
Synthesis of Environment Maps for Mixed Reality
David R. Walton ∗

University College London
Diego Thomas †

Kyushu University
Anthony Steed ‡

University College London
Akihiro Sugimoto§

National Institute of Informatics

ABSTRACT

When rendering virtual objects in a mixed reality application, it
is helpful to have access to an environment map that captures the
appearance of the scene from the perspective of the virtual object.
It is straightforward to render virtual objects into such maps, but
capturing and correctly rendering the real components of the scene
into the map is much more challenging. This information is often
recovered from physical light probes, such as reflective spheres or
fisheye cameras, placed at the location of the virtual object in the
scene. For many application areas, however, real light probes would
be intrusive or impractical.

Ideally, all of the information necessary to produce detailed en-
vironment maps could be captured using a single device. We intro-
duce a method using an RGBD camera and a small fisheye camera,
contained in a single unit, to create environment maps at any lo-
cation in an indoor scene. The method combines the output from
both cameras to correct for their limited field of view and the dis-
placement from the virtual object, producing complete environment
maps suitable for rendering the virtual content in real time. Our
method improves on previous probeless approaches by its ability to
recover high-frequency environment maps. We demonstrate how
this can be used to render virtual objects which shadow, reflect and
refract their environment convincingly.

Index Terms: H.5.1 [Multimedia Information Systems]: Ar-
tificial, augmented and virtual realities—Evaluation/methodology
I.3.7 [Three-Dimensional Graphics and Realism]: Virtual
Reality—

1 INTRODUCTION

Ensuring that rendered virtual objects appear consistent with the
real world is an important goal in the field of mixed reality (MR).
Part of this involves rendering the virtual objects in such a way
that they appear to be illuminated by the world around them, by
reproducing effects such as shadowing, reflection and refraction.

Rendering these effects requires information about the lighting
environment, which is often captured using light probes. These
light probes may be objects with known geometry and material
properties, such as chrome or glass spheres. Alternatively, a camera
with a suitably wide field of view may be used. When such a probe
is placed at the location of the virtual objects, the information can
be used to light the virtual objects accurately.

However, there are applications where it may be impractical to
place physical light probes in the real scene. In a mobile see-
through AR app, for example, it would be preferable to use a sin-
gle, self-contained device, such as a phone, tablet or the Microsoft
Hololens. A variety of methods exist to capture lighting informa-
tion without the requirement to place separate physical light probes
in the real scene. Such methods, however, typically capture lighting

∗e-mail: david.walton.13@ucl.ac.uk
†e-mail:thomas@ait.kyushu-u.ac.jp
‡email:a.steed@ucl.ac.uk
§e-mail:sugimoto@nii.ac.jp

in the form of point light source locations [40, 41, 42, 18, 11, 3] or
low-frequency spherical harmonic maps [38, 16, 15, 17]. These are
useful for illuminating virtual content with diffuse shading, but, un-
like physical light probes, cannot be used to render effects such as
mirror reflection and refraction of light. Other approaches [35] cap-
ture these higher frequencies, but require the whole environment to
be reconstructed as a preprocess, and cannot respond correctly to
subsequent changes in the real environment.

The method introduced in this paper attempts to recover full en-
vironment maps at the location of each virtual object, which can be
used to render these high-frequency effects. The method uses an
RGBD camera and a small fisheye camera, contained in the same
unit. An indoor, single room environment is assumed, and it is
assumed that rough geometry for this room is available (a 2D floor-
plan, the height of the ceiling, and the initial RGBD camera pose).
Both cameras are used to construct and update a detailed model of
the room, which can then be used to render the environment maps
at any place in the scene in real time. The 3D model of the scene
consists of a dense, detailed model of the surfaces around the vir-
tual objects, and a coarse model of the walls, ceiling and floor of
the room. Both are updated in real time, enabling the virtual ob-
jects to respond to changes in the environment. This division of
the real scene into distant and nearby components is similar to that
proposed by Debevec [8].

Figure 1: Image augmented with virtual reflective teapot, rendered
using the proposed system. Note the reflections of the nearby real
objects. No physical light probe was placed near the teapot.

Creating and updating this model is challenging. The main con-
tributions of this paper are as follows:

1. An efficient method for updating the texture of the coarse
model using the fisheye camera, whilst correctly handling oc-
clusions.

2. A method for responding to dramatic lighting changes in the
room, updating the whole model including regions not visible
to the camera pair.

3. A system which uses these data to produce accurate environ-
ment maps at desired locations in the real scene.

We demonstrate these contributions by implementing a real-time
AR system capable of rendering virtual objects with a variety of
material properties in a number of challenging environments. We

also evaluate the system, comparing our results to those achievable
using the fisheye camera directly. Overall, the results suggest that
our approach can produce more accurate results and reduce visual
artefacts.

2 RELATED WORK

Existing work on capturing real-world lighting for augmented real-
ity can be roughly grouped into two categories. One uses physical
light probes of various forms to capture the necessary information.
The other attempts to recover the lighting by other means. In this
section, we review some of the existing work in these categories.

2.1 Light Probes for Augmented Reality
Environment maps have long been used to simulate reflection from
virtual objects [4]. They have seen widespread use, particularly as
an efficient alternative to ray-tracing for simulating effects such as
refraction and mirror reflection [13].

Physical light probes are often used to obtain such environ-
ment maps. These can be classified into passive probes, such
as chrome spheres, and active probes, such as fisheye cameras.
Chrome spheres [19, 8, 12, 1, 27] can provide detailed reflection
information, which is useful for rendering specular and translucent
virtual objects. Other types of passive probes also exist, however,
including diffuse spheres [2], which provide useful information for
rendering Lambertian virtual objects. Calian et al. [7] presented
a novel probe design intended for directly capturing spherical har-
monics, for adding virtual content shaded using Precomputed Radi-
ance Transfer (PRT) [44]. Yao et al. [50] demonstrated a method for
using arbitrary objects of known geometry as passive light probes.

Cameras with a wide field of view can be used as active
probes [24, 25]. They can also provide detailed, high-frequency
lighting information, and, unlike passive probes, do not need to re-
main in the camera’s field of view. Grosch et al. [14] made use of
this, placing a fisheye camera at the entrance to a room to measure
incoming light, and then simulating light transport within the room
to add virtual content. Rohmer et al. [39] demonstrated a technique
combining information from multiple fisheye cameras to collect de-
tailed lighting over a volume. Other active light probes have also
been developed, such as that of Matsuoka et al. [34], who used a
hemispherical array of photodiodes to find the dominant light di-
rection.

In the approach presented in this paper, all the data is captured by
the single hand-held unit. This provides an active light probe in the
form of the fisheye camera. However, the camera pair is typically
displaced from the virtual object, and can move arbitrarily as the
user moves the unit. One of the main challenges tackled by this
work is to make use of this incomplete information to produce a
useful virtual light probe at the virtual object’s location.

2.2 AR Lighting Without Probes
A wide variety of approaches exist that attempt to recover lighting
information for mixed reality applications without the use of phys-
ical light probes. Such methods typically attempt to recover some
information about the light in the real environment indirectly from
its effect on the image to be augmented. These approaches can be
categorised by the type of lighting model they attempt to fit to the
visible scene.

One class of approach fits a point-source model. In this case,
the application’s goal is to determine the locations and intensities
of one or more point sources in the real scene. For example, a
number of techniques [40, 41, 42, 18, 3] attempt to identify light
source directions by finding shadow boundaries in the real image,
and inferring the locations of the point sources casting them. Zheng
et al. [53] uses similar techniques to allow real objects to be ma-
nipulated in a static image, and to allow their shadows to change
consistently.

Frahm et al. [11] present an alternative approach, using a hard-
ware setup somewhat similar to the one proposed in this paper.
They combine a television camera with an upward-facing fisheye
camera. In a precapture stage, the pair is moved through the scene,
and the fisheye camera is used to estimate the position of light
sources in the studio. These are then used for lighting virtual con-
tent via shadow mapping.

Another possible model type represents the incident light at the
point of interest as a linear combination of spherical basis func-
tions, with the Spherical Harmonic (SH) basis being commonly
used. These representations are typically appropriate for represent-
ing low-frequency lighting. Okabe et al. [38] introduced an inverse
illumination technique which also analysed shadows in order to
compute a SH representation of the low-frequency illumination in
the scene.

Karsch et al. [28, 29] use a combination of an environment map
and visible light sources to estimate illumination from a single im-
age. Since the problem of fitting the environment map is severely
under-constrained, samples are selected from a database of environ-
ment maps captured from similar real-world environments.

Gruber et al. [16, 15, 17] have presented a number of techniques
designed for rendering virtual content with consistent illumination,
using only the output of a single RGBD camera. These techniques
involve capturing a geometric model of the scene using Kinect Fu-
sion [21, 37]. The environment illumination and albedo of the scene
are then estimated using an inverse rendering approach. The light-
ing is captured in the form of spherical harmonics, which can then
be used to illuminate virtual content added to the scene. The ap-
proach can produce impressive results, but is limited to recovering
low frequency lighting.

Meilland et al. [35] presented an approach for probeless AR.
Their approach uses the output of an RGBD camera to construct
a dense 3D model of the environment. The auto-exposure feature
of the camera is enabled to allow detail to be captured in bright and
dark areas of the environment. The resulting HDR model is ren-
dered into cubemaps, and processed to find real light locations to
use for rendering shadow maps. The approach can produce impres-
sive results in static environments, but cannot respond correctly to
dynamic lighting changes outside the field of view of the RGBD
camera. Additionally, it requires the whole real environment to be
scanned using a narrow field of view RGBD camera, which can be
time-consuming.

Kan [23] introduced a method for capturing a HDR environment
map by projecting and aligning multiple images taken using a mo-
bile device, to form a single spherical image. They later showed
how this precaptured map could be used to illuminate virtual ob-
jects [26].

Whelan et al. [49] developed a method for reconstructing a scene
and detecting the locations of point light sources, using an RGBD
camera. This involves observing the locations of specular high-
lights over time, and applying geometric reasoning to find the 3D
location of the light sources which caused them.

In summary, the existing literature provides useful ways to es-
timate low-frequency lighting or point light source locations with-
out the use of physical light probes. This is suitable for rendering
diffuse virtual objects, but insufficient to render highly specular re-
flections. Methods also exist to recover high-frequency information
without probes, but these typically require a precapture step and do
not update in real time to reflect changes in the lighting environ-
ment. This work attempts to build on this by allowing the capture
of high-frequency, localised information in real time. This informa-
tion can be used to render a wider range of virtual materials.

3 SYSTEM OVERVIEW

This section contains an overview of the structure of the system,
and details of the hardware setup used.

Figure 2: System overview flowchart. Inputs are shown in pink, inter-
mediate data in blue, and the output is shown in green.

Figure 3: Hardware setup used for the proposed method.

3.1 Data Flow
Figure 2 contains a flowchart, giving an overview of the presented
system. The inputs to the system (shown in pink) consist of RGB
and depth frames from the RGBD camera, fisheye images from the
upward-facing camera and rough geometry for the room (generated
from the floorplan as described in §4.1). The method produces as
output an environment map, rendered from the virtual object’s lo-
cation. This environment map can then be used to render one or
more virtual objects, as described in §4.8.

The coarse model geometry is generated as a preprocess, as the
application starts. The other stages are performed in real time, as
new frames arrive from the RGBD and fisheye cameras. A new
environment map is rendered at each frame, prior to rendering the
virtual object.

3.2 Hardware Setup
The hardware setup used in this system consisted of an Xtion Pro
Live RGBD camera attached to a small upward-facing camera by a
rigid bracket (Point Grey Chameleon3 CM3-U3-13Y3C-CS). The
upward-facing camera is equipped with a 182 degree fisheye lens
(Lensagon CF5M1414), as shown in figure 3. The device is in-
tended to be held by the user, with the RGBD camera facing for-
ward, and the fisheye camera facing upward. The colour output
of the RGBD camera is displayed to the user, augmented with the
virtual content.

Both of the cameras were calibrated. This involved calibrating
the cameras individually, in addition to finding the 6DoF transform
between the two cameras.

The RGBD camera was calibrated using the camera calibration

app from MATLAB’s Computer Vision Toolbox [33], which was
applied to the RGB images. The camera used for this implementa-
tion was capable of automatically warping the depth image to cor-
respond to the RGB image, and the authors made use of this feature.

The fisheye camera was somewhat more complex to calibrate.
There are a range of camera models available for omnidirectional
cameras, and each model has advantages and disadvantages, in
terms of accuracy and computational complexity. Here, the camera
was first calibrated using the calibration method of Scaramuzza et
al. [43]. This provides a high-accuracy camera model, but it is also
unfortunately somewhat expensive to evaluate. For this reason, at
runtime, the images were processed so that they conformed to the
simpler model of Ying and Hu [51]. This undistortion stage was
performed efficiently using a precalculated look-up table (LUT).

Once both cameras were calibrated, the 6DoF transform con-
necting their camera poses was recovered. This was achieved by
finding point matches in the overlapping region in the images cap-
tured by the two cameras, and solving for the transform which
best aligned the matches, using the Levenberg-Marquardt algo-
rithm [31, 32].

4 SYSTEM DETAIL

This section covers each of the stages involved in the system in
greater detail.

4.1 Initialising the Coarse Model

The output of the fisheye camera cannot be used directly as an envi-
ronment map. This is due to the displacement between the camera
and the virtual objects, as well as its limited field of view - the cam-
era used by the authors captured a roughly hemispherical region.
One of the main goals of the software is to interpret the output of
both cameras, to synthesise an environment map at the location of
the virtual object.

In order to render the virtual environment maps, a geometric
model of the scene is created. This consists of two components.
The first is a dense 3D model generated using the RGBD data, cap-
turing the region directly around the virtual objects. The second
is a less-detailed, coarse model of the whole room. This is gener-
ated from the rough geometry of the room, which is assumed to be
known a priori; the floorplan of the room (a 2D polygon) and the
height of the ceiling. From this information, the vertices, indices
and texture coordinates of the coarse model are generated automat-
ically.

It is assumed that the system is used indoors, within a room.
This was felt to be a reasonable assumption, as this corresponds to
the typical use case for the system, and it is not generally possible
to use current RGBD cameras outdoors. For outdoor scenes, other
environment models could be developed.

For the examples in this paper, in order to simplify the imple-
mentation, the floorplan and ceiling height were measured by hand.
In an end-user application, however, this information could be ob-
tained using the output of the camera pair, for example by applying
the method of Cabral and Furukawa [6] to a suitable image cap-
tured by the fisheye camera. Alternatively, a SLAM technique such
as LSD-SLAM could be employed. Whilst 3D reconstruction us-
ing the depth camera would also be possible, it would be more time
consuming due to the narrow field of view of the depth sensor, and
in practice was found to be challenging due to loss of tracking on
flat featureless walls.

4.2 Dense SLAM

The dense SLAM stage takes RGB and depth frames as input, and
uses these to construct a detailed colour model of the region around
the virtual content. Additionally, the SLAM process provides an

estimated transform for the RGBD camera. Using the known trans-
form between the cameras (see §3.2), the pose of the fisheye camera
can also be estimated.

The dense SLAM algorithm used in this implementation was In-
finiTAM [22]. InfiniTAM was selected primarily for its efficiency,
but other RGBD reconstruction methods could also be used, such
as ElasticFusion [48] or the parametric surface approach of Thomas
and Sugimoto [47].

4.3 Updating the Coarse Model Texture
As each new frame is captured by the fisheye camera, it is used to
update the texture of the coarse model of the whole room. This is
achieved efficiently by making use of graphics hardware.

First, the current location of the fisheye camera is determined
using the position of the RGBD camera, and the known transform
between the two cameras. The RGBD and fisheye cameras are not
synchronised, however, and may capture frames at different times.
We correct for this, estimating the RGBD pose at the instant the
fisheye frame was captured, and using this pose estimate to find
the correct fisheye pose. This is achieved by linearly interpolating,
using the two most recent RGBD poses, and the times at which
the images were captured. The rotational components of the trans-
forms are interpolated by converting to quaternion form and apply-
ing spherical linear interpolation.

Second, a fragment shader is applied to each texel of the coarse
room texture. This identifies the position in world space that the
texel corresponds to, projects it into the fisheye camera image, and,
providing the image location is valid (i.e. the point is not behind
the camera), samples the fisheye image and renders the result to the
texel.

This procedure is efficient, but does not account for the possi-
bility of occlusions, in the event that the coarse room model is not
convex (the middle left image in figure 4 shows an example of such
a non-convex floorplan). The process used to handle occlusion is
detailed in the following section.

4.4 Handling Occlusion in the Coarse Model
Determining which parts of the coarse model texture are currently
visible to the fisheye camera is potentially a challenging problem
to solve in real time. A naı̈ve approach might involve casting a ray
from the camera location to each texel, but due to the large number
of texels to be processed this would be prohibitively slow. However,
we can exploit the structure of the model to simplify this task. Since
the model is a right prism, it suffices to determine which parts of the
2D floorplan are occluded.

Finding which parts of a polygon are visible from a given view-
point is a well-studied problem in the literature, and very efficient
approaches are available. For this implementation, the implementa-
tion of Bungiu et al. [5] from the CGAL library [46] was used. The
visible region is referred to as a visibility polygon.

Once the polygon has been determined, it is then used to generate
a mesh in the texture space of the coarse model, which is rendered
using the graphics hardware to generate a binary occlusion mask
efficiently. This mask indicates which texels are potentially visible
to the fisheye camera, and is used during the coarse model update
step (§4.3).

Figure 4 shows an example. Here, the real environment consists
of two rooms, partly separated by a partition, as can be seen in
the panoramic image and floorplan. The example is taken from the
first frame of the sequence. A 2D visibility polygon is computed
from the floorplan, based on the fisheye camera’s location (shown
as a blue frustum). This is then converted into the binary occlusion
mask for the 3D coarse room model. Finally, the coarse model
texture is updated with the reprojected fisheye camera image. Only
visible components are updated - the rest of the texture is filled in
using the inpainting approach described in §4.5.

Figure 4: An example of occlusion handling when updating the
coarse model. Top: Panoramic image of two rooms, partly sepa-
rated by a partition (centre of image). Middle left: floorplan of rooms
and partition. Middle right: 2D visibility polygon. Bottom Left: 3D
coarse model, textured with visibility mask. Bottom middle: Frame
from fisheye camera (undistorted) Bottom right: Coarse model, up-
dated with this fisheye camera image. In all examples, the poses
of the fisheye and RGBD cameras are indicated by blue and green
frustra, respectively.

In many cases, the coarse model is in fact convex (i.e. the floor-
plan is a convex polygon). In these cases, this occlusion testing
step is not necessary, as the coarse model cannot occlude itself, and
it can be skipped for added efficiency.

4.5 Completing Missing Regions of the Texture

At a given time, some parts of the coarse model texture may not
yet have been observed by the fisheye camera. This may be due
to the camera only having seen the upper hemisphere of the room,
or also due to occlusions, if the coarse model is not convex. In
order to complete the missing regions of the texture, an inpainting
approach [45] is applied. One advantage of this approach is its
speed, which enables it to be reapplied incrementally at runtime as
more of the room is observed, keeping the room texture consistent.
A binary inpainting mask is used to indicate which texels have been
updated with real data, ensuring that the inpainting is only applied
to areas which have never been observed.

Inpainting is generally applied to the walls, ceiling and floor sep-
arately, as they are typically of different colours. An exception to
this is made in situations where the floor has not yet been observed
by the fisheye camera. In this case, the inpainting process prop-
agates data to the floor from the surrounding walls to provide a
plausible initial texture.

Figure 5 demonstrates the effect of this inpainting process on the
first frame of a sequence. Here, in the example without inpainting,
much of the coarse model has not yet been observed. The texture
was initialised to a neutral grey colour, which is visible in the re-
flection from the virtual teapot. In the example with inpainting, the
walls and floor have been inpainted, resulting in a more plausible
reflection from the virtual teapot.

Figure 5: Scene containing a virtual teapot, with and without inpaint-
ing applied. Top: augmented image (with inpainting). Middle: view
of coarse model and closeup of teapot, without inpainting. Bottom:
view of coarse model and closeup of teapot (with inpainting).

4.6 Reacting to Large-Scale Lighting Changes

Changes in the lighting environment, such as lights turning on or
off, or curtains being opened, have a global effect on the appear-
ance of the room. The fisheye camera is able to observe a large
portion of the room, and can update areas in its field of view in real
time. Regions not currently visible to the camera are not updated by
the system described above, however. If the room becomes dramat-
ically brighter or darker, this can lead to noticeable artefacts. These
typically take the form of sudden lighting changes across the coarse
model texture, as shown in figure 6.

An efficient method was developed to address these problems.
At each frame, before integrating the fisheye frame into the coarse
model texture, a global illumination change ∆ is estimated. This
RGB colour value is an estimate of the average intensity change
over the coarse model texture, relative to the previous frame. This
is computed as part of the coarse model update step.

For each coarse model texel to be updated with new data from
the fisheye camera, the intensity difference between the current and
new pixel values is calculated. The mean of these differences ∆ is
then found. When calculating the mean, parts of the coarse model
which have not yet been updated with real data are excluded. These
areas will contain inpainted texels, which do not necessarily reflect
the true appearance of the room. To identify these pixels, the binary
inpainting mask is used (see §4.5). Saturated and black pixels are
also avoided, as their true brightness is unknown. More precisely:

∆ =
∑t∈T v(t) · (F(f (t))−T (t))

∑t∈T v(t)

Here, T is the coarse model texture, and t a texel location. F
is the fisheye image, and f is a function taking texel locations in
the coarse model to the corresponding pixel locations in the fisheye
image. v is a validity delta function, defined as follows:

Figure 6: Example of adjusting to a change in lighting conditions.
Above: Image with ceiling light turned off. Middle: Image after ceil-
ing light has been turned on, without lighting change estimation, and
closeup of virtual sphere. Below: Image after ceiling light has been
turned on, with lighting change estimation, and closeup of virtual
sphere.

v(t) =

1,

if t is visible to fisheye camera
and T (t) is not saturated/black
and F(f (t)) is not saturated/black
and t has been directly observed

0, otherwise

This change ∆ is added to all texels in the coarse model which
were not updated with new data from the fisheye camera. This has
the effect of propagating changes in lighting to these texels, ensur-
ing the coarse model appears to be of a consistent brightness. ∆ is
also used to adjust the appearance of the dense model when render-
ing the cubemap.

An example is shown in figure 6. Here, a ceiling light was turned
on, increasing the brightness of the room. In the middle example,
without lighting change estimation, the lower half of the reflected
scene (i.e. the sewing machine, table and box) has not changed,
and now appears too dark. In the lower example, the change in
illumination was accounted for and the brightness and colour of the
lower half of the sphere appear more consistent.

This approach uses a simplified ambient lighting model. In real-
ity, light transport through the scene is much more complex. This
approximation is efficient, however, and helped to reduce visible
brightness inconsistencies in the environment maps.

4.7 Rendering the Environment Maps
The virtual environment maps are then rendered, using the coarse
and dense models. One environment map is rendered from the per-

spective of each virtual object. Each environment map is rendered
in the form of a cube map, which can then be used directly by the
graphics hardware.

First, the textured coarse model is efficiently rendered to the
cubemap, using the graphics hardware (each face of the cube is
rendered in turn). Secondly, the dense model captured using Infini-
TAM is rendered. The dense model is rendered on top of the coarse
model (i.e. without depth testing).

This approach was chosen because the dense model is typically
closer to the virtual object than the coarse model. Additionally, in
cases where the dense SLAM captures geometry already present in
the coarse model (i.e. a wall, ceiling or floor) this ensures the ver-
sion from the dense model is visible. This provides improved re-
sults, as the dense model typically has more geometric and texture
detail. The dense model is rendered using the GPU-based raycast-
ing procedures in InfiniTAM.

Although the examples shown in this paper involve a single vir-
tual object, if others were present, they could also be rendered into
the cubemap at this stage, allowing the environment map to capture
the complete mixed reality scene.

4.8 Rendering the Virtual Objects
Environment maps provide much richer information about the light-
ing environment around a virtual object than simpler real-time
lighting models such as point and directional lights. Although orig-
inally developed to produce mirror reflection [13], they can be used
to simulate a wide variety of virtual materials. Some examples were
implemented below, to demonstrate the capabilities of the proposed
system.

Environment maps can be used to produce convincing refraction
effects, an example of which is shown in figure 7. The top example
shows simulation of refraction through a bottle of water. The lower
two examples show an example of rendering a metallic teapot, sim-
ulating material colour and surface roughness. Surface roughness
can be simulated by either combining suitable environment map
samples, or by applying a filter to the environment map [36] (or
both [30]). The examples shown here simply sample from coarser
mipmap levels, which has a similar effect.

Environment maps are not limited to rendering specular virtual
objects. They can also be used to render diffuse objects - for exam-
ple by approximating the environment map using directional lights,
via importance sampling. They can also be projected into an SH
representation, and used as input to PRT rendering [44], as shown
in figure 7, middle. In all the examples shown in this paper, diffuse
shadowed PRT is used, with 5 bands of SH (i.e. 25 coefficients).

The implementation of PRT used here also renders a contact
shadow onto the table, using differential rendering [8]. Rough real
geometry is required for this when precomputing. Here a plane is
used, implicitly assuming that the virtual object is placed on top of
a locally planar real surface at runtime. This is a common scenario,
as realistic virtual objects are typically placed on tables, floors etc..
This allows the virtual object to cast a convincing contact shadow.
Since the cubemap is updated and reprojected anew each frame, the
virtual object also responds in real time to lighting changes, such as
the ceiling light turning on in figure 7 above.

5 RESULTS

This section contains results of using the system in a typical setting.
Qualitative comparisons with a real reflective object and a simpler
baseline method are shown.

5.1 Full Pipeline Results
Figure 8 shows an example of the data captured when using the
application in a typical setting. The top and middle images show
views of the textured coarse model, and the estimated camera loca-
tions. The lower image shows a raycast of the dense model, from

Figure 7: Examples of some of the other virtual objects that can be
simulated using environment maps. Top: Water bottle, simulating re-
fraction of the environment. Middle: Wooden mannequin, simulating
diffuse shadowing, reacts to a ceiling light being turned on. Bottom:
Metallic teapots, simulating different levels of surface roughness.

the viewpoint of the RGBD camera. The appearance of objects
near the virtual object (here, the sewing machine, table and box)
are captured in the dense model. The appearance of more distant
parts of the environment (e.g. walls, ceiling) are captured in the
coarse model.

Figure 9 shows an example environment map rendered using this
information. The cubemap is visualised as a net.

Figure 10 shows the final augmented image, containing a reflec-
tive virtual sphere.

It can be seen that often, the lower walls and floor of a room will
not be visible to the fisheye camera during typical use. However,
the surface under the inserted virtual objects, such as a table or
floor tends to be captured in the dense reconstruction, meaning that
a complete environment map can be produced.

5.2 Comparison to Physical Light Probe

In order to test the effectiveness of the approach, a qualitative com-
parison was performed between virtual and real reflective spheres.
The shadow cast by the virtual sphere was rendered using differ-
ential PRT, as described in section 4.8. In the examples shown,
the capture process was performed, and a virtual sphere rendered.
Afterwards, a real sphere of the same dimensions was placed in
the same location, and another image taken. The two images were
taken using the same camera pose, by attaching the camera to a
sturdy tripod. The results are shown in figure 11.

The two spheres appear quite similar - both the nearby objects
and the more distant components of the scene, such as the ceiling
lights, are reflected in the correct locations on the virtual sphere.
Like the real sphere, the virtual sphere also casts a shadow on the
table, and this shadow is reflected on the sphere. There are some
differences, particularly in the shadowed region under the sphere.
In the virtual example, the shadow is softer. This is partly a conse-
quence of the use of spherical harmonics (which can only represent
low-frequency illumination) and partly a consequence of the low

Figure 8: Coarse and dense models captured by the application, in
the room of a home. Top: Two views of the textured coarse model.
Locations of the RGBD and fisheye cameras are shown as blue
and green frustra, resepectively. Bottom: dense reconstruction (ray-
casted).

Figure 9: Environment cubemap produced by proposed approach.
Rendered using the coarse and dense models shown in figure 8.

dynamic range of the camera pair. The reflections on the lower
edge of the virtual sphere are also slightly incorrect, causing the
thin bright band on the lower edge of the virtual sphere. This is
a consequence of using an environment cubemap, which was ren-
dered from the centre of the sphere.

Additionally, the dense model has not yet fully captured the
nearby real scene, so some parts of the table are missing in the
reflection. Finally, the reflections on the real sphere are slightly
blurred, due to the limited dynamic range and focal depth of the
camera, as well as the imperfect surface of the real sphere.

Figure 12 shows a challenging situation for this system. In the
middle image, taken as the application started, the purple side of
the box, to the right of the sphere is not reflected. This is because
the RGBD camera did not obtain depth values for this side of the
box, and it was not added to the dense reconstruction. The lower
image shows an example after the camera has been moved to the
left: the side of the box facing the sphere is now visible, and is
reflected properly. As the dense model becomes more complete,
the environment maps generated become gradually more accurate,
as can be seen in the bottom image.

Figure 10: Image augmented with virtual sphere, rendered using the
environment map from figure 9.

5.3 Baseline Approach
The approach was also compared to a simpler baseline approach,
without the coarse model approach proposed here. This approach
renders the fisheye image into the virtual object’s environment map
each frame, after applying a rotation based on the current fisheye
camera pose. The environment map is not cleared after each frame,
allowing it to build up as more of the room is observed. This ap-
proach implicitly assumes that the environment observed by the
fisheye camera is distant from the object, and does not account for
the translation between the virtual object and the camera pair. Ex-
ample frames from this comparison are shown in figure 13.

These frames were taken from the end of a short sequence dur-
ing which the camera was moved around the virtual content. Even
so, one can see that the environment map generated by the baseline
approach is still very incomplete, due to the lack of inpainting and
dense modelling. The lower half of the cubemap has yet to be ob-
served, the geometry is incorrect (for example, the window is too
large) and the reflections of the sewing machine, chest and table are
not present. An example is also shown with the dense reconstruc-
tion added. This is an improvement, but there are still incomplete
regions, and the reflections of distant objects are still geometrically
inaccurate.

5.4 Timing Analysis
In order to assess the performance characteristics of the approach,
the application was executed, and the tasks involved in rendering
a single frame were individually timed. The input sequence was
taken from the rooms shown in figure 4. The virtual object rendered
was the teapot from figure 1.

The timings shown were obtained on the CPU, however, many
components of the system execute on the GPU. In order to ob-
tain meaningful timings, the GPU was explicitly synchronised after
each of these stages. These timings were taken on a desktop PC,
using an Intel i7-4970 CPU and an Nvidia GTX 1080 GPU.

Table 1 contains the results. Note that, for simplicity, the less
time-consuming stages were combined into the “Other” category.
The main component of this is swapping the framebuffers (includ-
ing vsync). This frame completed in 47.42ms, corresponding to a
framerate of 21.1fps.

The brightness estimation stage is the most time-consuming
stage. The current implementation of this involves rendering a dif-
ference image, and summing it serially on the CPU. The perfor-
mance could be improved significantly by parallelising or moving
to the GPU. It could be further optimised by sparsely sampling,

Figure 11: Comparison between a virtual reflective sphere and a real
chrome sphere. Top: virtual sphere. Bottom: real sphere.

Task Time (ms) Percentage
SLAM Update 3.16 6.7

Undistort fisheye image 8.55 18.0
Upload images to GPU 0.84 1.8
Render occlusion mask 0.61 1.3

Estimate brightness 21.37 45.1
Update coarse model 0.29 0.6

Render cubemap (coarse model) 0.91 1.9
Render cubemap (dense model) 7.46 15.7

Project cubemap to SH 0.38 0.8
Render scene 0.228 0.5

Other 3.61 7.6
Total 47.42 100.0

Table 1: Timing breakdown of a typical frame rendered by the appli-
cation.

rather than using all pixels in the coarse model texture. The undis-
tortion and SH projection stages are also currently implemented se-
rially on the CPU, and could benefit from a parallel GPU imple-
mentation.

Rendering the dense model component of the cubemap is also
quite time-consuming. Whilst rendering the coarse model just in-
volves rendering a textured mesh, adding the dense reconstruction
requires a costly colour raycast of the InfiniTAM volume. This
performance of this stage also depended heavily on the cubemap
resolution; in this example, with 256x256 cubemap faces, it was
relatively fast. At higher resolutions, it consumed over 50% of the
total time.

6 CONCLUSION

In this paper, a system was presented to synthesise environment
maps for virtual objects in indoor mixed reality applications. The
approach used a single, self-contained device containing two cam-
eras. These were used to render reflective virtual objects, and the

Figure 12: Example scenario where surfaces are not initially visi-
ble to the RGBD camera. Top: Image of scene with real reflective
sphere, for comparison. Middle: AR image with virtual sphere, on
first frame of sequence. Bottom: AR image after moving camera,
exposing more of the real scene to the RGBD camera.

Figure 13: Comparison of the proposed approach with a simpler,
baseline approach. The sequence used is the same as that used in
figures 8, 9 and 10. Top left: AR Image, using baseline approach.
Top right: Environment map, using baseline approach. Bottom left:
Closeup of virtual sphere, using baseline approach. Bottom mid-
dle: Closeup of virtual sphere, using baseline approach with dense
reconstruction. Bottom right: Closeup of virtual sphere, using our
approach.

results were compared qualitatively to real mirror surfaces. The
system was shown to be able to produce detailed environment maps,
which could be used to render virtual objects with high-frequency
lighting effects such as reflection and refraction.

Since the coarse model updating and environment map rendering
take place in real time, the presented approach can handle a number
of dynamic changes. Changes in the surrounding environment such
as a video playing on a nearby television screen, a change in the
weather outside or a person walking past can be handled correctly.
The virtual objects are also capable of changing their position ar-
bitrarily within the real scene. This opens up new possibilities for
more dynamic and engaging mixed reality content.

The approach presented here focused on using camera tracking
and 3D reconstrution to solve the geometric issues involved in gen-
erating environment maps using our hardware setup. Future work
might also aim for photometric accuracy, possibly using high dy-
namic range techniques to capture the full dynamic range of the
environment. This would help to reduce artefacts such as the ex-
cessively soft shadow in figure 11, and allow for more accurate
rendering of diffuse virtual objects. The brightness change com-
pensation stage could also be improved by using a more complete
light transport model, to produce more accurate results.

In this paper, the reconstructions generated were used to gener-
ate environment maps. These are efficient to render, but are not
strictly geometrically accurate, unless the surrounding real scene
is sufficiently distant from the virtual object. It would be possible
to use a more advanced approach, such as reflection mapping with
parallax [52] or multi-perspective rendering [20], to provide more
realistic results. Alternatively, the coarse and dense models could
be used as input to other rendering techniques such as ray-tracing.

Environment maps also perform poorly when rendering flat, pla-
nar surfaces. When such a virtual object is to be rendered, it would
be preferable to render the reflection using a camera placed at the
reflected (virtual) viewpoint [9]. This could be added to enable the
system to render a wider variety of objects

There are also ways in which the system presented here could
be enhanced, to improve ease of use. For example, by generating
the coarse model automatically, or by using the fisheye camera or a
small inertial measurement unit to improve camera tracking.

The dense model only contains surfaces observed by the RGBD
camera. If the user does not capture enough of the region around the
virtual objects, incomplete parts of the dense model may be visible
in the environment maps (see fig. 12). A completion method such
as [10] could be added to address this problem.

We believe that the incorporation of omnidirectional cameras
into future MR devices such as handhelds or head-mounted dis-
plays is quite practical at relatively low expense. We thus believe
that the extra information they provide can be key to making more
visually convincing virtual content for mixed reality.

ACKNOWLEDGEMENTS

This research was supported by the NII International Internship
Program, as well as a studentship sponsored by Imagination Tech-
nologies and the UK’s EPSRC. This work was also partly supported
by Grant-in-Aid for Scientific Research (Grant No. 16H02851) of
the Ministry of Education, Culture, Sports, Science and Technol-
ogy of Japan. The authors would like to thank the reviewers for
their helpful feedback, including a suggested improvement to the
brightness adjustment approach.

REFERENCES

[1] K. Agusanto, L. Li, Z. Chuangui, and N. W. Sing. Photorealistic
rendering for augmented reality using environment illumination. In
Mixed and Augmented Reality, 2003. Proceedings. The Second IEEE
and ACM International Symposium on, pages 208–216. IEEE, 2003.

[2] M. Aittala. Inverse lighting and photorealistic rendering for aug-
mented reality. The Visual Computer, 26(6-8):669–678, 2010.

[3] I. Arief, S. McCallum, and J. Y. Hardeberg. Realtime estimation of
illumination direction for augmented reality on mobile devices. In
Color and Imaging Conference, volume 2012, pages 111–116. Society
for Imaging Science and Technology, 2012.

[4] J. F. Blinn and M. E. Newell. Texture and reflection in computer gen-
erated images. Communications of the ACM, 19(10):542–547, 1976.

[5] F. Bungiu, M. Hemmer, J. Hershberger, K. Huang, and A. Kröller.
Efficient computation of visibility polygons. arXiv preprint
arXiv:1403.3905, 2014.

[6] R. Cabral and Y. Furukawa. Piecewise planar and compact floorplan
reconstruction from images. In 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pages 628–635. IEEE, 2014.

[7] D. A. Calian, K. Mitchell, D. Nowrouzezahrai, and J. Kautz. The
shading probe: fast appearance acquisition for mobile ar. In SIG-
GRAPH Asia 2013 Technical Briefs, page 20. ACM, 2013.

[8] P. Debevec. Rendering synthetic objects into real scenes: bridging tra-
ditional and image-based graphics with global illumination and high
dynamic range photography. In Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques, pages 189–
198. ACM, 1998.

[9] P. J. Diefenbach. Pipeline rendering: interaction and realism through
hardware-based multi-pass rendering. PhD thesis, University of
Pennsylvania, 1996.

[10] M. Firman, O. M. Aodha, S. Julier, and G. J. Brostow. Structured
Completion of Unobserved Voxels from a Single Depth Image. In
Computer Vision and Pattern Recognition (CVPR), 2016.

[11] J.-M. Frahm, K. Koeser, D. Grest, and R. Koch. Markerless aug-
mented reality with light source estimation for direct illumination. In
Conference on Visual Media Production CVMP, London, pages 211–
220, 2005.

[12] S. Gibson and A. Murta. Interactive rendering with real-world illumi-
nation. In Proceedings of the Eurographics Workshop on Rendering
Techniques 2000, pages 365–376. Springer-Verlag, 2000.

[13] N. Greene. Environment mapping and other applications of world
projections. IEEE Computer Graphics and Applications, 6(11):21–
29, 1986.

[14] T. Grosch, T. Eble, and S. Mueller. Consistent interactive augmen-
tation of live camera images with correct near-field illumination. In
Proceedings of the 2007 ACM symposium on Virtual reality software
and technology, pages 125–132. ACM, 2007.

[15] L. Gruber, T. Langlotz, P. Sen, T. Höherer, and D. Schmalstieg. Ef-
ficient and robust radiance transfer for probeless photorealistic aug-
mented reality. In 2014 IEEE Virtual Reality (VR), pages 15–20. IEEE,
2014.

[16] L. Gruber, T. Richter-Trummer, and D. Schmalstieg. Real-time photo-
metric registration from arbitrary geometry. In Mixed and Augmented
Reality (ISMAR), 2012 IEEE International Symposium on, pages 119–
128. IEEE, 2012.

[17] L. Gruber, J. Ventura, and D. Schmalstieg. Image-space illumination
for augmented reality in dynamic environments. In 2015 IEEE Virtual
Reality (VR), pages 127–134. IEEE, 2015.

[18] M. Haller, S. Drab, and W. Hartmann. A real-time shadow approach
for an augmented reality application using shadow volumes. In Pro-
ceedings of the ACM symposium on Virtual reality software and tech-
nology, pages 56–65. ACM, 2003.

[19] G. Hirota, D. T. Chen, W. F. Garrett, M. A. Livingston, et al. Superior
augmented reality registration by integrating landmark tracking and
magnetic tracking. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages 429–438. ACM,
1996.

[20] X. Hou, L.-Y. Wei, H.-Y. Shum, and B. Guo. Real-time multi-
perspective rendering on graphics hardware. Rendering Techniques,
6:93–102, 2006.

[21] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, et al. Kinectfusion:
real-time 3d reconstruction and interaction using a moving depth cam-
era. In Proceedings of the 24th annual ACM symposium on User in-
terface software and technology, pages 559–568. ACM, 2011.

[22] O. Kahler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. H. S. Torr, and
D. W. Murray. Very High Frame Rate Volumetric Integration of Depth

Images on Mobile Device. IEEE Transactions on Visualization and
Computer Graphics (Proceedings International Symposium on Mixed
and Augmented Reality 2015, 22(11), 2015.

[23] P. Kán. Interactive hdr environment map capturing on mobile devices.
In Eurographics (Short Papers), pages 29–32, 2015.

[24] P. Kán and H. Kaufmann. Physically-based depth of field in aug-
mented reality. In Eurographics (Short Papers), pages 89–92, 2012.

[25] P. Kan and H. Kaufmann. Differential irradiance caching for fast high-
quality light transport between virtual and real worlds. In Mixed and
Augmented Reality (ISMAR), 2013 IEEE International Symposium on,
pages 133–141. IEEE, 2013.

[26] P. Kán, J. Unterguggenberger, and H. Kaufmann. High-quality con-
sistent illumination in mobile augmented reality by radiance convolu-
tion on the gpu. In Advances in Visual Computing, pages 574–585.
Springer, 2015.

[27] M. Kanbara and N. Yokoya. Real-time estimation of light source en-
vironment for photorealistic augmented reality. In ICPR (2), pages
911–914. Citeseer, 2004.

[28] K. Karsch, V. Hedau, D. Forsyth, and D. Hoiem. Rendering synthetic
objects into legacy photographs. In ACM Transactions on Graphics
(TOG), volume 30, page 157. ACM, 2011.

[29] K. Karsch, K. Sunkavalli, S. Hadap, N. Carr, H. Jin, R. Fonte, M. Sit-
tig, and D. Forsyth. Automatic scene inference for 3d object com-
positing. ACM Transactions on Graphics (TOG), 33(3):32, 2014.

[30] J. Křivánek and M. Colbert. Real-time shading with filtered impor-
tance sampling. In Computer Graphics Forum, volume 27, pages
1147–1154. Wiley Online Library, 2008.

[31] K. Levenberg. A method for the solution of certain non-linear prob-
lems in least squares. Quarterly of applied mathematics, 2(2):164–
168, 1944.

[32] D. W. Marquardt. An algorithm for least-squares estimation of non-
linear parameters. Journal of the society for Industrial and Applied
Mathematics, 11(2):431–441, 1963.

[33] MATLAB. MATLAB R2017a: Computer Vision Toolbox. The Math-
Works Inc., Natick, Massachusetts, 2017.

[34] H. Matsuoka, A. Onozawa, and E. Hosoya. Environment mapping for
objects in the real world: a trial using artoolkit. In Augmented Reality
Toolkit, The First IEEE International Workshop, pages 2–pp. IEEE,
2002.

[35] M. Meilland, C. Barat, and A. Comport. 3d high dynamic range dense
visual slam and its application to real-time object re-lighting. In Mixed
and Augmented Reality (ISMAR), 2013 IEEE International Sympo-
sium on, pages 143–152. IEEE, 2013.

[36] G. S. Miller and C. R. Hoffman. Illumination and reflection maps:
Simulated objects in simulated and real environments: Siggraph
course notes. ACM, 1984.

[37] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinect-
fusion: Real-time dense surface mapping and tracking. In Mixed and
augmented reality (ISMAR), 2011 10th IEEE international symposium
on, pages 127–136. IEEE, 2011.

[38] T. Okabe, I. Sato, and Y. Sato. Spherical harmonics vs. haar wavelets:
Basis for recovering illumination from cast shadows. In Computer
Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the
2004 IEEE Computer Society Conference on, volume 1, pages I–50.
IEEE, 2004.

[39] K. Rohmer, W. Buschel, R. Dachselt, and T. Grosch. Interactive near-
field illumination for photorealistic augmented reality with varying
materials on mobile devices. Visualization and Computer Graphics,
IEEE Transactions on, 21(12):1349–1362, 2015.

[40] I. Sato, Y. Sato, and K. Ikeuchi. Acquiring a radiance distribution
to superimpose virtual objects onto a real scene. Visualization and
Computer Graphics, IEEE Transactions on, 5(1):1–12, 1999.

[41] I. Sato, Y. Sato, and K. Ikeuchi. Stability issues in recovering illu-
mination distribution from brightness in shadows. In Computer Vi-
sion and Pattern Recognition, 2001. CVPR 2001. Proceedings of the
2001 IEEE Computer Society Conference on, volume 2, pages II–400.
IEEE, 2001.

[42] I. Sato, Y. Sato, and K. Ikeuchi. Illumination from shadows. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 25(3):290–

300, 2003.
[43] D. Scaramuzza, A. Martinelli, and R. Siegwart. A toolbox for eas-

ily calibrating omnidirectional cameras. In 2006 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 5695–
5701. IEEE, 2006.

[44] P.-P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments.
In ACM Transactions on Graphics (TOG), volume 21, pages 527–536.
ACM, 2002.

[45] A. Telea. An image inpainting technique based on the fast marching
method. Journal of graphics tools, 9(1):23–34, 2004.

[46] The CGAL Project. CGAL User and Reference Manual. CGAL Edi-
torial Board, 4.8.1 edition, 2016.

[47] D. Thomas and A. Sugimoto. Parametric surface representation with
bump image for dense 3d modeling using an rbg-d camera. Interna-
tional Journal of Computer Vision, pages 1–20, 2016.

[48] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and
A. J. Davison. Elasticfusion: Dense slam without a pose graph. In
Robotics: science and systems, volume 11, 2015.

[49] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger. Elasticfusion: Real-time dense slam and light source
estimation. The International Journal of Robotics Research, page
0278364916669237, 2016.

[50] Y. Yao, H. Kawamura, and A. Kojima. Shading derivation from an un-
specified object for augmented reality. In Pattern Recognition (ICPR),
2012 21st International Conference on, pages 57–60. IEEE, 2012.

[51] X. Ying and Z. Hu. Can we consider central catadioptric cameras
and fisheye cameras within a unified imaging model. In European
Conference on Computer Vision, pages 442–455. Springer, 2004.

[52] J. Yu, J. Yang, and L. McMillan. Real-time reflection mapping with
parallax. In Proceedings of the 2005 symposium on Interactive 3D
graphics and games, pages 133–138. ACM, 2005.

[53] Y. Zheng, X. Chen, M.-M. Cheng, K. Zhou, S.-M. Hu, and N. J. Mi-
tra. Interactive images: cuboid proxies for smart image manipulation.
ACM Trans. Graph., 31(4):99–1, 2012.

