough; a well constructed Mix Net
should fulfill a number of security and safety requirements, such as robustness,
correctness and public verifiability. A Mix Net is called robust if it terminates
and produces a proof of the correctness of the operation in the presence of (a
limited number of) faulty or malicious mix servers. Correctness guarantees that
the output is, indeed, a valid permutation of the input ciphertexts. Additionally,
it is crucial for misbehaviour to be detectable by anyone who is interested in

checking the correctness of the execution, a property called public verifiability.
In this work we are interested in the liveness properties that a Mix Net should
meet; a Mix Net which does not produce any output is of no interest.

For the first time in the literature, we construct here a formal model and
present an automated verification of the Ximix3 Mix Net, which will be used in
the real large-scale elections in Victoria State, Australia, in November 2014. The
Victorian Electoral Commission’s (VEC) vVote voting system, which uses Ximix,
is based on the Prêt à Voter [6] voting scheme and how it works is presented in [7,
8]. It is a requirement that Ximix be robust and be able to produce a correct
result provided that a threshold number of mix servers are available and follow
the protocol without deviating from it. Auditing in Ximix is performed according
to the Randomised Partial Checking (RPC) auditing technique [9] and its source
code is available at http://www.cryptoworkshop.com/ximix/doku.php.

There are numerous different Mix Net proposals existing in the literature.
Each of those designs follows a different method in constructing such schemes,
and it is not always clear which of the desired security requirements are met, or
how best to resolve some of the implementation questions such as what to do if
a mix server fails. For example, a Mix Net based on randomized partial checking
(RPC) for verification does not normally indicate where the random challenges
come from, yet this is a subtle issue in practice and an inappropriate approach
can undermine the security of the Mix Net. Standardisation of Mix Nets would
address issues such as this, providing some clear direction for developers and
thus confidence for users.

Once such questions are addressed, the advantages and benefits of Mix Nets
being standardised will be apparent. Having a standard for Mix Nets would pro-
vide a reference point for future implementations and the properties that they
provide. For example, Verificatum [10], the most advanced Mix Net implemen-
tation up to date, has been used in small-scale elections in Norway and Israel.
Hence, in the case where Verificatum would become a standard, techniques like
RPC verification would also become standardised and not leave up to the con-
structor to decide. The benefits of Mix Nets having a standard is also apparent
from the subject matter of this paper: the approach taken to the development
of Ximix, the Mix Net under analysis, was to combine results from a number
of different research papers, and to provide additional implementation detail,
resulting in a system which required further formal analysis. Its correctness re-
lies entirely on the programmers and the way they interpret and implement the
proposed techniques. In the presence of a Mix net standard, we might hope that
these opacities could have been avoided.

3 The modelling has been performed on the snapshot of the source code taken on
1st April 2014. The authors of this paper have checked the published code and can
confirm that any changes since then have no effect in this work.

2 Preliminaries

Here, for convenience, names, sets, data and functions used throughout the model
are detailed. The set of all mix servers is denoted by P and is defined to beH∪D,
where H (resp. D) denotes the set of all honest (resp. dishonest) mix servers.
By PA we denote the powerset function as applied to a set A. By c, we denote
the unmixed vector of inputs and by Mj (m), we denote the vector m mixed
twice using mix server j ’s secret permutation values, where m is either the un-
mixed vector c or some received signed mixed vector thereof. The set of all
commitments to the secret permutation values is denoted by C. When sending
to a mix server, these commitments are individually hashed, thereby creating
then a hash value, here h(commit). Messages have the form Sj (skj ,Mj (m)),
where skj is the j th mix server’s secret key. The set of all messages that can
be feasibly sent and received in a protocol run is denoted by M. For example,
consider the channel name comm of type P × PP ×M × C. In this scenario,
comm.A.{B ,C}.SA(skA,MA(m)).SA(skA, h(commit)) may be an event indicat-
ing that a vector of messages, m, has been sent by the mix server A to {B ,C}.
Additionally, the length of a message m is denoted by #m and is calculated by
counting the layers of signatures. The outer signatory of a message is verified
using the corresponding public key and we use a function outer(m) to return the
signatory of a given message m. Similarly, the function seq(m) returns the outer
mix sequence of m. The function val(id) returns the index of a given mix server
in the shuffle plan. The function prev(id) returns the identity of the preceding
mix server. The set of all possible partially decrypted mixed messages, L, is
taken to be {Pj (ptj , seq(m), zkp) | m ∈ M}, where ptj is the j th mix server’s
share of the distributed secret key and zkp is the associated zero-knowledge
proof, thus proving the correctness of the partial decryption. Finally, the set of
all possible fully decrypted messages, O, is considered to be {dec(m) | m ∈ L},
where dec(m) is a function that decrypts a permuted vector of ciphertexts into
a permuted vector of plaintexts.

3 Ximix Mix Net Outline

Ximix is an Elliptic Curve El Gamal [11] based re-encryption Mix Net written in
Java, where the main idea behind its design follows the RPC auditing technique.
It consists of a number of execution phases: (i) initialisation; (ii) mixing ; (iii)
checking and; (iv) decryption. We will analyse each of these separately. There
are two more important components of Ximix:

1. the Command Service;
2. a Transient Board for each mix server.

The Command Service (CS) is the central trusted component of the system,
which is responsible for talking to the mix servers and instructing them to mix,
transmit their output list of ciphertexts to another mix server and to create
Transient Boards (T B) to host their produced data. The CS, which is under the

control of the VEC, has a great deal of power, controls the data flow, controls the
whole process and specifies the execution plan (also called shuffle plan) used to
emulate the RPC pairing of mix servers. In a setting with four mix servers A, B,
C and D, the shuffle plan looks like 〈AA,BB ,CC ,DD〉. Robustness in the Ximix
implementation relies heavily on the CS, as it is a single point of trust and a
single point of failure. Any misbehaviour could potentially lead to the Mix Net’s
crash, thus violating the robustness requirement. Additionally, in Ximix, the
mix servers exist to provide services, including board hosting. That is, as the
shuffle plan progresses, a new T B is created on the appropriate mix server (as
specified in the shuffle plan) to host the intermediate and output data (shuffled
messages and commitments to the secret permutation). The primary mix server
is responsible for sending the unmixed data to the first mix server in the shuffle
plan and it is also responsible for maintaining a Visible Board (VB), which
differs from its internal T B in that all the mix servers have read access to this.
At the end of the process, the contents of the last mix server’s T B, as well as all
the partially decrypted messages, are posted to the VB. How these components
interact with each other, in the case where all faithfully follow the protocol,
is illustrated (for the case of two mix servers) in Figure 1. One can note that
actions internal to the mix servers and the CS, such as receiving a message,
mixing and then posting it onto the corresponding T B have been abstracted
away and shown as self messages. Additionally, for clarity, all the instructions
the CS can send and the mix servers are willing to accept, have been presented
as instruct events.

4 Ximix Message Communication Diagram

For clarity, the diagram of Figure 1 illustrates how the data flows in a faithful
run of Ximix with two mix servers.

Initialisation Phase. When the execution starts, the CS selects the shuffle plan
and chooses the primary mix server. The original unmixed data are handed to
the Mix Net by the VEC authorities and the CS instructs the primary mix server
to transmit them to the head of the shuffle plan. The mixing phase now begins.

Mixing Phase. The mixing phase starts with the first mix server in the shuffle
plan re-encrypting and shuffling its input data using fresh randomness and secret
permutation values. As the shuffle progresses, each mix server is asked by the
CS to create a T B to store its own shuffled messages and commitments to secret
permutations. Once the data have been stored on the T B, the CS instructs the
mix server that is currently mixing to transmit them to the next mix server
in the plan. When the mixing phase is complete, only the shuffled data of the
last transient board in the plan are copied onto the VB. Currently, a significant
omission is that neither the data transmitted between the mix servers nor the
final sequence of mixes is posted anywhere for public verification. Consequently,
Ximix does not currently provide universal verifiability.

Fig. 1: Ximix protocol with two servers

Checking Phase. The Mix Net uses static verification, i.e. each mix server main-
tains separate sets of commitments to the secret permutation values. At the end
of the mixing phase, these commitments are downloaded by the CS and checked
for consistency. No attempt to verify anything is made during the actual mixing
phase (verification not in-phase with mixing). This stands in contrast to the ap-
proach taken by Verificatum, where checking is in-phase with mixing and each
mix server checks the received data before proceeding to the mixing. In Ximix,
the checking is done in the order of the mixing, but after all commitments have
been downloaded. The CS issues periodic RPC challenges as it goes, and up
to half the input-output relationships are revealed for each mix server. This is
done using an interactive zero-knowledge protocol [12] between the CS, but the
produced proof convinces only the verifier (CS), which interacts with the prover
(mix servers). As a consequence, the CS cannot prove to a third party the cor-
rectness of the execution, even if all the mix servers have faithfully followed the
protocol. If cheating is found, the whole process stops and an operator’s inter-
vention is required; the corrupt mix server is replaced and the whole process
restarts. Otherwise, the execution proceeds with the decryption phase.

Decryption Phase. Assuming checking success, the data from the VB are down-
loaded by the CS and decrypted, by a quorum (threshold number) of mix servers,
using El Gamal threshold decryption, whereby each is asked to provide a par-
tial decryption of the final list of encrypted data. In Ximix, mix servers act
as decryption servers, in that they partially decrypt what has been output by
the last mix server, but they send their partial decryptions only to the CS.
Once the CS has received a threshold number of partial decryptions for each
message, it assembles them into the plaintext messages and publishes the fully
decrypted message(s). As part of the decryption process, periodic challenges are
issued against the partial decryptions, using an interactive zero-knowledge proof
protocol (IZKP) between the CS and the mix servers.

5 Modelling and Formal Analysis in CSP

In the preceding section, Ximix was described based on how it operates and
processes the input messages. In this section, we present the processes modelling
the individual components of Ximix, and how these are composed into models
to be checked for robustness. Before proceeding to the modelling, it is pertinent
to discuss the modelling decisions and assumptions we will make.

Modelling Decisions and Assumptions. We follow the typical approach to mod-
elling of security properties, treating cryptographic primitives, such as digital
signatures, encryption and decryption, as symbolic operations with the appro-
priate algebraic properties. Each component is modelled as an individual pro-
cess; the communications between them are synchronous and over authenticated
channels. We assume that the checking phase will always succeed. No partici-
pant wishes to be expelled from the protocol, and for this reason they provide

the checker with valid commitments to secret permutations when asked to reveal
a subset of them.

Faithful Model of Ximix. Ximix will be used under the strong assumption
that all its components faithfully follow the protocol without deviating from it.
Additionally, VEC can tolerate failure of one mix server, which provides us with
our threshold value. Before the execution starts, the shuffle plan is fed to the
mix servers so they know their position and the neighbouring mix servers. The
complete script for this model can be found at xxx.

Honest mix servers. An honest mix server waits for an instruction, sent by
the CS, to be received and then starts to operate. It is willing to receive any
structurally correct message signed by the previous mix server in the plan and
then posts the received message on its T B. Obviously, the head of the plan is
willing to receive the unmixed data signed by the primary mix server. This is
represented in HON SRVR by the external choice over the set of the messages
signed by the sender and the set of the hashed commitments. Then, CS instructs
the first mix server to mix the received data and the execution proceeds to the
mixing phase.
HON SRVR(id) =
if id == primaryServer then

2
m∈{m′∈M|#m′=0},
commit∈C

(
send.Sid (skid ,m).Sid (skid , h(commit))→
MIX (id, 1,m)

)

else
CS instructsToCopy.id →

2
m∈{m′∈M|outer(m′)=prev(id)},
commit∈C

 recv .m.commit →
postInData!id!m!commit →
CS instructsToShuffle.id→
MIX (id, val(id),m)

The mix server mixes the received data twice (in order to emulate the RPC

pairing) and the CS then instructs it to create a T B to store the output data
for future verification. Once this has been done, the CS requests the mix server
to transmit only the output message and the commitments to the secret permu-
tations to the next mix server in the shuffle plan. This is modelled in the MIX
process below. Here, the toBeMixed value indicates the message received from
the previous mix server, which will be mixed twice by the current one. The rnd
symbolises the round number of the mixing; a mix server proceeds to the mixing
phase only when this value equals its own number in the sequence.

Command Service. The CS sends instructions to the mix servers and announces
the phase’s success or failure. The instructions are sent sequentially and at the
end of the execution of each phase and a done event indicates its successful
completion.
CS(〈〉) = mixing done → STOP

CS(〈id〉a ids) =CS instructsToCopy.id →
CS instructsToShuffle.id→
CS instructsToCreateTB.id→
CS(ids)

MIX(id, rnd, toBeMixed) =

CS instructsToCreateTB.id→
postInterData!id!interData!interCommit →
postOutData!id!outData!finalCommit →
send.Sid (skid , outData).Sid (skid , h(finalCommit))→
SKIP

Transient and Visible Board. As we have described earlier, each mix server
maintains a T B, which always allows post and read requests from the owner
mix server. The other mix servers are blind on what has been posted to the
other T Bs and when the execution starts, they are both empty.

TB(id, inData, interData, outData, interCommit, outCommit) =

2
inD,interD,outD∈M
inC ,outC∈C

 postInData!id.inD.inC →
postInterData!id.interD.interC →
postOutData!id.outD.outC →
TB(id, inData

⋃
inD, interD, outD, interC , outCommit

⋃
inC)

The VB is visible to all mix servers as well as to the CS. The mix servers
read what has been posted there and post their partial decryptions. The CS
reads all the partially decrypted messages, combines them and outputs (posts)
the fully decrypted messages on the VB. (For brevity, the partial decryption and
the combination processes are run in the CS’s side and are not presented here;
we refer the reader to the full script.)

VB(primaryServer , outData, outCommit, partDec) =

2
id∈P,outD∈M,
outC∈C,newPartDec∈L

 postDataToVB.id!outD!outC → VB(. . . , outD, outC , . . .)
2 readFromVBData.id!outData → VB(. . .)
2 postPartDec.id!newPartDec → VB(. . . , partDec

⋃
newPartDec)

2 CSreadFromVBPartDec!partDec → VB(. . .)

Putting the Network Together. Based on the modelling assumptions pre-
sented in Section 5, and connecting the channels of the various processes so
they can synchronise, we can produce our final SYSTEMXimix process, which
is defined in terms of the parallel composition of all the following processes,
synchronised on their common events. The MIXING process is defined as the
parallel composition of the HON SRVR and the TB processes.

SYSTEMXimix = MIXING‖CHECKING‖DECRYPT‖COMBINE‖VB(. . .)‖CS(ShufflePlan)

We should now verify whether our system satisfies the robustness require-
ment or not and to check this, we need to determine whether a fully decrypted
message is always output. In [13], the output of the system was modelled as
a synchronous agree event among the majority of the mix servers, whilst here,
the CS is responsible for combining all the partial decryptions and publishing
the fully decrypted message(s). No consensus among the mix servers is provided
for. For this purpose, we create the specification process RBST, which always
performs an output event, and use the Failures/Divergences refinement model
(FD), to check in FDR that the following assertion holds:

RBST = output → RBST, RBST vFD (SYSTEMXimix \ Σ8{| publish |})[[output/publish.m |m∈O]]

To perform a rigorous analysis of the system, we must include an intruder
model. To this end, in the next section, we introduce our threat model and place
it in parallel with the SYSTEMXimix process defined here.

6 Adapting the Intruder

In the previous section, we modelled and verified Ximix under the assumption
that all the components are honest. However, this is a strong assumption; a sys-
tem consisting of honest participants is of little interest. In this section, we use
Roscoe and Goldsmith’s perfect Spy [1, 14] as the basis of our threat model and
investigate whether Ximix still meets the robustness requirement. The descrip-
tion of the Spy presented in the first half of this section it will be used as well
in the second, subject to some minor modifications, in order to accommodate
the behaviour of the proposed scheme. However, our Spy is not as powerful as
in the original Roscoe and Goldsmith version, which is in complete control of
the whole network. Obviously, that would be pointless in the current case, as it
would clearly violate robustness.

Here, the Spy plays the role of a mix server that can receive ingoing mes-
sages over a learn channel, infer events based on received messages and its ini-
tial knowledge and then say messages that it has inferred. This intruder model
provides active attacks against the system, by blocking outgoing messages and
sending those that deviate from the protocol. The Spy is constructed using the
same approach as taken by Roscoe and Goldsmith, with respect to the messages
of the Ximix system.

The initial knowledge of the intruder consists of all the mix servers’ identities
and public-keys, the initial unmixed vector of values and, of course, its own secret
key as well as the assigned share of the secret key.

Apart from the channels learn, say and infer, that allow messages to be
received, sent and internally inferred, the Spy has in its alphabet all the events
that an honest mix server can perform, so it can communicate with the other
components. Furthermore, the Spy can ignore the instructions sent by the CS
by absorbing them and carrying on its operation.

In this model of Ximix, the intruder learns messages sent to him only from
the previous mix server and says to the next one in the shuffle plan. In the case
where he is the last mix server in the plan, an additional say event is renamed
to postDataToVB and can post any message that has been learnt. In the same
fashion, a say event is renamed to postPartDec, which means that he can post
partial decryptions of messages that he has received and, of course, these are of
length larger than or equal to the threshold. In the next section, we shall show
that the intruder hears all the messages sent to any of the honest mix servers and
he can choose to send different messages to different mix servers, so each message
can be potentially be sent to an individual mix server, that is, to the singleton
{x}, where x is the identity of some honest mix server. The new SYSTEMSpy

process is now defined in terms of the parallel composition of the SYSTEMXimix

and the renSpy processes, as:

SYSTEMSpy = SYSTEMXimix αSYSTEMXimix
‖αrenSpy renSpy

where, αSYSTEMXimix and αrenSpy, are the alphabets containing all the events
these processes can engage in. Using the assertion presented in Section 5, we

check that SYSTEMSpy does not satisfy its liveness property and in Section 7
we present some traces illustrating this behaviour.

The Spy can also mount a Denial of Service (DoS) attack, by perpetually
posting messages to the VB, thus leading the system to an unstable condition
(divergence, in CSP terms) and one defence against this is to add an extra
constraint that allows only one post (per event) for each mix server. This is
modelled as:

DIVERGE = VB(primaryServer, empty, empty, empty) |||(post.x? → STOP | x ∈ D)

where post is an abbreviation for the postDataToVB and postPartDec events the
intruder can perform and “ ” allows any message of the appropriate type.

A misbehaving CS can also break robustness. For example, it can refuse to
send instructions to a specific mix server, making it wait indefinitely, and causing
deadlock. We describe this attack in Section 7. Additionally, upon receiving a
threshold number of partially decrypted data, it can either refuse to combine
them or output an unrelated message.

So far, we have seen that the proposed Ximix is not resilient in the current
implementation, for it is vulnerable to attacks carried out by an intruder and
a dishonest CS. FDR confirms that the RBST assertion specified in Section 5
does not hold. In the following section we show how to make the system robust.

Robust Ximix. Here, we describe the changes required to guarantee successful
termination in the presence of the intruder introduced above. In our modified
Ximix, upon termination, a valid and fully decrypted message is published and
any external party interested in verifying its correctness can do so.

One of the purposes of a Mix Net is to distribute the trust among the
mix servers, so that the whole system does not rely on the integrity of a single
component. However, Ximix relies critically on the availability and honesty of
the CS. Hence, the first step in making Ximix robust is to remove the CS and
instead, allow the mix servers to broadcast their messages. In this context, an
honest mix server sends the same message to all the mix servers, while a dishon-
est one may send different messages to different mix servers, or refuse to send
to some of them. We also allow any external party interested in checking and
combining the partial decryptions to do so, in order to check the fully decrypted
messages. A few changes to the previous model are needed to accommodate these
decisions, which we describe below and the complete script can be found at xxx.

Honest mix servers. An honest mix server is willing to receive messages from
another mix server; he can, however, timeout before or after receiving it. Adding
this behaviour in the system, we allow the execution to continue even when a
dishonest mix server refuses to send messages to some of the honest ones (simply
times out without performing any action). In this case, the honest mix servers
will absorb the timeout and continue to operate. At the end of the mixing phase,
the honest mix servers will have posted on their T Bs at least one message of
threshold length, mixed by the majority of the mix servers. The requisite changes

in the HON SRVR and renHON SRVR processes are shown below. Additionally,
an extra timeout is added after the send event in the MIX process presented in
Section 5.

HON SRVR(id) =
if id == primaryServer then

2
m∈{m′∈M|#m′=0},
commit∈C

 send.Sid (skid ,m).Sid (skid , h(commit))→
timeout →
MIX (id, 1,m)

else

timeout → MIX (id, val(id),m)

2 2
m∈{m′∈M|outer(m′)=prev(id)},
commit∈C

 recv .m.commit →
postInData!id!m!commit →
timeout →
MIX (id, val(id),m)

The (non-replicated) external choice in the HON SRVR process models the
ability of an honest mix server to timeout before receiving a message. This will
only occur where a dishonest mix server refuses to send anything. Minor changes
are required when renaming the HON SRVR process:

renHON SRVR(id) = HON SRVR(id)[[comm.id.P8{id}.m.c/send.m.c m∈M,c∈C]]

[[comm.P8{id}.z.m.c/recv.m.c m∈M,c∈C,z∈P]]

Here, each send is renamed to a comm.id.P8{id}, broadcasting a message to
all mix servers other than id. Each recv is renamed to an incoming comm.P8{id}.z ,
where z can be either a singleton containing only id or a set of some mix servers.

Dishonest mix servers. A dishonest mix server learns all messages sent to any of
the honest mix servers, so learn events are renamed to incoming comm.x .P8{x},
where x is an honest mix server. The renaming of say events is slightly more
complicated in that we allow the Spy to send messages only to individual servers
(singleton sets). This simplifies the modelling, but without loss of generality: if
he wants to send different messages to different mix servers then he can now do
so, and if he wishes to send the same message to all mix servers, he can send it
to each of them separately.

renSpy = Spy[[comm.x.P8{x}.m.c/learn.m.c m∈M,x∈H,c∈C]]

[[comm.y.{x}.m.c/say.m.c m∈M,x∈H,y∈D,c∈C]]

[[postDataToVB.y.m.c/say.m.c m∈M,y∈D,c∈C]]

[[postPartDec.y.m/say.m.c m∈M,y∈D,c∈C,#m>=threhold]]

Putting the Network Together. Our final SYSTEMXimixNoCS process is now de-
fined in terms of the parallel composition of the new renSpy and the processes
defined in the earlier sections, as:

SYSTEMXimixNoCS = MIXING‖CHECKING‖DECRYPT‖COMBINE‖DIVERGE‖ renSpy

Eventually, using the RBST assertion defined in Section 5, we check that
the robustness of the system is maintained and the traces described in Section 7
support this argument.

7 Results and Analysis

In this section, we verify the protocols against the liveness property and we
present interesting traces illustrating their behaviour. Each of the traces dis-
cussed in this section were obtained via simulating the models in ProBE, a CSP
animator (built into FDR3), which allows the user to explore the behaviour of a
process. Due to the number of events occurring in the traces, we keep only those
highlighting the importance of the trace. For clarity, throughout this section, we
give traces using three mix servers; the shuffle plan will always be 〈AA,BB ,CC 〉
and B the primary mix server. There are numerous possible corruption scenarios
that can be modelled and analysed and we have chosen the most representative
ones. We start with the SYSTEMXimix process, which is a faithful model of
Ximix where all the components are honest.

〈CS instructsToCopy.A,
comm.B.{A}.SB (c).SB (h(commit)),
postInData.A.SB (c).SB (h(commit)),
CS instructsToShuffle.A,
CS instructsToCreateTB.A,
CS instructsToCopy.B,
comm.A.{B}.SA(MA(c)).SA(h(commit)),
. . .
comm.B.{C}.SB (MB (SA(MA(c)))).SB (h(commit)),
. . .
postDataToVB.C .SC (MC (SB (MB (SA(MA(c)))))).SC (h(commit)),
mixing done, checking done,
readFromVBData.A.SC (MC (SB (MB (SA(MA(c)))))),
postPartDec.A.PA(ptA,MC (MB (MA(c)))),
. . .
decryption done,
CSreadFromVBPartDec.{PA(ptA,MC (MB (MA(c)))), . . . },
publish.MC (MB (MA(p))) 〉

In general, after the decryption done event, the CS combines all the partial
decryptions of length greater than or equal to the threshold with preference given
to longer messages. Hence, MC (MB (MA(p))) will be considered the published
output as it is of length greater than the threshold. Of course, more interesting
traces result from checking the protocol under the existence of our Spy.

In SYSTEMSpy , consider the case where the intruder is the primary mix server,
B ; he starts by sending the unmixed data to A. A is honest, mixes twice the orig-
inal data, produces its own mixed messages and communicates them to B. Now,
B decides to act dishonestly and instead of sending to C that received by A,
he sends the unmixed data. At this point, C, being unable to distinguish which
of the preceding mix servers misbehaved, accepts what B sent and operates on
them. As C is the last in the shuffle plan, he posts a mixed message of length 1
(mixed only by C) to the VB. Each server is now instructed by the CS to read
the posted message and partially decrypt it. However, none of them will post
any partial decryption of the posted message because it is of length being less
than the threshold. Subsequently, the CS cannot read or combine any partial
decryptions and the whole process stops without publishing anything. Clearly,
this violates the robustness requirement. This is demonstrated in the left trace
below.

〈. . .
comm.B.{C}.SB (c).SB (h(commit)),
. . .
postDataToVB.C .SC (MC (c)).SC (h(commit)),
readFromVBData.A.SC (MC (c)),
postPartDec.A.nothing,
. . .
CSreadFromVBPartDec.empty,
STOP 〉

〈. . .
comm.A.{B}.SA(MA(c)).SA(h(commit)),
. . .
CS instructsToCopy.B,
. . .
CS instructsToCopy.C,
×〉

A similar behaviour arises when C is the spy. Upon receiving a message from
B, he ignores it, mixes the initial data and posts them on the VB. No one can now
partially decrypt the posted message and the CS cannot publish anything. In
another scenario, (trace above on the right), the intruder, B, sends the unmixed
data to A and absorbs the instructions sent by the CS, but refuses to transmit
the received messages to C, thus resulting in a deadlock. This is because C is
willing to receive a message from B, but it never arrives.

However, as we have seen in Section 6, the CS can also break robustness.
The empty trace 〈×〉 illustrates the scenario in which the CS does not send
a copy instruction to A. Although the mix server is always willing to receive
and execute it, such an instruction never arrives and the SYSTEMSpy deadlocks
without performing even one event.

In our revised system, in the trace below, the intruder, acting as dishonest
mix server A, times out without sending any message. However, this does not
prevent the other mix servers from continuing to operate.

〈comm.B.{A,C}.SB (c).SB (h(commit)), timeout,
timeout,
comm.B.{A,C}.SB (MB (c)).SB (h(commit)), timeout,
. . .
comm.C .{A,B}.SC (MC (SB (MB (c)))).SC (h(commit)), timeout
. . .
timeout,
postPartDec.B.PB (ptB ,MC (MB (c))),
postPartDec.C.PC (ptC ,MC (MB (c))),
readFromVBPartDec.{PC (ptB ,MB (MB (c))),PC (ptC ,MC (MB (c)))},
publish.MC (MB (p))〉

Having received nothing from A, mix server B mixes the original data (which
are visible to everyone on the VB) and broadcasts them to {A,C}. Honest C op-
erates similar to B and posts its own mixed data onto the VB. All the mix servers
proceed now to the partial decryption of the messages that they have received
during the mixing phase and post them onto the VB. The intruder can choose
either to post a valid partial decryption of a message of correct length or not to
post anything. Neither of these can violate the robustness of the system: enough
partial decryptions of the same message (posted by the honest mix servers) ap-
pear on the VB. Any external party can now combine them and publish the fully
decrypted message.

A more interesting behaviour occurs when the intruder sends different mes-
sages to different mix servers, or does not send to some of them, in order to
cause a dispute among them. More specifically, the intruder acting as dishon-
est mix server B, refuses to communicate the initial data to A and times out.
Honest A reads the initial data from the VB, mixes and broadcasts them to

{B,C}. Now, dishonest B chooses to send different mixed messages to A and C :
he sends a mix of the received messages to A and a mix of the initial data to C.
At this point, C cannot work out which of A or B has misbehaved. When re-
ceiving SB (MB (c)) from B, he might think that A did not mix the initial output
and simply forwarded them to B (or timed out). On the other hand, he might
think that B ignored message from A and that B mixed the initial data and
transmitted to him. This is shown in the following trace.

〈timeout,
. . .
comm.A.{B,C}.SA(MA(c)).SA(h(commit)), timeout,
. . .
comm.B.{A}.SB (MB (SA(MA(c)))).SB (h(commit)),
comm.B.{C}.SB (MB (c)).SB (h(commit)), timeout,
. . .
comm.C .{A,B}.SC (MC (SB (MB (c)))).SC (h(commit)), timeout,
. . .
postPartDec.A.PA(ptA,MC (MB (c))),
postPartDec.B.PB (ptB ,MB (MA(c))),
postPartDec.C.PC (ptC ,MC (MB (c))),
readFromVBPartDec.{PA(ptA,MC (MB (c))),PB (ptB ,MB (MA(c))),PC (ptC ,MC (MB (c)))},
publish.MC (MB (p))〉

In the partial decryption phase, dishonest B is able to post two different
partially decrypted messages, both of threshold length: PB (ptB ,MB (MA(c)))
and PB (ptB ,MC (MA(c))). A has seen two different messages, both of threshold
length; he partially decrypts the latest to arrive. C has enough information to
partially decrypt only one message and finally, the output is MC (MB (p)).

All these traces describe some of the possible behaviours of the system, and
might not have been appreciated without this analysis. We saw that it is easy
for the intruder to break the robustness of the original protocol by choosing not
to perform some specific actions. To recognise our contributions in making the
system robust, the above traces show that whatever actions an intruder is willing
to perform, the robustness of the protocol remains intact.

Moreover, in order to make sure that our changes for making Ximix robust
are sound, we further analysed the system in the presence of a stronger intruder,
who controls more than the threshold number of mix servers (that is, two). As
expected, and verified in FDR, the modified Ximix is not robust in this setting,
and FDR provides a trace where two dishonest servers (out of three) can prevent
the Mix Net from completing.

The automated verification of the models, with three mix servers, completes
in a matter of minutes in a modern laptop. However, when adding an extra
mix server, the state space escalates quickly. Table 1 in Appendix B shows this
problem.

8 Previous Work

In this context, the first formal model of a re-encryption Mix Net was provided
by Stathakidis et. al [13]. In their work, they verify the robustness and privacy
properties of a typical WBB-based re-encryption Mix Net in the presence of a

realistic intruder, using the FDR model-checker and show the modifications that
are needed in order to make such a Mix Net robust. The Mix Net verified in their
work was inspired by Verificatum [10], and it has few similarities with Ximix. For
example, the partial decryption phase is absent from [13] and the mix servers
check the received messages before proceeding to their mixing. As we saw in
Section 5, in Ximix, the mix servers are willing to accept any structurally correct
message and proceed to their mixing without checking their validity. Obviously,
this may lead to an incorrect output. Furthermore, a different notion of a WBB
is presented in [13], where it acts as a broadcast channel and keeps a consistent
record of all messages being sent between the mix servers. In Ximix, only the
messages produced by the last mix server are posted on the WBB and each of
them maintains a local board, called a Transient Board (T B). Küsters et. al [15],
provide a formal security analysis of Chaumian RPC Mix Nets. They propose
a new security definition, called accountability, which allows one to measure the
level of privacy and verifiability of such a Mix Net precisely. Their analysis is
interesting, but it is not automated.

9 Conclusion

We have described and conducted a formal modelling and verification of the
Ximix Mix Net which will be used in real large-scale elections in Victoria, Aus-
tralia, in November 2014. It was our aim to be explicit about all the subtleties of
the protocol and to apply sufficient rigour in ensuring its robustness. We demon-
strated that Ximix is not robust in the presence of an intruder, based on Roscoe
and Goldsmith’s perfect Spy, and described the modifications that are needed in
order to satisfy this liveness requirement. In our revised Ximix, the election does
not rely on the integrity of a single component, but instead distributes the trust
among them. Our analysis demonstrates that Ximix guarantees completion and
produces a valid output in the presence of a dishonest component. Additionally,
we explained the impact on the lack of standardisation in Mix Nets and in what
extent they can be standardised. Although this standardisation is difficult to
be achieved in practice, it would be useful and solve issues occurring when Mix
Nets are used in real world applications, such as in constructing trustworthy
electronic voting systems.

Acknowledgements. This work was supported by the EPSRC project Trustwor-
thy Voting Systems, project EP/G025797/1. We would like to thank Chris Cul-
nane, University of Surrey, and Chris Mitchell, Royal Holloway University of
London, for their pertinent comments.

A CSP

Communicating Sequential Processes (CSP) is a process algebra designed for de-
scribing processes that interact with each other. It was introduced by Hoare [16]
in 1978 and since then it has been extensively used for applying the theory of

concurrency in practice. The core of the CSP algebra is a process, which is de-
scribed by the way it communicates with its environment. Processes proceed
from one state to another by engaging in events. An event describes a particular
action that can be performed or refused by a process and the set of all possible
events is denoted by Σ. In CSP, all the communication events are instantaneous
and they happen only when both the processes and the environment agree on
their occurrence (handshaken communication). At the construction of a process
in CSP, the alphabet of a process P , denoted αP , is the set of all visible com-
munication events that this process may perform. For a detailed explanation of
CSP and its associated FDR model-checker, we refer the reader to [17–19].

STOP is the simplest CSP process, which does nothing and SKIP is the
process indicating successful termination. The process a → P is initially willing
to communicate a and then behaves like P . P 2 Q can act either as P or Q , the
choice of which is in the hands of the environment. Replicated external choice
replicates the choice over the set A, and is denoted by 2

x∈A
P(x). By P ‖

A
Q we

denote generalised parallel, which synchronises P and Q on events lying in the
set A. Alphabetised parallel is denoted by P αP‖αQ Q and synchronises P and
Q on events lying in the intersection of αP and αQ . We write ‖i∈I [αP]P(i) for
the replicated alphabetised parallel composition of processes P(i) indexed over
I , where each P(i) is allowed to perform events from αP and the processes are
synchronised on the common events. In hiding, P \ A, the internal events from A
are hidden from the environment. In renaming, [[a/b]], the events b occurring in
the process are replaced by the events a. P ||| Q is the interleaving process, where
the processes P and Q run independently of each other without synchronising
on any event.

B State-space Explosion Problem

Individual checks were performed for each possible instantiation of the models,
with a minority of mix servers, testing the inevitability of an output being pro-
duced. For the case where three mix servers where used, six models were checked
(three for SYSTEMSpy and three for SYSTEMXimixNoCS). Similarly, in the case
where four mix servers were participating in the process, eight checks, in total,
were performed. All checks verified the inevitability of a publish event, regardless
of the behaviour of the dishonest mix servers. All checks were performed using
the refinement checker FDR3 beta 7 on a desktop with an Intel i7 Quad-Core
CPU @ 3.6GHz with 8GiB of memory running 64-bit Ubuntu 12.04.

Looking at SYSTEMXimixNoCS, one can see how the state-space grows when
the intruder is the last in the shuffle plan. In this case, he learns, infers and
is able to deduce and finally say many more messages due to the fact that he
receives many messages broadcast from all the previous honest mix servers.

However, FDR cannot handle the state-space produced when four mix servers
are taking part in the process. An honest mix server is required to post onto
(resp. read from) its internal T B all the received messages, as well as to post

PPPPPPPPH,PD
System SYSTEMXimix SYSTEMSpy SYSTEMXimixNoCS

RBST States RBST States RBST States
{A,B,C} X 45 - - - -
{A,B,C,D} X 56 - - - -
{B,C}, {A} - - × 76 X 72
{A,C}, {B} - - × 181 X 4395
{A,B}, {C} - - × 170 X 4559
{A}, {B,C} - - × 279 × 7068
{B,C,D}, {A} - - NA NA NA NA
{A,C,D}, {B} - - NA NA NA NA
{A,B,D}, {C} - - NA NA NA NA
{A,B,C}, {D} - - NA NA NA NA
{A,B}, {C, D} - - NA NA NA NA

Table 1: The FDR verification results for our models of Ximix. As the state-space
increases quickly with the number of mix servers, it was not possible for FDR
to handle such huge states. These are denoted as “NA” in the table.

(resp. read) the intermediate and ouputted messages. In a similar fashion, the
mix servers post their partially decrypted messages onto the VB. Internally, the
Spy, does not need to maintain a T B, as he is able to say any received (or mixed
by him) message. All these communications between the mix servers and the
boards are computationally expensive and increase the overall state-space.

In the way the models are constructed, COMBINE is the most demanding
process. That is, the combiner (the CS in SYSTEMSpy and any interested party
in SYSTEMXimixNoCS), is responsible for reading all the partial decryptions from
the VB, checking the associated generated zero-knowledge proofs, combining
them into a fully decrypted plaintext message and publishing it. Hence, it is
willing to read all the possible sets of partially decrypted messages and the
correct way for implementing it in CSP involves the use of powersets. In the
case with four mix servers, each of them is able to partially decrypt any received
message of length greater than or equal to the threshold (here, three). Using
the assumption that messages are in strictly increasing order, i.e. a mix server
can mix only a message signed by a preceding mix server, the cardinality of the
set containing all the possible partially decrypted messages is 20. Under this
circumstance, the combiner is willing to read any possible combination of these
20 messages, that is, P(20) = 220 ' 1M , but FDR struggles when performing
such calculations.

References

1. Roscoe, A.W., Goldsmith, M.: The perfect spy for model-checking crypto-
protocols. In: Proceedings of DIMACS workshop on the design and formal verifi-
cation of crypto-protocols, Rutgers University, (September 1997)

2. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2) (1981) 84–88

3. Golle, P., Jakobsson, M., Juels, A., Syverson, P.F.: Universal re-encryption for
mixnets. In Okamoto, T., ed.: CT-RSA. Volume 2964 of Lecture Notes in Computer
Science., Springer (2004) 163–178

4. Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/nothing
election scheme. In Helleseth, T., ed.: EUROCRYPT. Volume 765 of Lecture
Notes in Computer Science., Springer (1993) 248–259

5. Adida, B.: Helios: Web-based open-audit voting. In: Proceedings of the 17th
USENIX Security Symposium (Security ’08). (2008)

6. Ryan, P.Y.A., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter: a
voter-verifiable voting system. IEEE Transactions on Information Forensics and
Security 4(4) (2009) 662–673

7. Burton, C., Culnane, C., Heather, J., Peacock, T., Ryan, P.Y.A., Schneider, S.,
Srinivasan, S., Teague, V., Wen, R., Xia, Z.: A supervised verifiable voting protocol
for the victorian electoral commission. In Kripp, M.J., Volkamer, M., Grimm, R.,
eds.: Electronic Voting. Volume 205 of LNI., GI (2012) 81–94

8. Burton, C., Culnane, C., Heather, J., Peacock, T., Ryan, P.Y.A., Schneider, S.,
Srinivasan, S., Teague, V., Wen, R., Xia, Z.: Using prêt à voter in victorian state
elections. In: Proceedings of the 2012 International Conference on Electronic Voting
Technology/Workshop on Trustworthy Elections. EVT/WOTE’12, Berkeley, CA,
USA, USENIX Association (2012) 1–1

9. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting
by randomized partial checking. In Boneh, D., ed.: USENIX Security Symposium,
USENIX (2002) 339–353

10. Wikström, D.: Verificatum. Website (2014) http://www.verificatum.org/
verificatum/index.htm.

11. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4) (1985) 469–472

12. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Advances in
Cryptology, CRYPTO ’92, Springer-Verlag (1992) 89–105

13. Stathakidis, E., Williams, D.M., Heather, J.: Verifying a mix net in csp. In: Pro-
ceedings of the 13th International Workshop on Automated Verification of Critical
Systems (AVoCS 2013). Volume 66 of Electronic Communications of the EASST.,
European Association of Software Science and Technology (2013)

14. Roscoe, A.W.: The theory and practice of concurrency. Prentice Hall (1998)
15. Küsters, R., Truderung, T., Vogt, A.: Formal analysis of chaumian mix nets with

randomized partial checking. IACR Cryptology ePrint Archive 2014 (2014) 341
16. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8) (1978)

666–677
17. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach. 1st edn.

John Wiley & Sons, Inc., New York, NY, USA (1999)
18. Roscoe, A.: Understanding Concurrent Systems. 1st edn. Springer-Verlag New

York, Inc., New York, NY, USA (2010)
19. Gardiner, P., Goldsmith, M., Hulance, J., Jackson, D., Roscoe, B., Scattergood,

B., Armstrong, P.: Fdr2 user manual (2010) http://www.fsel.com/fdr2_manual.
html.

