
Large-Memory Nodes for Energy Efficient
High-Performance Computing

Darko Zivanovic
Barcelona Supercomputing Center (BSC)

Universitat Politècnica de Catalunya (UPC)
Barcelona, Spain

darko.zivanovic@bsc.es

Milan Radulovic
BSC & UPC, Barcelona, Spain
milan.radulovic@bsc.es

Germán Llort
BSC & UPC, Barcelona, Spain

german.llort@bsc.es

David Zaragoza
BSC & UPC, Barcelona, Spain
david.zaragoza@bsc.es

Janko Strassburg
BSC, Barcelona, Spain

janko.strassburg@bsc.es

Paul M. Carpenter
BSC, Barcelona, Spain

paul.carpenter@bsc.es
Petar Radojković

BSC, Barcelona, Spain
petar.radojkovic@bsc.es

Eduard Ayguadé
BSC & UPC, Barcelona, Spain
eduard.ayguade@bsc.es

ABSTRACT
Energy consumption is by far the most important contrib-
utor to HPC cluster operational costs, and it accounts for
a significant share of the total cost of ownership. Advanced
energy-saving techniques in HPC components have received
significant research and development effort, but a simple
measure that can dramatically reduce energy consumption
is often overlooked. We show that, in capacity comput-
ing, where many small to medium-sized jobs have to be
solved at the lowest cost, a practical energy-saving approach
is to scale-in the application on large-memory nodes. We
evaluate scaling-in; i.e. decreasing the number of applica-
tion processes and compute nodes (servers) to solve a fixed-
sized problem, using a set of HPC applications running in
a production system. Using standard-memory nodes, we
obtain average energy savings of 36%, already a huge fig-
ure. We show that the main source of these energy savings
is a decrease in the node-hours (node hours = #nodes ×
exe time), which is a consequence of the more efficient use
of hardware resources.

Scaling-in is limited by the per-node memory capacity.
We therefore consider using large-memory nodes to enable
a greater degree of scaling-in. We show that the additional
energy savings, of up to 52%, mean that in many cases the
investment in upgrading the hardware would be recovered
in a typical system lifetime of less than five years.

CCS Concepts
•Computer systems organization → Distributed ar-
chitectures; •Hardware → Power and energy;

ACM ISBN X-XXXXX-XX-X/XX/XX.

DOI: http://dx.doi.org/10.1145/0000000.0000000

Keywords
High-performance computing, Large-memory nodes, Energy
efficiency, Capacity computing, Scaling-in.

1. INTRODUCTION
Energy consumption is by far the most important contrib-

utor to HPC cluster operational costs, and it accounts for a
large share of the total cost of ownership [20, 23]. For this
reason, advanced energy-saving techniques in CPUs, cooling
systems, next-generation memories and interconnects have
been the subjects of significant industrial and academic re-
search and development effort. Despite this investment, as
shown in this paper, researchers and users continue to over-
look a simple measure that can dramatically reduce energy
consumption, that of simply optimizing the number of com-
pute nodes (servers) used to execute each job.

High-performance computing is broadly divided into capa-
bility and capacity computing. Capability computing refers
to the use of a large-scale HPC installation to solve a sin-
gle problem in the shortest possible time; e.g. simulating
the human brain on a Tier-0 HPC system. In contrast, ca-
pacity computing refers to optimizing system efficiency to
solve many mid-size or smaller problems at the lowest possi-
ble cost [3]. Typical examples of capacity computing would
be small and medium enterprises using on-demand HPC re-
sources to explore future product designs. In the context
of capacity computing, the user is concerned not with the
running time of a single job, but with the total running time
of a batch of jobs and total system throughput.

This paper investigates the potential for saving energy
through scaling-in on large-memory nodes. Scaling-in refers
to executing a fixed problem on a fixed machine, but us-
ing a reduced number of application processes and compute
nodes. Scale-in increases single job execution time, but, as
we quantify in this paper, it substantially decreases energy
consumption and reduces the running time of a batch of
jobs. It is therefore of particular interest in the context
of capacity computing. We study the trade-off between
job/batch execution time, energy consumption and node-
hours (node hours = #nodes × exe time) using a set of

large-scale HPC applications running on a production HPC
system. In summary, we find that scaling-in on standard
memory nodes improves energy consumption by 36% on av-
erage, a huge figure. We investigate the sources of this en-
ergy savings, and show that its main source is a reduction
in node-hours.

Scaling-in is limited by the per-node memory capacity,
since, for a fixed size problem, reducing the number of nodes
increases the memory required at each node. We therefore
investigate the benefits of upgrading the per-node memory
capacity in terms of energy savings and reducing the node-
hours, and follow this with a financial cost-benefit analysis.
We show that the additional energy savings, of up to 52%,
mean that an investment in upgrading the memory would
be typically recovered in less than five years.

2. METHODOLOGY

2.1 Hardware platform
We execute experiments on the MareNostrum III super-

computer [7], which is one of the six Tier-0 (largest) HPC
systems in the Partnership for Advanced Computing in Eu-
rope (PRACE)[2]. MareNostrum III contains 3,056 compute
nodes, each with two eight-core Sandy Bridge-EP E5-2670 at
2.6 GHz, connected via InfiniBand FDR 10. As in most HPC
systems, hyperthreading is disabled. Standard MareNos-
trum compute nodes have 32 GB of DDR3-1600 main mem-
ory, i.e. 2 GB per core. Large-memory nodes are identical
to standard nodes except that their memory capacity has
been upgraded to 128 GB.

2.2 Applications
We study HPC scaling behaviour using the Unified Euro-

pean Application Benchmark Suite (UEABS) [19], the set
of production applications and datasets designed for bench-
marking the European PRACE HPC systems for procure-
ment and comparison purposes [2]. All applications are par-
allelized using MPI, and we executed them with the Test
Case A dataset, which is scalable up to 1,024 processes. We
ran the benchmarks with one MPI process per core, i.e. six-
teen processes per node. Table 1 shows the six benchmarks
that we analysed. The remaining benchmarks either could
not be installed or they came with a Test Case A dataset
compatible with an insufficiently wide range of nodes for
our analysis. The table also shows the range of nodes on
which we ran the benchmarks. In all cases, the maximum
was 64 nodes (1,024 cores). The minimum was either a sin-
gle node or the least number of nodes necessary to meet
the memory requirements. We also list per-node memory
requirements for the benchmarks running on the minimum
number of nodes.

2.3 Power and energy measurements
The node power consumption was measured using IBM

Active Energy Manager power modules, which monitor the
voltage and current at the node power supply [11]. Ac-
tive Energy Manager is part of the Integrated Management
Module II in the firmware of the System x iDataPlex dx360
M4 [5]. The modules measure the node’s total power con-
sumption, including power supply, motherboard with all its
components, CPUs, and memory. The MareNostrum node
firmware samples the power consumption every second, and
it computes the energy consumption by multiplying the mea-

Table 1: UEABS applications used in the study.

Application Science area
Memory

[GB] a

Num-
ber of
nodes

ALYA Computational mechanics 15.1 1–64
NAMD Computational chemistry 25.9 1–64
QEb Computational chemistry 17.7 1–64
BQCD Particle physics 14.4 4–64
GENE Plasma physics 16.2 4–64
CP2K Computational chemistry 17.0 8–64

a Per-node memory usage when application runs on the
minimum number of nodes.

b QE stands for Quantum Espresso application.

sured power sample by the interval length of one second.
Finally, the LSF batch job manager [12] sums the energy
measurements during the whole execution of a job, and it
reports the total in the job execution log file.

We estimate the energy consumption of the interconnect.
Measurements from the node power modules already include
the network interfaces in the node, so we focus on the energy
consumption of the switches. Current network components
are observed to have close-to-constant power demand, inde-
pendent of load, with a deviation of less than 5% [17, 21].
This means that the total switch power consumption can
be determined by adding up the vendor’s figures for typical
use, and, since power consumption is independent of activ-
ity, the total can be attributed to the nodes equally. We cal-
culate a constant 7.0 W/node for the top-of-rack switches,
15.3 W/node for the core switches, and 4.8 W/node for the
Ethernet storage and management networks, giving a total
of 27.1 W per node. For a given job, the interconnect en-
ergy consumption can therefore be calculated assuming a
constant power of 27.1 W per node.

3. SCALING-IN ON STANDARD NODES

3.1 Execution time vs. node-hours vs. energy
Before running any experiment on an HPC machine, the

user must choose to run the application on a particular num-
ber of nodes. This scenario, of a fixed problem to solve on a
variable number of nodes, is known as strong scaling. The
largest number of nodes is limited by the machine size and
application’s scalability: beyond a certain point, adding fur-
ther nodes delivers diminishing returns. The smallest num-
ber of nodes is constrained by the amount of memory needed
by the application: scaling-in the application too far would
require more memory per node than is available.

Until now, the number of nodes has been chosen as a
trade-off between execution time and node-hours, where the
latter is the main “cost” exposed to the user, and is given by
the number of nodes multiplied by the job’s execution time.
Figure 1 shows this trade-off for the ALYA application. As
the number of nodes, on the x-axis, is increased from 1 to 64,
the execution time drops by a factor of 27 (1/0.04),1 while
the node-hours increase by a factor of 2.37. At the same

1We report only the execution time of the HPC job. Time
waiting in the job queue and/or moving the results to an
interactive server for post-processing can significantly reduce
the effective speed-up.

1 2 4 8 16 32 64

Number of compute nodes

0

0.5

1.0

1.5

2.0

2.5
R

el
at

iv
e

to
a

si
ng

le
no

de

1.0 1.06 1.18 1.22 1.35
1.52

2.07

1.0 1.09
1.23 1.27 1.39

1.63

2.37

1.0

0.54
0.31

0.16 0.09 0.05 0.04

Node hours
Execution time
Energy

Figure 1: ALYA, 1–64 nodes: Increasing the number
of nodes increases both energy and node-hours, with
strong correlation.

ALYA
[1–64]

BQCD
[4–64]

CP2K
[8–64]

GENE
[4–64]

NAMD
[1–64]

QE
[1–16]

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R
el

at
iv

e
to

th
e

lo
w

es
t

nu
m

be
ro

fn
od

es

2.07

1.63

1.86

1.36
1.25

1.43

Energy consumption

Figure 2: UEABS applications: Increasing the num-
ber of nodes causes significant energy overheads.

time, the energy consumption increases by a factor of 2.07.
The energy consumption is about 90% compute nodes and
10% switches, and this ratio was roughly the same in all our
experiments.

Figure 2 summarizes the energy results for all the appli-
cations under study.2 Increasing the number of nodes above
the minimum always leads to significant energy overheads,
between 1.25× and 2.07×, with an average of 1.6×.

To understand these results in the context of capacity
computing, we analyze how execution time, node-hours and
energy are affected by scale-in and scale-out, for a single job
and for many jobs. The upper half of Table 2 refers to the
single-job experiments, discussed in the previous paragraph.
In this case, scale-in greatly increases the execution time,
since it reduces the use of concurrent hardware resources (to
1 node instead of 64). When we move to 64 jobs, however,
as illustrated in the bottom half of the table the analysis
changes. The number of 64 jobs is selected to simplify the
illustration of the phenomena; the conclusions are applica-
ble for any large number of jobs. Scale-in executes the set
of jobs across all 64 nodes, with an independent job on each
node. Although the total experiment size increases by a
factor of 64, the execution time remains the same. In the
scale-out approach, however, since each job already executes
across all 64 nodes, the jobs execute one after another, and
the execution time increases by a factor of 64. The scale-in
approach is 27× slower for a single job, but 2.37× faster
for 64 jobs. In both cases, scale-in approach reduces energy
consumption by 2.07×.

2Although QE processing Test Case A should scale up to 64
nodes [19], we observed good scalability up to 16 nodes but
slowdowns for 32 and 64 nodes. We therefore report results
for the range 1–16 nodes for QE.

Table 2: ALYA, 1 vs. 64 jobs: The scale-in approach
is 27× slower for a single job, but 2.37× faster for 64
jobs. In both experiments scaling-in reduces node-
hours by 2.37× and energy consumption by 2.07×.

Nodes
per job Nodes Exe time

[min] Node-hours
Energy
[kWh]

1 job
Scale-out 64 64 1.14 1.21 0.30
Scale-in 1 1 30.62 0.51 0.14
Ratio 0.04 2.37 2.07

Better approach Scale-out Scale-in Scale-in

64 jobs
Scale-out 64 64 72.71 77.56 19.10
Scale-in 1 64 30.62 32.66 9.25
Ratio 2.37 2.37 2.07

Better approach Scale-in Scale-in Scale-in

1 2 4 8 16 32 64

Number of compute nodes

0

20

40

60

80

100
C

om
m

un
ic

at
io

n
an

d
co

m
pu

ta
tio

n
tim

e
[%

]

Communication time [%]
Computation time [%]

Node power [W]

200

220

240

260

N
od

e
po

w
er

[W
]256

250 246 244 248

236

219

Figure 3: ALYA, 1–64 nodes: Scaling-out decreases
power per node, since nodes spend more time in
communication.

Therefore, in capacity computing, where there are many
smaller jobs, scaling-in improves all three metrics: execu-
tion time, node-hours, and energy consumption. Although
important, this fact is overlooked by most of HPC research.
To the best of our knowledge, this is the first study that
quantifies improvements of scaling-in of large-scale HPC ap-
plications. We believe that the presented results will moti-
vate further research in this direction and impact the policies
for operational use of large HPC clusters.

3.2 Understanding energy vs. node-hours
For all the applications, as for ALYA shown in Figure 1,

there is a clear correlation between the increments in node-
hours and energy; however the two curves do not grow at
the same pace. In fact, the node-hours curve always ex-
ceeds the energy curve. Since interconnect switch energy is
proportional to node-hours (constant 27.1 W/node), the gap
between the curves must come from a reduction in per-node
power consumption. Figure 3 explores the node power con-
sumption for the ALYA application, with each data point
being the average of ten experiments. As the number of
nodes, on the x-axis, is increased from 1 to 64, the per-node
power reduces from 256 W to 219 W, a drop of 15%. The
trend is not followed precisely, but the results are repeatable,

as sample standard deviation was negligible.
The per-node power reduction comes due to changes in

the behavior of HPC applications when scaling-out, mainly
because of the increase in the communication-to-computat-
ion ratio. We trace the applications and measure the time
spent in communication and computation with the Limpio
instrumentation tool [18]. As shown in Figure 3, in the case
of ALYA, increasing the number of nodes from one (16 pro-
cesses) to 64 (1,024 processes) increases the proportion of
time spent in communication from 20% to 69%. Since the
power consumption of the communication (MPI functions)
ranges between 200 W and 220 W, compared with about
280 W for computation, increasing the time spent in commu-
nication would pull down the average power consumption.
In summary, for all applications under study, the higher the
number of nodes, the higher the proportion of time that is
spent in communication, and the lower the average per-node
power consumption.

3.3 Implications and impact
The number of compute nodes to use in a given experi-

ment impacts the application’s execution time, node-hours
and energy consumption, and, in aggregate, the throughput
of the whole HPC system. This topic has not yet been thor-
oughly explored in the context of capacity computing. This
is perhaps because HPC was traditionally biased to large
public research centers and academia, which are heavily fo-
cused on capability computing.

In recent years, however, HPC has entered industry, in-
cluding small and medium enterprises, and many users now
pay for their time on rented HPC resources. With this
change, the cost of HPC experiments has become highly
visible, and therefore of prime importance, and scaling-out
of HPC applications is now a serious trade-off between exe-
cution time and cost. In addition to this, energy efficiency
has become an important consideration in state-of-the-art
HPC systems, and it is one of the main limitations in the
design of future ones [20].

Considering these recent changes in HPC, and future re-
quirements and limitations, it is important to rethink the
scaling-out of HPC applications. The results in the previ-
ous section show that application scaling-out increases en-
ergy consumption on average by a factor of 1.6. Equiva-
lently, from the point-of-view of current practice, scaling-in
reduces the energy consumption by 36%, on average. To the
best of our knowledge, this paper is the first to emphasize
how the number of nodes impacts energy consumption and
to quantify the potential energy savings.

4. LARGE-MEMORY NODES FOR ENERGY
EFFICIENCY

As described in previous section, reducing the number of
nodes improves energy efficiency but it increases the memory
demand per node, with the result that scaling-in is limited
by the nodes’ memory capacity. In Table 1 it was shown that
CP2K, for example, requires at least eight MareNostrum
nodes to fit the problem size. This is explained further in
Figure 4. CP2K results are presented in Figure 4(a), and
they show how reducing the number of nodes, shown on
the x-axis, to four or fewer causes the per-node memory
footprint to exceed the standard node memory capacity of
32 GB. Figures 4(b) and 4(c) show the same trend for ALYA

1 2 4 8 16 32 64

Number of compute nodes

0

20

40

60

80

100

Pe
r-

no
de

m
em

or
y

fo
ot

pr
in

t[
G

B
]

0

0.4

0.8

1.2

1.6

2.0

N
od

e
ho

ur
s

an
d

to
ta

le
ne

rg
y

re
la

tiv
e

in
cr

ea
se

0.81 0.92 0.93 1.0 1.1

1.46

1.86

0.81 0.89 0.9 1.0 1.13

1.48

2.01Memory footprint [GB]
Total energy
Node hours

128 GB nodes 32 GB nodes

(a) CP2K (Test Case A)

4 8 16 32 64

Number of compute nodes

0

20

40

60

80

100

Pe
r-

no
de

m
em

or
y

fo
ot

pr
in

t[
G

B
]

0

0.4

0.8

1.2

1.6

2.0

2.4

N
od

e
ho

ur
s

an
d

to
ta

le
ne

rg
y

re
la

tiv
e

in
cr

ea
se

0.72 0.84
1.0

1.29

2.02

0.66 0.78
1.0

1.34

2.15Memory footprint [GB]
Total energy
Node hours

128 GB nodes 32 GB nodes

(b) ALYA (Test Case B)

16 32 64 128

Number of compute nodes

0

20

40

60

80

100

Pe
r-

no
de

m
em

or
y

fo
ot

pr
in

t[
G

B
]

0

0.4

0.8

1.2

1.6

2.0

N
od

e
ho

ur
s

an
d

to
ta

le
ne

rg
y

re
la

tiv
e

in
cr

ea
se

0.53 0.6

1.0

1.57

0.48 0.56

1.0

1.58Memory footprint [GB]
Total energy
Node hours

128 GB nodes 32 GB nodes

(c) QE (Test Case B)

Figure 4: Scaling-in increases memory requirements
and energy efficiency of HPC applications. Node-
hours and energy are shown relative to the experi-
ment on the minimum number of standard nodes.

and QE applications processing Test Case B, the larger input
dataset intended for Tier-0 HPC systems. ALYA application
exceeds the 32 GB per node memory footprint on eight or
fewer nodes, while QE requires at least 64 standard nodes
to fit into the available main memory.

In addition to the memory footprint, Figure 4 also plots
the node-hour and energy consumption curves. For CP2K
in Figure 4(a), the experiments with eight or more nodes
use standard nodes, whereas the experiments with four or
fewer nodes by necessity use large-memory nodes. Results
are normalized to the eight-node experiment, which is the
best result on standard nodes. It is clearly seen that, for the
CP2K application, scale-in to large-memory nodes further
improves the energy efficiency. Moving from eight standard
nodes to a single large-memory node leads to 19% savings in
both node-hours and energy consumption. In Figures 4(b)
and 4(c) node-hours and energy curves follow the same trend
as for CP2K, and the savings are even higher. For ALYA,

CP2K
[8→1]

ALYA
Test Case B

[16→4]

QE
Test Case B

[64→16]

GENE
Test Case B
[128→64]

0
10
20
30
40
50
60

E
ne

rg
y

sa
vi

ng
s

of
la

rg
e-

m
em

or
y

no
de

s

19%
28%

47%
52%

Figure 5: Summary of energy savings enabled by
using large-memory nodes. [a → b] refers to a shift
from a standard to b large-memory nodes.

scale-in from 16 standard to 4 large-memory nodes led to
28% energy and 34% node-hours savings, while QE saved
47% of energy and 52% of node-hours when moving from
64 to 16 nodes. We also analyze GENE running larger Test
Case B. For GENE, shift from 128 standard to 64 large-
memory nodes saved 52% of energy and 55% of node-hours.3

Figure 5 summarizes energy savings enabled by running
the experiments on large-memory nodes. We detect energy
savings from 19% for CP2K, up to 52% for GENE running
Test Case B, with an average of 36%, a huge figure.

4.1 Large-memory nodes for capacity comput-
ing

To understand benefits of using large-memory nodes in
the context of capacity computing, we analyze how execu-
tion time, node-hours and energy are affected on standard
and large-memory nodes, for a single job and for many jobs.
The upper half of Table 3 refers to the single-job experi-
ments. In this case, using large-memory nodes increases the
execution time by 6.5×, since it reduces the use of concurrent
hardware resources (to one node instead of eight). When we
move to eight jobs, however, as illustrated in the bottom
half of the table, the analysis changes. Scale-in approach on
large-memory nodes executes the set of jobs across all eight
nodes, with an independent job on each node. Although
the total experiment size increases by a factor of eight, the
execution time remains the same. In the scale-in approach
on standard nodes, however, since each job already executes
across all eight nodes, the jobs execute one after another,
and the execution time increases by a factor of eight. The
scale-in on large-memory nodes approach is 6.5× slower for a
single job, but 1.23× faster for eight jobs. In both cases, the
scale-in on large-memory nodes reduces energy consumption
by 1.24×. Therefore, in capacity computing, where there are
many smaller jobs, using large-memory nodes improves all
three metrics: execution time, node-hours, and energy con-
sumption.

4.2 Large-memory node cost-benefit analysis
Finally, this section explores whether large-memory nodes

are worthwhile from a financial point-of-view; i.e. whether
the decrease in electricity costs would be sufficient to re-
cover the cost of the extra memory. This analysis concen-
trates only on the financial return. Large memory nodes
also increase system throughput, providing an extra benefit
beyond that evaluated in this section.

3GENE is excluded from Figure 4 as it has only two data
points, for 128 standard and 64 large-memory nodes.

Table 3: CP2K, 1 vs. 8 jobs: Execution on large-
memory nodes is 6.5× slower for one job, but 1.23×
faster for eight jobs. For both job sizes, node-hours
and energy reduce when using large-memory nodes.

Nodes
per job Nodes

Exe time
[min] Node-hours

Energy
[kWh]

1 job
Standard 8 8 25.9 3.45 1.07
Large-mem 1 1 168 2.8 0.86
Ratio 0.15 1.23 1.24

Better approach Standard Large-mem Large-mem

8 jobs
Standard 8 8 207.2 27.6 8.56
Large-mem 1 8 168 22.4 6.88
Ratio 1.23 1.23 1.24

Better approach Large-mem Large-mem Large-mem

Table 4: Payback from large-memory nodes over
five-year system lifetime [%].

Country $/kWh
Reduction in energy consumption

10% 20% 30% 40% 50% 60%
(CP2K)(ALYA) (QE/GENE)

U.S. 0.07 16 32 48 64 80 97
U.K. 0.15 33 66 99 132 165 198
Germany 0.17 38 75 112 150 188 225
France 0.10 22 44 66 88 110 132

In Table 4, each entry indicates the percentage payback,
over a five-year system lifetime, from the reduced electrical
costs delivered by large-memory nodes. Entries that exceed
the break-even point of 100% are indicated in bold. The
electricity cost for the U.S. is the average industrial price
from August 2015 [25], whereas for the U.K, Germany and
France industrial prices are from 2014 [1]. The memory up-
grade from 32 GB to 128 GB was estimated to cost around
$600 per node [4]. The benefit clearly depends on the mix of
applications ran on the large-memory nodes, as different ap-
plications obtain greater or lesser energy savings. For CP2K,
the 20% reduction in energy is not sufficient to recover the
costs. For ALYA, a 30% energy saving means that the costs
would be recovered in Germany. For QE and GENE, which
both obtained roughly 50% reduction, the investment would
be recovered in France, Germany and the U.K.

5. RELATED WORK
Significant industrial and academic research has been in-

vested into energy-saving mechanisms for HPC components,
such as CPUs, interconnects and memories. Several studies
investigate how to employ CPU low-power modes in HPC.
Current practice is to run the CPUs at the maximum voltage
and frequency even while busy-waiting for an MPI message.
Freeh et al. [10] investigate the tradeoff between energy and
performance in MPI programs using DVFS. Using the NAS

Scale-up:
More powerful servers

Scale-out: More serversScale-in: Fewer servers

Scale-down:
Less powerful servers

Traditional HPC:
Scaling = Scale-out

Our study:
Scale-in on standard nodes

Our study:
Scale-up and scale-in

 on large-memory nodes

Figure 6: System scaling can be horizontal (scale-in or -out) and vertical (scale-up or -down). Traditionally,
HPC community is focused mainly on scale-out, referring to it simply as scaling. Our study analyzes scale-in
on standard nodes, and a combined scale-up and scale-in approach on large-memory nodes.

Benchmark Suite, they show that on one node it is possible
to use 10% less energy while increasing time by only 1%. Lim
et al. [14] propose an MPI runtime system that dynamically
reduces the CPU performance during communication phases
in order to minimize the energy-delay product (EDP). They
show an average reduction in EDP of 10% across the NAS
benchmarks suite.

Laros et al. [13] study how to combine CPU frequency
scaling (for computation) and network bandwidth scaling
(for communication) to reduce the energy consumption. On
a set of Department of Energy (DOE) production applica-
tions running at large scale, they measure energy savings
of up to 39%, with little or no impact on runtime perfor-
mance. Their results also indicate that each application has
a sweet spot based on its computation and communication
requirements.

Regarding HPC interconnect energy consumption, Dickov
et al. [8] reduce InfiniBand link energy by 21% by powering
down the network links during the computation phases and
using prediction to ensure that they are powered up in time
for the next communication phase. Karthikeyan et al. [22]
use prediction and an adaptive stall timer to reduce Ethernet
link energy by 68%, while respecting a 1% bound on the
increase in execution time.

Several previous studies deal with the energy efficiency
of DRAM memory, through different memory management
policies, intelligent data placement, and by creating oppor-
tunities to transition between power states [9, 16, 24]. Mal-
ladi et al. [15] use mobile DRAM devices in order to trade
bandwidth for energy efficiency. These studies are validated
for datacenter workloads, and it would be interesting to see
to what extent their results are applicable to HPC.

In this paper, we show that upgrading the memory ca-
pacity in HPC systems for capacity computing is a simple

approach to save energy and reduce node-hours. In contrast
to most of the prior research, our approach can be applied
immediately, and it requires no changes to the system archi-
tecture, Operating System, system software or applications.

6. SECOND THOUGHTS ON SCALABILITY
The big data community distinguishes between two di-

mensions of system scaling — horizontal, which refers to
the number of compute units, and vertical, referring to the
hardware capabilities of each compute unit (see Figure 6).
There are main two corresponding approaches for the anal-
ysis of huge data volumes: scale-out and scale-up. Scale-out
means using more servers in parallel to spread out the work-
load, while scaling-up means using larger and faster servers
to each handle a greater workload. The big data commu-
nity is very active in analyzing the trade-offs between these
two approaches, and whether both of them should co-exist
within the same cluster [6].

In HPC, the dominant approach for addressing ever in-
creasing HPC problems is scale-out. Actually, the commu-
nity uses a general term scalability or scaling to refer to
scale-out; while the more precise terms scale-up/out, hori-
zontal and vertical scaling are rarely used or not used at all.

In modern HPC, the cost and energy consumption of the
experiments has become highly visible and of prime impor-
tance. Our study demonstrates that simple but unconven-
tional approaches of scale-in (standard node) or scale-up and
scale-in (large memory nodes) can lead to significant savings
in cost and energy, and improvements in throughput. There-
fore, we hope that the study will motivate the community to
consider the trade-offs between horizontal and vertical scal-
ing when provisioning and using HPC clusters. Maybe we
could start this journey with some second thoughts about
the way that we use the word scalability.

7. CONCLUSIONS
The importance of energy consumption of current and fu-

ture HPC machines means that significant research effort has
been spent on advanced energy-saving techniques in HPC
components. Despite this investment, the simple measure
of scaling-in applications to reduce energy consumption has
received little attention.

Scaling-in is most appropriate in the context of capac-
ity computing, where a large number of mid-size or smaller
problems have to be solved at the lowest cost, and the users
are less interested in the execution time of a single job. We
therefore advocate upgrading the memory capacity that al-
lows further scaling-in in capacity computing. We validate
this approach on a set of large-scale HPC applications run-
ning on a production system, and obtain average energy
savings of 36%, a huge figure. Finally, we investigate the
economical benefits of this approach, and show that the in-
vestment in upgrading the hardware would be typically re-
covered in less than five years.

Overall, we believe that this study will motivate further
analysis of the trade-offs between horizontal and vertical
scaling in HPC, especially in application domains that are
on the border between HPC and big data analytics.

8. ACKNOWLEDGMENTS
This work was supported by the Collaboration Agreement

between Samsung Electronics Co., Ltd. and BSC, Span-
ish Government through Severo Ochoa programme (SEV-
2015-0493), by the Spanish Ministry of Science and Tech-
nology through TIN2015-65316-P project and by the Gen-
eralitat de Catalunya (contracts 2014-SGR-1051 and 2014-
SGR-1272). This work has also received funding from the
European Union’s Horizon 2020 research and innovation pro-
gramme under ExaNoDe project (grant agreement No 671578).
Darko Zivanovic holds the Severo Ochoa grant (SVP-2014-
068501) of the Ministry of Economy and Competitiveness of
Spain.

9. REFERENCES
[1] European Commission Eurostat.

http://ec.europa.eu/eurostat/.

[2] PRACE Research Infrastructure.
http://www.prace-ri.eu.

[3] ETP4HPC Strategic Research Agenda Achieving HPC
Leadership in Europe, June 2013.

[4] http://www.pinnaclemicro.com/, Nov. 2015.

[5] System x iDataPlex dx360 M4 Product Guide.
https://lenovopress.com/tips0878, Jan. 2015.

[6] R. Appuswamy, C. Gkantsidis, D. Narayanan,
O. Hodson, and A. Rowstron. Scale-up vs scale-out for
hadoop: Time to rethink? In Proc. of the Symp. on
Cloud Computing (SOCC), pages 20:1–20:13, Oct.
2013.

[7] BSC. MareNostrum III System Architecture. http:
//www.bsc.es/marenostrum-support-services/mn3,
2013.

[8] B. Dickov, M. Pericàs, P. Carpenter, N. Navarro, and
E. Ayguadé. Software-Managed Power Reduction in
Infiniband Links. In Proc. of the Int. Conference on
Parallel Processing (ICPP), pages 311–320, Sept. 2014.

[9] B. Diniz, D. Guedes, W. Meira, Jr., and R. Bianchini.
Limiting the Power Consumption of Main Memory. In

Proc. of the Int. Symp. on Computer Architecture
(ISCA), pages 290–301, June 2007.

[10] V. W. Freeh, F. Pan, N. Kappiah, D. K. Lowenthal,
and R. Springer. Exploring the Energy-Time Tradeoff
in MPI Programs on a Power-Scalable Cluster. In
Proc. of the Int. Parallel and Distributed Processing
Symp. (IPDPS), page 4.a, Apr. 2005.

[11] IBM. IBM Integrated Management Module II
Firmware 3.70. https://www.kernel.org/doc/
Documentation/hwmon/ibmaem.

[12] IBM. Administering Platform LSF, 2014.

[13] J. H. Laros, K. T. Pedretti, S. M. Kelly, W. Shu, and
C. T. Vaughan. Energy Based Performance Tuning for
Large Scale High Performance Computing Systems. In
Proc. of the Symp. on High Performance Computing
(HPC), pages 6:1–6:10, Mar. 2012.

[14] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal.
Adaptive, Transparent Frequency and Voltage Scaling
of Communication Phases in MPI Programs. In Proc.
of the Conference on Supercomputing (SC), Nov. 2006.

[15] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis,
K. Periyathambi, and M. Horowitz. Towards
Energy-proportional Datacenter Memory with Mobile
DRAM. In Proc. of the Int. Symp. on Computer
Architecture (ISCA), pages 37–48, June 2012.

[16] K. T. Malladi, I. Shaeffer, L. Gopalakrishnan, D. Lo,
B. C. Lee, and M. Horowitz. Rethinking DRAM
Power Modes for Energy Proportionality. In Proc. of
the Int. Symp. on Microarchitecture (MICRO), pages
131–142, Dec. 2012.

[17] P. Reviriego et al. An initial evaluation of energy
efficient ethernet. IEEE Communications Letters,
15(5):578–580, May 2011.

[18] M. Pavlovic, M. Radulovic, A. Ramirez, and
P. Radojkovic. Limpio - LIghtweight MPI
instrumentatiOn. In Proc. of the Int. Conference on
Program Comprehension (ICPC), pages 303–306,
https://www.bsc.es/computer-sciences/computer-
architecture/memory-systems/limpio, May
2015.

[19] PRACE. Unified European Applications Benchmark
Suite. www.prace-ri.eu/ueabs/, 2013.

[20] S. Ashby et al. The Opportunities and Challenges of
Exascale Computing. Technical report, 2010.

[21] S. L. Song et al. Unified performance and power
modeling of scientific workloads. In Proc. of the Int.
Workshop on Energy Efficient Supercomputing
(E2SC), pages 4:1–4:8, Nov. 2013.

[22] K. P. Saravanan, P. M. Carpenter, and A. Ramirez. A
Performance Perspective on Energy Efficient HPC
Links. In Proc. of the Int. Conference on
Supercomputing (ICS), pages 313–322, June 2014.

[23] R. Stevens and A. White. Architectures and
Technology for Extreme Scale Computing. Technical
report, DOE, Dec. 2009.

[24] M. E. Tolentino, J. Turner, and K. W. Cameron.
Memory MISER: Improving Main Memory Energy
Efficiency in Servers. IEEE Transactions on
Computers, 58(03):336–350, Sept. 2008.

[25] U.S. Energy Information Administration. Electric
Power Monthly with Data for August 2015. Technical
report, DOE, Oct. 2015.

