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Abstract

Background: Visual inspection for tongue analysis is a diagnostic method in traditional Chinese medicine (TCM).
Owing to the variations in tongue features, such as color, texture, coating, and shape, it is difficult to precisely
extract the tongue region in images. This study aims to quantitatively evaluate tongue diagnosis via automatic
tongue segmentation.

Methods: Experiments were conducted using a clinical image dataset provided by the Laboratory of Traditional
Medical Syndromes, Shanghai University of TCM. First, a clinical tongue image was refined by a saliency window.
Second, we initialized the tongue area as the upper binary part and lower level set matrix. Third, a double geo-vector
flow (DGF) was proposed to detect the tongue edge and segment the tongue region in the image, such that the
geodesic flow was evaluated in the lower part, and the geo-gradient vector flow was evaluated in the upper part.

Results: The performance of the DGF was evaluated using 100 images. The DGF exhibited better results
compared with other representative studies, with its true-positive volume fraction reaching 98.5%, its false-positive
volume fraction being 1.51%, and its false-negative volume fraction being 1.42%. The errors between the proposed
automatic segmentation results and manual contours were 0.29 and 1.43% in terms of the standard boundary
error metrics of Hausdorff distance and mean distance, respectively.

Conclusions: By analyzing the time complexity of the DGF and evaluating its performance via standard boundary
and area error metrics, we have shown both efficiency and effectiveness of the DGF for automatic tongue image
segmentation.
Background
Simple, non-invasive, and inexpensive visual inspection
of the human tongue has been a unique diagnostic
method of traditional Chinese medicine (TCM) [1],
through observing any abnormal changes in the tongue
properties and coating. Clinical studies have suggested
relationships between visceral cancers, heart diseases,
and abnormalities of the tongue and its coating [2-4].
However, the current practice in TCM is mainly subject-
ive, and the quality of the visual inspection varies among
medical professionals. Thus, it is beneficial to devise ob-
jective quantitative evaluation methods for the color,
texture, and surface of the tongue and define their rela-
tionships with patients’ health conditions [5,6].
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Recently, the development of an automated digital
tongue diagnostic system was attempted. Chiu [7] built a
computerized tongue examination system, in which the
colors of the tongue and the thickness of its coating
were identified by a proposed chromatic algorithm. Cai
[8] and Li and Cai [9] constructed a digital imaging sys-
tem to capture tongue images and extract various fea-
tures for tongue analysis. Zhang et al. [10] demonstrated
a novel computer-aided tongue diagnosis system, in
which a standard data acquisition device and a new
color correction method were used to capture tongue
images. Some other computerized systems, such as the
tongue computing model, computerized system for
tongue diagnosis, and automatic tongue diagnosis sys-
tem, were also built in [11-13], of which Gao et al. [12]
established a mapping relationship between quantitative
tongue features and diseases via the support vector ma-
chine and obtained promising performances.
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iginal work is properly cited.
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A general computerized tongue diagnostic system is
shown in Figure 1. This system mainly executes four
tasks: tongue image acquisition; tongue image segmenta-
tion; tongue feature extraction; and tongue image classi-
fication. Figure 1 shows the tongue body segmentation
as a bridge that combines the acquisition of the tongue
image with the feature extraction. Tongue features, such
as color, texture, coating, and shape, create difficulties
for accurate segmentation of tongue images. Recent
studies have mainly focused on the active contour model
(ACM), or “Snake”, which evolves a curve by minimizing
a specifically defined energy function [14]. The curve is
initialized manually or automatically, and propagated to
the real boundary on both the internal and external
forces [15].
Studies using the ACM have included the general gra-

dient vector flow [16], double snake [17], level set [18],
and C2G2FSnake [19]. Owing to the special characteris-
tics of the tongue color, different color channels have
been embedded into these segmentation methods, such
as region growing [20], fuzzy C-means [21], and shortest
path [22].
In our previous work [19], C2G2FSnake was proposed as

a novel approach for automatic tongue segmentation, using
prior location of the tongue body for active contour
initialization. It embedded the color space information into
the active contour evolution, and the segmentation preci-
sion was thus enhanced. Nevertheless, there remained dif-
ficulties associated with background removal in clinical
images (Figure 2) and parameter selection.
Regarding the background removal, a saliency object

detector [23] was adopted to refine the clinical tongue
image. This was an unsupervised method that was easier
to implement compared with the method of Fu et al.
[15]. For the parameter selection, a novel computerized
tongue image segmentation method named the double
geo-vector flow (DGF) was proposed based on the
unique shape of the tongue body and its location on the
Tongue 
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Tongue
body
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Figure 1 Outline of a computerized model for tongue diagnosis and
face. The saliency window was refined and the active
contour was initialized for the upper and under parts ac-
cordingly. The geodesic flow first propagated the under
part, the geo-gradient vector flow (Geo-GVF) then took
over the work, and the upper curve was evolved to the
real boundary. Based on its ability to split, the geodesic
flow showed superior flexibility compared with the pa-
rameterized model used by Shi et al. [19], and the geo-
metric term in the gradient vector flow (GVF) speeded
up the curve propagation for the upper part and main-
tained its accuracy.
The tongue images were captured in a closed darkroom

that shielded against light disturbance from the outside,
and the position of the camera was flexible and adjustable,
thus avoiding color distortion caused by light interference.
A clinical tongue image database has already been col-
lected by Shanghai University of TCM.
This study aims to devise an objective approach and

quantitative model to evaluate automatic tongue seg-
mentation in a computerized tongue diagnostic system.

Methods
In this study, an active contour-based tongue image seg-
mentation method was proposed. First, the tongue
image was refined by a saliency window, and the active
contour was initialized by taking advantage of the prior
knowledge of the tongue image. Second, the tongue area
was initialized into two parts: the binary upper part and
the level set matrix for the under part. Third, the DGF
was proposed to detect the tongue edge and segment
the tongue region in the image, such that the geodesic
flow was evaluated in the under part, and the Geo-GVF
was evaluated in the upper part.

Tongue region detection
Before the initialization of the active contour, the tongue
region in the clinical image was detected. We used the
saliency object detector proposed by Feng et al. [23].
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Tongue 
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a flowchart of the proposed DGF for tongue image segmentation.



Figure 2 Saliency detection in tongue images. Top row: images and saliency objects detected by the saliency object detector; bottom row:
corresponding saliency maps of the four images.
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This detector used the entire image as the context, which
agreed with human intuition. The tongue body was the
deep red region in the tongue image, which corresponded
to the brightest region in the saliency map (Figure 2, bot-
tom row). The saliency window composition cost function
was defined in Feng et al. [23]. In particular, the algorithm
detected two windows with the highest saliencies, and the
one with the smaller size was adopted for the tongue body
segmentation.

Initialization
Contour initialization
Based on the refined tongue image, the active contour
was initialized depending on the extracted feature points
on the image [19]. As illustrated in Figure 3, the under
half contour of the first image was constructed based on
three special points: two angular points and the tongue
tip. The upper half contour was replaced by straight
lines, and another point (tongue root) was added to
guarantee that the contour was inside the tongue body.
The two angular points were automatically detected by
the Harris detector while the tongue tip and root were
located by edge detectors. The geodesic curve would
shrink to the real boundary when the selected tip point
was below the real tongue tip. Once the direction was
guaranteed, the curve would not stop until the real
boundary was reached.
Figure 3 Tongue image initialization. From left to right: first, the four sp
second, rescaling of the refined tongue image depending on the special to
(matrix) is initialized for the under part of the tongue image with a negativ
outside the contour; fifth, image denoting the region initialization with the
For some tongue images, part of the patient’s nose
might be included in the refined window (Figure 2, third
image), thereby influencing the propagation of the pro-
posed Geo-GVF. To solve this problem, we obtained the
area of the dark region between the tongue root and the
upper lip in the binary image (Figure 3), and assumed
that the thickness of the upper lip (its height in the
image) was at most twice that of the dark region. We
then cut off the additional region above the upper lip.
Although this refinement may not be accurate, we fo-
cused on the extraction of the tongue body rather than
other parts.
Overall, owing to the robust ability of the DGF, only

the rough locations of these four points were required to
confirm that the direction of the initial curve was main-
tained during propagation. For the upper half contour, it
swelled, while for the under part, it shrank. Any inaccur-
acy caused by the window detection or contour
initialization could be overcome as long as the propagat-
ing direction was guaranteed.

Region initialization
We divided the whole region into two parts according to
the row of angular points (Figure 3, fifth image). In the
upper part, the curve over-learned or became stuck at
some local minimum points, and we adopted the binary
image and solved the problem completely. For the under
− − −

−

− − −

−

ecial tongue points corresponding to the first image in Figure 2;
ngue points; third, contour initialization; fourth, the level set function
e constant (ρ > 0) inside the contour (red region) and a positive value
binary image for the upper part.
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part, we initialized the level set function with a negative
constant inside the contour, but a positive value outside
the contour, to keep the geodesic curve shrinking to the
real boundary.

Double geo-vector flow (DGF)
Geodesic flow
The geodesic model evolves the curve through the
propagation of the level set function, which was intro-
duced by Osher and Sethian [24]. The initial contour is
represented by a zero level set function: C(t) = {(i,j) | (Φ)
(t,i, j) = 0}. The curve propagation equation is:

∂Φ

∂t
þ F ∇Φ ¼ 0;jj ð1Þ

where F is the speed function, which depends on the
image data and the level set function (Φ). In the geo-
desic model, the level set function is approximated to
the signed distance function (matrix) with |∇Φ| = 1.
Geodesic flow is introduced as a speed function Ft = (c + κ),
where κ is the curvature κ ¼ div ∇Φ

∇Φj j
� �

and c is a positive
constant to keep the geodesic flow positive. The geodesic
model can be rewritten as:

∂Φ
∂t

¼ ∇Φj jdiv g Ið Þ ∇Φ
∇Φj j

� �
¼ g Ið Þ ∇Φj jκ þ ∇g Ið Þ∇Φ;

g ¼ 1

1þ ∇Gσ � Ij j2
ð2Þ

where I is an image, and g(I) is the edge detector. Gσis a
two-dimensional Gaussian function with standard devi-
ation σ, and is used to smooth the image noise. When
the curve is close to the real boundary, g(I) is ap-
proaching zero.
In the traditional level set method, the signed distance

function must be re-initialized every several iterations.
The Gateaux derivative [25] is adopted with the func-

tional ε: ∂Φ∂t ¼ − ∂ε
∂Φ to simplify this mode. It transfers the

energy minimization to the minimization of the func-
tional ε. ε is defined as its variational formulation:
ε(Φ) = μP(Φ) + εm(Φ). P(Φ) is a metric to characterize
how close a function is to a signed distance function:

P Φð Þ ¼ ∫
Ω

1
2

∇Φj j−1ð Þ2dxdy . By calculating the Gateaux

derivative of the functional ε in (1), the final geodesic
model can be obtained [26]:

∂Φ

∂t
μ ΔΦ−div

∇Φ
∇Φj j

� �� �
þ λδ Φð Þdiv g Ið Þ ∇Φ

∇Φj j
� �

þ vgδ Φð Þ; ð3Þ

where Δ is the Laplacian operator.
Since the direction of the geodesic flow is fixed, we
need the under half curve to shrink. The signed distance
function needs to be initialized as a row × col matrix
(where row and col denote the image row and column,
respectively), with a negative constant (ρ > 0) inside the
contour (red region) and a positive value outside the
contour (Figure 3):

Φun ¼
−ρ; i; jð Þ ∈Ωun −∂Ωun

0; i; jð Þ ∈∂Ωun

ρ; Ω −Ωun

;

8<
: ð4Þ

Supposing Ωun is a subset in the image domain Ω
(Figure 3), then ∂Ωun denotes all the points on the
boundaries of Ωun. ρ > 0 is a constant for initializing the
function ΦΩun. In this way, the direction of Ωun points
to the negative side, or the inside of the contour.
Thereby, the curve will shrink during propagation:

∂Φun

∂t
¼ μ ΔΦun−div

∇Φun

∇Φunj j
� �� �

þ λδ Φunð Þdiv g Ið Þ ∇Φun

∇Φunj j
� �

þ vgδ Φunð Þ: ð5Þ
For numerical implementation, since the propagating

result is used for evaluating the GVF, we only need the
under part to shrink. Φun

k is the kth iterated level set
matrix, with its element being ϕi,j, and then its k + 1th it-
erated form is:

ϕkþ1
i;j ¼

ϕ0
i;j

ϕk
i;j þ τS ϕk

i;j

� �
;

0 < j < sline
sline < j < row

;

(
ð6Þ

where S(ϕi,j
k ) corresponds to the right hand side in (5)

with τ being the stepsize controller. sline denotes the
partition line between the two parts, and is the row
number of the angular point. The intermediate propa-
gating result is shown in Figure 4.

Geo-gradient vector flow (Geo-GVF)
The traditional parametric ACM is sensitive to the con-
tour initialization, and the real boundary can only be
reached when the initial contour is close to it [14]. In a
different manner, the GVF obtains a continuous gradient
space by solving a set of vector equations of thermal ex-
pansion [27]. Local gradient vectors are not only deter-
mined by themselves, but also by their neighboring
gradients, and the GVF can overcome the recesses and
obstacles during its evolution and converge to the real
boundary from a far distance. It is defined as follows:

E V Ið Þ ¼ ω ∇Ij jð Þ∇2VI−h ∇Bj jð Þ V 1−∇Ið Þ; ð7Þ
where VI is a two-dimensional vector of the GVF, and (i,j)
VI (p) = (uI (p), vI (p)), p = (i,j). I is an image, and ∇I points



Figure 4 Intermediate propagating result corresponding to Figure 3.
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to the image edge. ω (|∇I|) ∇2VI is the smoothing term.
According to this objective function, when ∇I is close to
zero, the area is nearly a constant, and E(VI) is mainly
dominated by the partial derivatives of the vector field.
When the curve is close to the real edge, ∇I becomes
large. The second item dominates the evolution and drives
the curve to the real boundary until VI – ∇I.
Despite the superior performance of the GVF, over-

learning can easily occur during the curve evolution
[15-17]. To solve this problem, we replace the gray
image I with the binary image B (Figure 3) in (7):

E VBð Þ ¼ ω ∇Bj jð Þ∇2VB−h ∇Bj jð Þ VB−∇Bð Þ: ð8Þ
The gradient vectors are a constant value on either the

side of the dark region or the tongue root, and the trac-
tive forces toward the two sides are the same, which pre-
vents the curve from over-learning and ensures its
accurate convergence. The weighting function ω ( • ) is
chosen as a constant ω (∇B) =w, indicating that the
whole image is being smoothed. h ( • ) is chosen as h
(|∇B|) = |∇B|2, which is related to the strength of the
edge.
Based on the above, the active contour in the binary

GVF model is calculated according to the following
equation:

∂VB p x; yð Þ; tð Þ
∂t

¼ w∇2VB− ∇Bj j2 VB−∇Bð Þ: ð9Þ

It evolves in the upper part, where y < sline, y is the
number of rows in the image, and sline is the separated
line between the two parts.
Referring to (6), the geodesic flow only worked for the
under part, and the curve in the upper part held on. In
the proposed binary GVF, there was no force in the
under part. The geodesic flow ensured the convergence
of the under curve, whereas the gradient flow ensured
the convergence of the upper curve. In real implementa-
tion, after the geodesic propagation, we obtained the
final level set function, which provided the contour in-
formation inside. To unpack it, we calculated the one-
dimensional Dirac measure δ0 of (6). The active contour
is denoted by C(p), where p = p(i, j) denotes the image
coordinates:

C pð Þ ¼ δ0 Φun pð Þð Þ ¼ d
dp

Φun pð Þ; p ¼ p i; jð Þ: ð10Þ

Taking C (i, j) as the initial active contour of the GVF,
we obtain the propagating equation [27]:

C p; tð Þ ¼ αC
00
p; tð Þ−βC 0000

p; tð Þ þ VB: ð11Þ
In real implementation, considering that the initial

contour in the upper part is too far to propagate to the

real boundary, a geometric term GB ¼ gB� n
→

is intro-
duced to (11) to help the initial curve quickly con-
verge to the neighborhood of the real boundary, like (2):

gB ¼ 1
1þ ∇Gσ�Bj j2, while n

→
denotes the outward normal direc-

tion of the curve:

C p; tð Þ ¼ αC
00
p; tð Þ−βC 0000

p; tð Þ þmax VB;GBð Þ: ð12Þ
When the curve is far away from the real boundary,VB

is nearly zero, while gB is close to 1, and the curve is
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propagating as illustrated in Figure 4. When the curve is
close to the tongue edge, VB will dominate the propaga-
tion and adjust the curve to the real boundary of the
tongue body. This new scheme is called the Geo-GVF.
The DGF was implemented in MATLAB, and the

source codes can be downloaded from Additional file 1.
We initialized the tongue image by adopting the saliency
object detection. The region of the tongue body was re-
fined by a rectangular window (Figure 2, top row). The
contour initialization used the special shape of the
tongue body and its location on the face. The parameter
settings were μ = 1, λ = 3, and ν = 0.5 for the geodesic
Figure 5 Examples of tongue image segmentation. Top row: refined to
(white curves); second row: corresponding segmentation results of the first
segmentation results of double snakes [17].
flow. μ was the coefficient of the internal (penalizing)

energy term ΔΦun−div ∇Φun
∇Φunj j

� �
, while λ represented the

coefficient of the weighted length term δΦundiv

g Ið Þ ∇Φun
∇Φunj j

� �
. ν denoted the coefficient of the weighted

area term gδ(Φun), and generally, a small ν was chosen.
For the Geo-GVF, its viscosity parameters were α = 1,
β = 1. Some examples of the tongue segmentations are
shown in Figure 5.
We compared the DGF with our previous work

C2G2FSnake [19], Zhai et al. [17], and Fu et al. [15]. Zhai
ngue images and final propagating results of the proposed DGF
row; third row: segmentation results of C2G2FSnake [19]; fourth row:



Figure 6 Geodesic propagating results for the gray map and H-channel map.
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et al. [17] adopted the H-channel as an initial contour
for the outside Snake contour, and a double snake was
carried out afterwards. The inside contour kept propa-
gating as long as it did not meet the outside contour.
The outside contour kept the inside curve close to the
real boundary without over-learning as a barrier. Fu
et al. [15] introduced AdaBoost to locate the tongue
body in the human face, and then eliminated the H-
channel, which was regarded as the same as the lip and
skin color. The initial contour was obtained close to the
real boundary through a polar edge detector, and the
Snake was evolved afterwards.

Dataset evaluation and error measurements
The clinical tongue image database was provided by
Shanghai University of TCM, and categorized by tongue
color as follows: light white tongue (tinge, light white); red
tongue (red, deep red, deep purple); purple tongue (helio-
trope, pompadour, heliotrope, purple, modena); and car-
moisine tongue. There were four classes and ten branches.
Ten images were chosen for each branch, giving 100 im-
ages in total. Some examples are shown in Figure 2. The
entire dataset can be downloaded from Additional file 2.
This study has been approved by the Shanghai society

of medical ethics. All the patients have signed the in-
formed consent form.
Boundary error metrics and area error metrics were

used to evaluate the performance of the tongue image
Figure 7 Geo-GVF propagating results for the binary map and gray m
segmentation. For the boundary error metrics, the Haus-
dorff distance (HD) and the mean distance (MD) to the
closest point were adopted to measure the errors be-
tween the proposed automatic segmentation result and
the manual contour [19]. We used the normalized terms
of the two distances (norm.HD and norm.MD) as the
boundary error metrics. For the area error metrics, refer-
ring to Shi et al. [19], the false-positive (FP) volume frac-
tion, false-negative (FN) volume fraction, and true-
positive (TP) volume fraction were adopted.

Results and discussion
In this paper, a computerized tongue image segmenta-
tion approach, the DGF, was proposed for tongue diag-
nosis. We adopted a saliency object detector to refine
the clinical tongue image. By taking advantage of the
prior knowledge of the tongue image, the DGF was
evaluated in the under and upper parts of the image,
respectively. The two curves in the DGF precisely
extracted the tongue region.

Color map and geometric term
The tongue color map has been highly analyzed for vari-
ous types of information in tongue diagnosis [28]. In this
section, we analyzed the color map in the tongue seg-
mentation. The H-channel, gray map, and binary map
were used for different active contour propagations.
Comparisons are shown in Figures 6 and 7. We also
ap.



Figure 8 GVF propagating results with or without the geometric term.

Table 1 Detailed segmentation results with respect to
each tongue class

Tongue
color

Norm.
HD (%)

Norm.
MD (%)

FN (%) FP (%) TP (%)

Light white 0.07 1.17 1.4 1.15 98.95

Red 0.57 1.62 1.47 2.17 97.82

Purple 0.36 1.91 1.17 1.92 98.08

Carmoisine 0.16 1.02 1.64 0.80 99.21
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provided the propagating results with or without the
geometric term, to show the role of the geometric term
in the propagation of the Geo-GVF.

H-channel map
In our study, we found that the H-channel map was not
always beneficial for tongue image segmentation. Figure 6
shows the geodesic propagating results for both the gray
map (left image) and H-channel map (right image). If
the face color in its H-channel was close to the tongue
color, the edge detector gH ¼ 1

1þ ∇Gσ�Hj j2 (H denotes the

H-channel map) could not distinguish the tongue body
from the image.

Binary map
In this study, we initialized the upper part as a binary
image (Figure 3). In this manner, ∇B (8) was a constant
at both sides of the tongue root, the tractive forces from
the two sides were the same, and no over-learning or
local minima occurred. We compared the Geo-GVF
propagating results in both the gray map and the binary
map (Figure 7). It can be seen that, if the binary map
was not used, local minima would occur (right image).

Geometric term
Referring to (12), when the curve was far away from the
real boundary, VB was nearly zero, and we adopted the
geometric term GB to propagate the curve along its out-
ward direction. Meanwhile, when the curve was close to
the tongue edge, VB dominated the propagation and ad-
justed the curve to the real boundary of the tongue
body. If we did not adopt the geometric term during the
propagation of the GVF (Figure 8, right image), the ini-
tial contour in the upper part was too far, and no exter-
nal force VB in (11) could be found around the initial
contour.

Overall comparison
In this section, the DGF was compared within the data-
set with different classes. The overall performances were
presented afterwards in comparison with other represen-
tative studies [15,17,19].

Class variation
We have summarized the detailed segmentation results
with respect to each tongue class in Table 1. The results
showed that the performance of the DGF was inferior
for the red tongue class compared with the other classes.
This arose because the tongue color was close to the lip
color in the red tongue class, making it hard for the
DGF to converge to the real boundary, and leading to
possible over-learning during the curve propagation.
However, in the light white and carmoisine tongue clas-
ses, the tongue color was clearly distinct from the lip
color, and a deep valley in the level set space was formed
between them to prevent the curve propagating further,
thereby providing superior performances in these two
classes. Despite the slight differences in these results, the
performances were good in the four classes, suggesting
the scalability and effectiveness of the proposed DGF.

Comparative experiments
Comparative tests using the tongue image database in
this study are shown in Figures 5 and 9. In Figure 5, we
show visual comparisons of the DGF and two previous
studies [17,19]. Specifically, the top row denotes the re-
fined tongue images and the final propagating curves of
the DGF (white curves), the second row corresponds to
the segmentation results of the first row, the third row
denotes the segmentation results of C2G2FSnake [19],
and the fourth row denotes the segmentation results
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Figure 9 Tongue image segmentation results. The smaller Norm.HD%, Norm.MD%, FN%, and FP% are, the better they will be. The larger TP%
is, the better it will be.
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using double snakes [17]. Compared with Zhai et al. [17]
and Shi et al. [19], the tongue edge extracted by the
DGF was smoother and more accurate.
The DGF exhibited a better performance on almost

every metric except for Norm.MD%, which measured
the mean distance between the edges obtained automat-
ically and the standard tongue body boundaries obtained
manually (Figure 9), and was affected when the point-to-
point distance was calculated. The performance for
Norm.MD% was weaker because, during the propagation
of the geodesic active contour, some local minimum
points needed to be overcome. Consequently, the curve
split and merged again, which left unnecessary tails in
the final result (Figure 5, marked by the red frame in the
first image).
In C2G2FSnake [19], color space information was in-

troduced to control both the geometrical model and the
parameterized GVF model to realize a seamless switch
from rough evolution to refined evolution. However, the
parameters for different tongue color categories had to
vary to adapt to the color contrast between the tongue
body and the facial skin. Besides, for some special im-
ages, the active contours were initialized incorrectly for
the evolution of C2G2FSnake. In this study, the geodesic
model could propagate to the real boundary by splitting
itself.

Computational complexity
The DGF was evaluated in the MATLAB environment
(MATLAB 7.9) on the Windows 7 system, with Intel
Core 2 CPU and 2 GB of RAM. The curve movement in
the geodesic model was realized by updating of the level
set matrix, Φm×n, where mand ndenoted the width and
height of the matrix, or the width and height of the
image. The level set matrix was updated at every iter-
ation, and thus the computation complexity for the geo-
desic flow was O(mn). On the other hand, the curve
movement of the GVF was updated by every point on
the curve at every iteration. Suppose that the length of
the curve was l, the evolution of the GVF shall be per-
formed in time O(l). Usually, l < <mn. The DGF was a
combination of the geodesic flow and the GVF, and it
would cost a bit more time than the GVF (or Snake)
model used in previous studies [15,17,19].

Conclusion
In this study, the DGF showed efficiency and effective-
ness for automatic tongue image segmentation.

Additional files

Additional file 1: Source codes of the DGF in MATLAB language.
Please refer to readme in the zip files.

Additional file 2: The collection dataset of tongue images and
segmentation benchmarks. Please refer to the subsection entitled
Dataset evaluation and error measurements.
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