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ABSTRACT

Data sets in astronomy are growing to enormous sizes. Modern as-
tronomical surveys provide not only image data but also catalogues
of millions of objects (stars, galaxies), each object with hundreds of
associated parameters. Exploration of this very high-dimensional
data space poses a huge challenge. Subspace clustering is one
among several approaches which have been proposed for this pur-
pose in recent years. However, many clustering algorithms require
the user to set a large number of parameters without any guide-
lines. Some methods also do not provide a concise summary of the
datasets, or, if they do, they lack additional important information
such as the number of clusters present or the significance of the
clusters. In this paper, we propose a method for ranking subspaces
for clustering which overcomes many of the above limitations. First
we carry out a transformation from parametric space to discrete im-
age space where the data are represented by a grid-based density
field. Then we apply so-called connected morphological operators
on this density field of astronomical objects that provides visual
support for the analysis of the important subspaces. Clusters in sub-
spaces correspond to high-intensity regions in the density image.
The importance of a cluster is measured by a new quality criterion
based on the dynamics of local maxima of the density. Connected
operators are able to extract such regions with an indication of the
number of clusters present. The subspaces are visualized during
computation of the quality measure, so that the user can interact
with the system to improve the results. In the result stage, we use
three visualization toolkits linked within a graphical user interface
so that the user can perform an in-depth exploration of the ranked
subspaces. Evaluation based on synthetic as well as real astronomi-
cal datasets demonstrates the power of the new method. We recover
various known astronomical relations directly from the data with
little or no a priori assumptions. Hence, our method holds good
prospects for discovering new relations as well.

Keywords: Subspace finding, clustering high-dimensional data,
connected morphological operators, visual exploration, astronomi-
cal data.
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1 INTRODUCTION

Data sets in astronomy are growing to enormous sizes. Modern as-
tronomical surveys provide not only image data but also catalogues
of millions of objects (stars, galaxies), each object with hundreds
of associated parameters. Although the high data rates required
for acquisition, processing and populating the archives are well un-
der control and are supported by dedicated projects teams, we need
to develop new approaches for extracting, analyzing and visualiz-
ing astronomically relevant information out of the flood of data.
Exploration of very high-dimensional information spaces poses a
huge challenge. On the one hand, the techniques should cope with
enormous amounts of data in a highly automated fashion, and be
scalable to ensure that the newly developed methods remain usable
while the data catalogues increase in size. On the other hand, the
approach should allow the observer to participate in the analysis by
using interactive visualization combined with the human perceptive
and analytical power. This is especially true as the goal is to find
“unexpected” phenomena in the data, for which by definition no
a priori description is available, thus precluding the possibility of
fully automated search.

Combining data mining approaches with visualization can en-
able users to explore such large datasets. Clustering is a well
known data mining task that helps to discover natural structures in
a dataset [20]. Due to the exploratory nature of the task, full dimen-
sional clustering techniques cannot help much. Clusters may exist
in different subspaces that may indicate different relations among
particular subsets of dimensions. Subspace clustering is an ap-
proach that can be applied for this purpose. Subspace clustering
is the process of finding clusters in subspaces of the full feature
space, either directly [4] or by identifying relevant subspaces for
(later) clustering based on some quality criteria [9].

In this paper we propose an approach to find relevant subspaces
which is strongly tied to morphological properties of object distri-
butions. Therefore, we apply techniques from the field of mathe-
matical morphology, which was developed to describe image oper-
ators for enhancement, segmentation and extraction of shape infor-
mation from digital images [17, 27].

The main steps of our approach can be summarized as follows.
First we carry out a transformation from the parametric space of as-
tronomical objects (stars, galaxies) to a discrete image space where
the data are represented by a density field. This transformation is
obtained by using grid based-density estimation. Next we deter-
mine for each local maximum of the density field whether it rep-
resents a relevant subspace by applying quality criteria based upon
the notion of dynamics [10], which indicates the significance of a
local maximum, see section 3.4.

The search for modes/local maxima is done on the so-called
Max-tree representation of the density image. Such a representa-
tion is used in mathematical morphology to implement an impor-
tant class of morphological operations known as connected opera-
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tors [24,26]. The main property of connected operators is that they
do not process individual data points, but entire connected com-
ponents at each grey level. Such components are either kept or
completely removed by the operator. Therefore, such operators can
be used to perform filtering based on various shape and size at-
tributes. More information on connected operators is provided in
section 3.3. For subspaces of dimension higher than three we apply
principal component analysis (PCA) and use the first three principal
components for subspace ranking. The main reason for using PCA
is that for higher dimensions the current Max-tree implementation
becomes prohibitive in terms of computing time and memory use.

Along with the quality measure and ranking of the subspaces
we provide quantitative information such as the number of clusters
present, degree of separation, size and shape of the clusters, etc.
Note that our method does not perform the actual clustering itself,
i.e., it does not assign points to clusters. For this purpose, existing
clustering algorithms (such as k-means) may be used.

Visualization plays an important role in our approach. The sub-
spaces are visualized during computation of the quality measure, so
that the user can interact with the system to improve the results. In
the result stage, we use an interactive tree visualization providing
all sorts of statistics about each subspace along with the ranking.
We also link three visualization toolkits within a graphical user in-
terface so that the user can perform an in-depth exploration of the
ranked subspaces.

Our main contributions can be summarized as follows:

• We introduce the use of connected morphological operators to
analyze grid density profiles of subspaces of parameter space;

• We propose a subspace quality criterion based on the dynamics
of maxima found in the density profile;

• Linked visualizations are used to support the user in the explo-
ration of the subspaces.

The remainder of the paper is organized as follows. Related work
is discussed in section 2. Section 3 then describes the working prin-
ciple of our subspace finding method, including the background on
density estimation, connected morphological operators and the con-
cept of dynamics. Our interactive visual subspace exploration sys-
tem is described in section 4. We present the experimental results
of the method in section 5. Section 6 gives a summary along with
plans for future work.

2 RELATED WORK

A well known method to rank subspaces for clustering is the SURF-
ING (“SUbspace Relevant For clusterING”) method [9]. It belongs
to the class of methods that only compute interesting subspaces
rather than final subspace clusters [20]. Relevance of a (sub)space
is measured through a quality criterion based on a hierarchical clus-
tering structure of subspaces. The method is based on the idea that
subspaces with clusters of different densities and noise will show
significant variation in k-nearest neighbor distances compared to
subspaces with a uniform distribution. The quality of a subspace
is determined as a function of differences of distances to the mean
distance of the objects. SURFING can be very helpful where in-
depth knowledge of the spaces can be traded against high process-
ing speed, e.g., in web services. However, this method only gives a
qualitative ranking of the subspaces without any quantitative infor-
mation such as the number, size, shape or separation of the clusters.

There are other methods like CLIQUE (CLustering In
QUEst) [4], ENCLUS (ENtropy-based CLUStering) [13], DOC
(Density-based Optimal projective Clustering) [23], or PROCLUS
(PROjected CLUStering) [3] that perform direct cluster compu-
tation in subspaces. CLIQUE first finds candidate subspaces by
computing a histogram in each of the dimensions and selecting the
dense ones. Then clusters are computed in the subspaces that are

selected by a criterion that satisfies a downward closure (or mono-
tonicity) property [20]. Pruning subspaces is done by the MDL
(Minimal Description Length) principle. However, CLIQUE pro-
vides no information on the subspaces in which the whole dataset
clusters best. Top-down pruning can miss many small but signifi-
cant clusters. It also is difficult to find a proper tuning of parameters
for different datasets.

Integration of visualization in the subspace ranking and cluster-
ing process seems to be a less explored area. Assent et al. [6] pro-
posed a visualization paradigm to present and explore clusters from
subspace clustering. Using multidimensional scaling (MDS) they
present information like (dis)similarity, overlap, size, dimensional-
ity etc., of the resulting clusters. They provide an aid to parameter
tuning in terms of bracketing, a technique originating from photog-
raphy. A matrix representation is used to visualize the grouping
of clusters. However, these visualization approaches are about pre-
sentation of clustering results, but do not aid in exploring individual
subspaces, our goal in this paper.

3 SEARCHING RELEVANT SUBSPACES FOR CLUSTERING

3.1 Overview of the method

Let us denote by DATA a set of N data points (rows) with d dimen-

sions (columns), i.e., DATA ⊆ R
d . Let A = {a1, ...,ad} be the set

of all attributes ai of DATA. A subspace in DATA is a set S with
S ⊆ A. We define a subspace as relevant if it does not contain uni-
form noise or only a single Gaussian distribution spread over the
whole attribute range. Therefore, the emphasis is given on multi-
modality of the density where each mode is indicative of a cluster.
The degree of relevance is determined in terms of significance and
separability of each mode (indicator of a cluster) in the multimodal
distribution.

We search for the modes and determine their significance and
separability in grey level image space, whereas most of the tradi-
tional subspace clustering methods work in parametric space. The
motivation for working in discrete image space is that the number
of grid points can be chosen to match the desired grid resolution,
while the number of data points may grow very large. This rep-
resentation facilitates the analysis of the subspaces because of the
structured representation using the Max-tree. Also, it allows an
easy integration of the visualization of the density field.

Therefore, a transformation of parametric space to image space
is required. This transformation is obtained by using grid-based
density estimation, as described in section 3.2. Thus modes in the
distribution are transformed into high-intensity peaks (local max-
ima) in the density image.

The search for modes/local maxima is done on the Max-tree rep-
resentation of the density image, see section 3.3. Each node of the
Max-tree with a certain grey level contains all the connected com-
ponents at that level. Connected components are obtained using
neighborhood relationships in the grid. The root of the tree contains
the connected components with lowest intensity and the leaves con-
tain the connected components with highest intensity. Therefore,
counting the number of leaves gives us the number of clusters.

The significance and separability of modes is determined using
the concept of relative dynamics as described in section 3.4. Signif-
icant and well-separated modes will have higher relative dynamics
compared to overlapping clusters. To derive a quality criterion for
subspaces we use the number of modes (number of leaves in the
Max-tree) and their relative dynamics, see section 3.5.

3.2 Density estimation

Density estimation is one of the techniques of choice to uncover
structure in point-set data [28]. We estimate the density of each
subspace by a fast and scalable modification from [30] of the adap-
tive kernel density estimation method of Breiman et al. [11].
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For a data sample of N points with position vectors ~ri =
(r1,i,r2,i, . . . ,rd,i) ∈ R

d ,(i = 1, ...,N), the adaptive kernel density
estimate p̂(~r) is given by:

p̂(~r) =
1

N

N

∑
i=1

(h1 . . .hd)
−1λ−d

i Ke

(

r1− r1,i

h1λi
, . . . ,

rd − rd,i

hdλi

)

(1)

Here the local bandwidth is the product of a window size hℓ de-
pending on the coordinate direction ℓ= 1,2 . . . ,d and a local band-
width parameter λi for each data point i. In this formula Ke is the
Epanechnikov kernel defined as

Ke(~t) =

{

d+2
2Vd

(1−~t.~t) if~t.~t < 1

0 otherwise
(2)

in which Vd is the volume of the unit sphere in d-dimensional space.
In this model we have to choose the local bandwidth parameters λi

in such a way that in low-density regions λi will be large and the
kernel will spread out; in high-density regions the opposite should
occur.

The density estimation proceeds in two phases.
Phase 1. Use a percentile of the data to compute an optimal pilot

window width h
opt
ℓ in each of the coordinate directions:

h
opt
ℓ =

P80(ℓ)−P20(ℓ)

logN
, ℓ= 1, . . . ,d (3)

where P80(ℓ) and P20(ℓ) are the 80th and 20th percentile of the data
points in dimension ℓ. Define a pilot density p̂pilot using λi = 1 for

all i = 1,2 . . . ,N and hℓ = h
opt
ℓ in formula (1).

Phase 2. From the pilot density p̂pilot compute the local bandwidth
parameters λi by

λi =

(

p̂pilot(~ri)

g

)−α

. (4)

Here g is the geometric mean of the pilot densities and α = 1/d
is the sensitivity parameter. The final density estimate is given by

formula (1) once again, but now with λi given by (4) with hℓ = h
opt
ℓ .

The Epanechnikov kernel has finite support so that computation
time is reduced significantly. The density is estimated on a Carte-
sian grid, which includes all data points. The method is computa-
tionally effective: the complexity is O(N); the computation time
will increase for larger values of the smoothing parameter. Be-
cause of its grid structure the computed density can be visualized
immediately by standard volume rendering techniques for d ≤ 3.
In our method a fundamental use of the grid structure is to obtain
a neighborhood definition for computing connected components in
the density field. Note that the grid must be finer than the smallest
window size.

3.3 Connected morphological operators

A connected operator can extract and filter connected components
known as flat zones, i.e., constant intensity regions, where connec-
tivity is defined on the digital grid. Connected operators create
a hierarchy of flat-zone partitions with an ordering relation. The
Max-tree data structure can be used to implement such a hierar-
chy [24, 25].

Consider a digital image I on a domain D⊆Zn with 2-adjacency
for n = 1, 4 or 8-adjacency for n = 2, and 6 or 26-adjacency for
n= 3. A set X ⊆D is connected if each pair (p,q) of points in X can
be joined by a path (p0, p1, . . . , pℓ−1, pℓ) such that p0 = p, pℓ = q
and (pi, pi+1) are neighbors ∀i ∈ [0, ℓ). A connected component
of X is a connected subset C(X) of X which is maximal. A flat
zone at grey level h of I is a connected component of the level set
Xh(I) = {p ∈ D|I(p) = h}.

Figure 1: Top: grey level image that contains three connected com-
ponents with varying intensity. Bottom: Max-tree representation of
the top image. Max-tree node A0 represents the background, and
the other connected components are indicated by B to G along with
their grey values. The relative dynamics of peak D3 is also indicated.

Max-tree representation. In the Max-tree representation of an im-
age the root corresponds to the flat zone with lowest intensity and
leaves contain the flat zones with highest intensity [24, 25]. Lo-
cal maxima in the image correspond to connected sets of constant
value which are separated from other local maxima by local min-
ima. An illustration is given in Fig. 1. In the top image of this figure
there are three well-separated clusters with varying intensity. In the
bottom image the corresponding Max-tree representation is shown.
The Max-tree node A0 represents the background. As there are two
flat zones with grey level 1 and one with grey level 2, the root has
two child nodes (B1, G1) at level 1 and one child node (E2) at level
2. Each of the flat zones can be a leaf or have children. Flat zones
with maximum intensities are in the leaves (G1, F3, D3). The Max-
tree is a rooted tree, thus every node has a pointer to its parent. The
Max-tree is constructed with a recursive flood filling with a FIFO
queue to process the pixels/voxels in the correct order.

Each node in the Max-tree can contain several size or shape at-
tributes that can be calculated incrementally during the tree con-
struction. Some example attributes are Size, i.e., the area A of the
flat zone as defined by the number of pixels in that zone, or the
scale invariant shape attribute defined by M/A2, i.e., the ratio of
moment of inertia M and the square of the area A. The Max-tree
along with the attributes can be computed in a time which is linear
in the number of pixels.

3.4 Dynamics

In image analysis the concept of “dynamics” is used as a measure of
contrast. It can be used to rank the local maxima of an image [10].
The dynamics of a local maximum is defined as the difference be-
tween the height H1 of that maximum and the height H2 of the deep-
est neighboring minimum (as shown in Fig. 2), i.e., Dynamics(m)
= H1−H2. The computation of the dynamics of local maxima be-
comes easy in the Max-tree structure of the image. In the Max-tree
the local maxima are in the leaves. Therefore, the dynamics of
a local maximum is the difference between the intensity value of
the corresponding leaf and the intensity value of the first ancestor
with multiple children that corresponds to the deepest minimum in
the neighborhood (cf. Fig. 1). One problem with this definition is
that a maximum with low amplitude can be treated as insignificant
compared to a maximum with large amplitude. Therefore, we use
relative dynamics so that all maxima are treated equally, i.e., when
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m is a local maximum its relative dynamics is defined by

RelativeDynamics(m) = (H1−H2)/H1. (5)

For the example of Fig. 1 this means that all the maxima have a
relative dynamics of 1. Relative dynamics are also scale-invariant,
because a linear scaling of the data space scales all the densities
linearly as well, thus the relative differences in density between ex-
trema and saddle points remain the same.

Figure 2: Dynamics of local maximum m.

3.5 Subspace quality criterion

Let S be a subspace of the space A of attributes. The quality of S,
denoted by Quality(S), is defined as follows

Quality(S)=

{

N−1
L ∑

NL

i=1 RelativeDynamics(i) if NL > 1
0 otherwise

(6)
where NL is the number of leaves in the Max-tree. In this criterion
the sum of the dynamics of all local maxima is normalized by the
number of local maxima and thus the value of Quality ranges from 0
to 1. A subspace that contains modes/clusters with high dynamics
will have a higher value of Quality than a subspace with clusters
of lower dynamics. A subspace as depicted in Fig. 1 will have a
quality of 1 according to equation (6) because of the presence of
three modes with dynamics of 1 each. Two important aspects of
our quality criterion are: (i) the use of relative dynamics allows us to
treat clusters with varying density equally; (ii) the quality criterion
is unbiased in ranking subspaces with varying number of clusters
because of the normalization by the number of leaves.

Note that in our method, subspaces with the same quality, but
with varying numbers of clusters, get the same ranking and thus
they will be grouped together in the rank list. However, along with
the ranking, our method also provides information about the num-
ber of clusters that may be present. Therefore, it becomes possi-
ble for the user to choose the subspace of interest (with more/less
clusters) from the group of subspaces with the same quality, unlike
other methods where such grouping is not available.

3.6 Subspace finding

The search for subspaces is performed in a bottom-up fashion,
i.e., starting from one-dimensional subspaces, then moving to two-
dimensional subspaces, etc. The process of finding relevant sub-
spaces is summarized in the pseudocode of Algorithm 1. Up to
dimension three the creation of the density image, Max-tree con-
struction and computation of the quality index is done on the orig-
inal feature space. For subspaces of dimension higher than three
we apply PCA and use the first three principal components for sub-
space ranking. The main reason is that for higher dimensions the
current Max-tree implementation becomes prohibitive in terms of
computing time and memory use. Using PCA globally in the full
dimensional feature space is open to criticism. However, in our ap-
proach we are using it in local feature spaces. Therefore, we can
avoid the drawbacks of global usage of PCA. An added benefit of

our choice to use the first three principal components of PCA is
that we can use standard volume rendering to visualize the density
fields.

Ranking and Pruning. Based on the quality of the subspaces we
produce a ranking. Unlike SURFING we do not discard any of
the subspaces in the one dimensional search. Discarding spaces in
such an early stage can reduce the search space dramatically but it
also precludes the possibility of finding interesting relations in later
stages that may arise with the combination of discarded 1-D sub-
spaces. However, it is necessary to prune the subspaces because
of their exponential growth. Therefore, we introduce pruning for
2-D and higher dimensions. We prune a subspace if it has a quality
value less than a threshold value θ . From our study on several uni-
formly distributed spaces we found that they always have a quality
value less than 0.1. Therefore, we set θ = 0.1.

Algorithm 1 SubspaceFinding

1: DATA← d-dimensional dataset;
2: A={a1., ..,ad}; // attribute set
3: n = 1;
4: while n≤ d do

5: NrO f Spaces←
(

d
n

)

;
6: Sn← set of n-dimensional subspaces Sn, j;
7: for j = 1 to NrO f Spaces do
8: if (n > 3) then
9: Sn, j← ComputePCA(Sn, j);

10: end if
11: Denn, j ← ComputeDensityField(Sn, j);
12: Visualize(Denn, j);
13: WaitForInteraction;
14: if (interaction) then
15: Accept new smoothing parameter
16: go to 11;
17: else
18: Mn, j← CreateMaxTree(Denn, j);
19: quality(Sn, j)← ComputeQuality(Mn, j);
20: end if
21: end for
22: rank according to quality;
23: //Pruning for n > 1
24: if (n > 1 and quality(Sn, j)< θ ) then
25: remove Sn, j;
26: end if
27: n← n+1;
28: end while

4 INTERACTIVE VISUAL SUBSPACE EXPLORATION

An overview of our subspace search and exploration system is given
in Fig. 3. The left part of the figure shows the quality compu-
tation process. It is very important to choose a proper value for
the smoothing parameter during density computation. Most of the
current density-based approaches for subspace clustering and rank-
ing try to find a proper parameter by trial and error, which is very
cumbersome [21]. Initially, we provide an automatic setting of the
smoothing parameter as described in section 3.2. Most of the time
this automatic selection works. However, it may produce an under
/ over-smoothed density field, which is best detected through visual
inspection by the user. Therefore, in our method we visualize the
density field with standard volume visualization for 3-D and higher
dimensions. For 2-D we visualize it as an image and for 1-D the
histogram of the point densities is used. If the user detects any over
/ undersmoothing s/he can interact with the system to give a new
smoothing parameter value.
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Figure 3: Schematic diagram of our interactive search and exploration system.

We represent the result of the relevant subspace finding method
by a tree visualization (see right side of Fig. 3). The root represents
the complete dataset, the next level contains d nodes where d is
the dimensionality of the dataset. Each node contains a number of
leaves, say m, where m is the number of relevant subspaces. If the
mouse pointer hovers over a node an information box will appear
with all the relevant information about that subspace. By clicking
on the node a window will appear with a 1-D or 2-D density plot
for dimension one and two, and a volume visualization of the den-
sity field for dimension three. For dimensions higher than three the
density field of the first three principal components is visualized.

The tree can be panned (scrolled) to explore the branches. The
user can also zoom in/out for better reading in case that the tree is
large or too cluttered. We combine three visualization tools with
our interface. From the top panel the user can choose Topcat1,
GGobi2 or MTdemo3 to check if the subspaces are really relevant.
Topcat is a well known table visualizer in the astronomical commu-
nity that also has different plotting capabilities. It is quite compe-
tent in handling very large high-dimensional data. GGobi is also a
well-known information visualization toolkit that provides several
high-dimensional data visualization techniques. For volume visu-
alization we use MTdemo, a Max-tree-based volume visualization
tool presented by Westenberg et al. [29]. It renders the volume
with three different rendering techniques, X-ray, Maximum Inten-
sity Projection (MIP) and Isosurface. MTdemo is not only a volume
visualization tool but also an attribute filtering tool. It allows the
user to explore the volume by applying different shape preserving
attribute filters.

The amount of interaction will differ in the two phases. In the
subspace ranking phase the smoothing parameter can be changed
interactively. To make the subspaces comparable we normalized
the units along each axis. Therefore, the scaling parameter should
not vary for different subspaces of a particular dimension. Thus,
inspecting one subspace per dimension should be sufficient. Still
the number of inspections per dimension will depend on how of-
ten the smoothing parameter is changed, which can vary from user
to user. Once the subspace ranking is complete, the number of in-
spections will be limited, as the subspaces are ranked by relevance.
Usually, domain users have concrete hypotheses they want to verify
and hence they will only explore the most relevant subspaces.

1http://www.star.bris.ac.uk/~mbt/topcat
2http://www.ggobi.org
3http://www.cs.rug.nl/~michael/MTdemo

5 EXPERIMENTS AND RESULTS

We compare the ranking performance of our method with SURF-
ING, and the performance in finding the number of clusters with
CLIQUE, as SURFING does not provide the latter information. As
the source code was not available to us we used our own imple-
mentation of SURFING following the algorithm presented in [9].
For CLIQUE we used the ELKI4 platform [2]. We used several
synthetic datasets and two astronomical datasets for this purpose.
Reported timings were obtained with an AMD athlon 64 X2 Dual
core processor 5200+, 2.6 GHz and memory 1.94 GB.

5.1 Synthetic datasets

We created several synthetic datasets with varying numbers of clus-
ters of varying dimensionality with different noise levels in a uni-
form box of size 100. Clusters were created as multimodal Gaus-
sian distributions with different mean and variance. Depending on
the value of the variance we created clusters with varying density.
Then impulse noise was inserted uniformly, where the number of
noise points varied from 0% to 10% of the number of points in the
clusters. In Table 1 a brief summary of the synthetic datasets can
be found. The field “data dimension” indicates the dimensional-
ity of the dataset. “Number of clusters” indicates the number of
Gaussian clusters present in the dataset and “Cluster dimensions”
indicates the dimensionality of the Gaussian clusters. For example
in dataset 2, the dimensionality of the dataset is 12 (d1,d2, . . . ,d12),
and there are four 3D Gaussian clusters (in d2, d4, and d6) with
10% uniformly distributed noise added and two 6D Gaussian clus-
ters (in d7−d12) present in the datasets without noise; the remain-
ing dimensions (d1, d3, and d5) of the dataset contain uniformly
distributed random noise.

Table 1: Synthetic datasets

Dataset Data Dimension Number of clusters Cluster dimensions

1 16 2 3

2 12 4,2 3,6

3 15 3 4

4 22 5 5

5 12 3 2

4http://www.dbs.ifi.lmu.de/research/KDD/ELKI
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Figure 4: Scatter plot of subspace-A from dataset 2 (left), subspace-
B from dataset 1 (middle), subspace-C from dataset 1 with noise
added (right).

Table 2: Comparison of methods on Galactic stellar halo dataset

Method Ranking Nr. clusters

indicated

1-D 2-D

Our method

Lz E−Lz

E E−L 31

L L−Lz

SURFING

E L−Lz

L E−Lz n.a.
Lz E−L

CLIQUE

(in terms of coverage) (in terms of coverage)

E L−Lz

L E−Lz 15

Lz -

Performance for synthetic data. The performance of our method
for synthetic datasets is satisfactory. It ranks subspaces with clus-
ters always high in the list irrespective of the noise levels. It ranks
subspace-A,B,C (Fig. 4) as equally relevant since they all get a qual-
ity value of 1. Our method puts emphasis not only on the number
of clusters but also on their separability. Subspaces that have well
separated clusters always come up high in our ranking. It also can
indicate the number of clusters properly in most of the cases. Some-
times fewer clusters than present are reported if there are overlap-
ping clusters with one very high density and another with very low
density.

SURFING puts most of the subspaces which do contain clus-
ters higher in the ranking. However, noise-free cluster structures
are penalized compared to clusters with noise in this method, see
‘subspace-A’ and ‘subspace-B’ in Fig. 4, left and middle, respec-
tively. In subspace-A there are four Gaussian clusters of varying
density with uniformly distributed noise that covers all clusters. In
subspace-B there are two clusters without noise. The SURFING
method put subspace-A in the top ranking as expected. However,
it ranked subspace-B only as the 20th relevant subspace in the list.
Note that this result was obtained in spite of the fact that we intro-
duced 1% of additional random points when calculating the SURF-
ING quality measure, as recommended by Baumgartner et al. [9].
The motivation for adding a small percentage of random points is
that SURFING’s quality measure is based on the difference be-
tween k-nearest neighbor distances and mean distances. Hence, if
a subspace has multiple clusters with the same density and without
noise, it would get the same quality value as uniformly distributed
points and thus remain lower in the ranking. By contrast, for cases
where the clusters are fully covered by noise, as in Fig. 4 right,
we found that SURFING does rank the subspace equally high as
subspace-A in the list of relevant subspaces.

CLIQUE missed some of the clusters and sometimes detected
unclear clusters. The main difficulty of CLIQUE is the need to find
proper parameter sets that work for individual datasets.

For the synthetic datasets we checked whether the use of PCA
caused any high (i.e., larger than 3) dimensional clusters to be
missed. We found that this only occurred in dataset 3, where one
of the three 4D clusters was missed. In dataset 4 all the five 5D

clusters and in dataset 2 both 6D clusters were indicated.

5.2 Astronomical data

We used two astronomical datasets. The first one is the Galactic
stellar halo (roughly spherical outskirts of a galaxy) dataset, which
is the result of a simulation. The second is a galaxy sample from
SDSS (Sloan Digital Sky Survey), cf. http://www.sdss.org.

Galactic stellar halo dataset. This consists of 33 satellite galax-
ies each of them represented by a collection of 105 particles. It
has been assumed that the whole stellar halo is the superposition of
several disrupted satellite galaxies which fell into the Milky Way
about 1010 years ago. It is possible to isolate remnants of satellite
galaxies since stars in galaxies harbour unique clues of the assem-
bly history of galaxies. The dataset contains 33 satellites with three
phase space parameters, i.e., energy E, total angular momentum L
and the z-component of angular momentum Lz. These three pa-
rameters are approximately conserved quantities that do not evolve
much. Among them only Lz is fully conserved and thus should play
the most important role in finding clusters. According to Helmi
and de Zeeuw [18] most structure is visible in the 2-D subspace
E−Lz. However, they argued that all 33 clusters could be found in
the E−L−Lz space. With current approaches such as the friends
of friends algorithm [15] only 50 percent of the clusters have been
recovered so far.

We applied all the methods to the Galactic stellar halo dataset.
The results are shown in Table 2. Our method has the best perfor-
mance in correctly ranking the parameters and also in indicating the
maximum number of clusters. The fact that our method is able to
detect 31 out of 33 clusters is a great advance compared to the per-
formance of state of the art astronomical methods which reach only
half of this [18].

The ranking of our method is understandable if we look at the
scatter plot of the 2-D spaces, see Fig. 5. The highest ranked 2-D
subspace is E − Lz, which indeed has the largest number of clus-
ters. However, CLIQUE’s ranking in terms of coverage does not
correspond to existing astronomical knowledge about the parame-
ters. For example according to CLIQUE Lz has clusters with the
least coverage of the dataset. However, according to Helmi and
de Zeeuw Lz should contain more clustering information than the
other parameters, as it is the most conserved quantity. Ranking of
the 2-D subspaces is reasonable, although the method did not find
any cluster in subspace E−L. CLIQUE found that subspace L-Lz

has the clusters with highest coverage. It can be inferred that this
subspace has less clusters with large size. CLIQUE found less than
half of the clusters present.

The ranking of SURFING for this dataset corresponds to the re-
sults of CLIQUE. In 1-D subspaces energy E is in the top ranking,
followed by L and Lz respectively. In 2-D subspaces L-Lz is indi-
cated as the most relevant subspace. If we look at the scatter plot
of Fig. 5 it is evident that the L-Lz and E-L subspaces have more
variations in their point distribution in space. On the other hand,
the E-Lz space has more clumped structures when compared to the
other two subspaces. This may indicate the weakness of measuring
relevance only based on variation in point distances.

Galaxy sample from SDSS. This data set contains mainly pho-
tometric information of galaxies in the Northern Galactic Cap of
SDSS Data Release 7 [1]. There are 32228 galaxies with 15 at-
tributes in total present in this dataset, see Table 3.

The sample is limited to a spectroscopically measured distance
range of 418 to 460 Mpc (1Mpc ≈ 3∗1019km) to control distance
related effects. It is difficult to compare galaxies at different dis-
tances: they are observed at different cosmological times and with
different recessional velocities. An upper r-band Petrosian [22]
magnitude of 17.7 is imposed, to ensure a volume-complete sample
for the quantification of the environment around the galaxies.
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Figure 5: Scatter plot of Galactic stellar halo dataset. E vs Lz (left), E vs L (middle), L vs Lz (right).

Two of the attributes, i.e., magnitude and color, are important
in optical astronomy and need some elaboration. Magnitude refers
to the luminosity of a galaxy in a specific wavelength band of the
electromagnetic spectrum. Higher magnitude values correspond
to fainter objects, lower values to brighter objects. In our galaxy
dataset we used extinction-corrected model magnitudes: dered r is
the magnitude of galaxies measured in the r-band (around a wave-
length of 6280 Å). The colors of a galaxy are defined as the differ-
ences between magnitudes in two different bands [31] such that the
higher the color value the redder the galaxies are. In this dataset
10 different colors are used, such as u-r, u-g, etc. This allows us to
study the influence of different colors in finding galaxy properties.
The (inverse) concentration index is a measure of the light distribu-
tion of a galaxy.

In our performance measurement on the SDSS galaxy sample
dataset we recover several well known relations of galaxy prop-
erties. In color vs magnitude a bi-modal distribution of red and
blue galaxies can be observed [8]. Red galaxies are elliptical galax-
ies with mostly old stars and blue galaxies are spiral galaxies with
mostly young stars. In the color vs inverse concentration index re-
lation, this galaxy bimodality can also be observed [7].

Table 3: Attributes used in SDSS galaxy sample

Attribute Name Description

dered r Extinction corrected model-magnitude in the r-band.

10 colors: u-g, u-r,

u-i, u-z, g-r, g-i, g-

z, r-i, r-z, i-z

A quantitative measure of color of a galaxy is defined

as the difference between magnitudes at two different

effective wavelengths

logMass Mass of the galaxy (in logarithmic scale)

logDensity Number density of galaxies of the environment sur-

rounding the galaxy (in logarithmic scale)

iC Inverse Concentration index, a measure for the structure

of the galaxy

SBr Surface brightness of the galaxy

Figure 6: SDSS galaxy sample data set. Histograms of (left) color(u-
r): ranked 1 in our method, (right) logMass: ranked 1 in SURFING
among 1-D subspaces.

In one dimension, the galaxy bimodality can be observed in the
histogram of colors. Current astronomical research shows that this
can best be seen in color(u-r). This is confirmed by our method
for ranking for 1-D subspaces, where color(u-r) is ranked first. On
the other hand, SURFING ranked logMass highest. If we compare
the histogram of these two subspaces (see Fig. 6) it is clear that
logMass is not relevant in terms of clustering. On the other hand
the color(u-r) histogram confirms the astronomical findings.

Figure 7: SDSS galaxy sample data set. Color vs Magnitude relation.
Left: ranked 1 in our method: dered r vs color(u-r). Right: ranked 1
in SURFING: dered r vs color(r-i).

Figure 8: SDSS galaxy sample data set. Color vs inverse Concen-
tration index relation. Left: ranked 1 in our method: iC vs color(u-g).
Right: ranked 1 in SURFING: iC vs color(r-i).

When we search in 2-D subspaces the combination dered r vs
color(u-r) is the first subspace among color vs magnitude combina-
tions that appears in the ranking of our method. On the other hand
SURFING ranks dered r vs color(r-i) first. We can see a clear bi-
modality in the density plot of dered r vs color(u-r) subspace, see
figure 7, whereas virtually no bimodality can be seen in the dered r
vs color(r-i) subspace. Similar observations hold for the color vs iC
relation. Here we also found that the bimodality is best visible in the
subspace chosen by our method, see Fig. 8. The performance of our

Figure 9: Visualization of SDSS galaxy sample dataset. Row 1: Vol-
ume visualization of 3-D subspaces. From left to right: ranked 1
in our method: dered r vs color(u-r) vs SBr (Xray and isosurface);
ranked 1 in SURFING: dered r vs color(i-z) vs SBr (Xray and iso-
surface). Row 2: Volume visualization of first three principal compo-
nents of 5-D subspaces. From left to right: ranked 1 in our method:
dered r vs color(u-i) vs color(i-z) vs iC vs logMass (Xray and isosur-
face); ranked 1 in SURFING: color(g-r) vs color(g-z) vs color(r-i) vs
color(i-z) (Xray and isosurface).
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method remains the same in higher dimensions, see Figure 9, where
our method shows its strength in detecting relevant subspaces.

The performance of CLIQUE on the galaxy dataset is poor. We
experimented with various parameter settings but could not find any
of the known galaxy relations we were looking for.

Computation time. For synthetic dataset 1 (5000 data points)
it took 0.001s, 1.15s, and 7.75s for computing the 1D, 2D, and
3D density field, respectively, while for the Galactic stellar halo
dataset (with 3.3 million data points) it took 1.52s, 3.6s, and
217.72s (for both datasets with an automatic choice of the smooth-
ing parameter).

6 SUMMARY AND FUTURE PLANS

In this paper we have presented a method for ranking subspaces
in high-dimensional data in terms of their relevance for clustering.
We used connected morphological operators on a grid-based den-
sity field that provides not only a good quality criterion but also
has visual support for the analysis of the subspaces. Evaluation
of the method on synthetic and astronomical datasets confirmed its
strength in finding relevant subspaces and the usefulness of its vi-
sualization. In our approach we allow the user to interact with the
system even during the search process, and directly confirm the re-
sults by looking into the density image produced. Our interactive
application where tree visualization has been integrated with well-
established visualization tools aids the user to achieve further in-
depth knowledge by exploration of the subspaces.

Future work will concern further improvement of the results us-
ing dynamics-based filtering of the density image. We also will in-
vestigate extension of the Max-tree algorithm to dimension higher
than three. This would enable subspace ranking without recourse to
PCA in higher dimension. This however would also require the use
of visualization techniques in dimension higher than three. Several
methods are available for this purpose, such as parallel coordinate
plots [19], scatter plot matrices [12], or tours [5, 14, 16].

The method will be extended for clustering subspaces. We will
test the method on other astronomical datasets such as the RAVE
survey, the Geneva-Copenhagen catalogue of nearby F and G stars
and very large datasets provided by the OmegaCAM instrument.
Also, application of the method on other domains like genomics or
medical imaging will be considered. Finally, a user evaluation of
the complete system is planned.
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