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Abstract 18 

The Carpathian Mountains were one of the main mountain reserves of the boreal and cool 19 

temperate flora during the Last Glacial Maximum (LGM) in East-Central Europe.  Previous studies 20 

demonstrated late glacial vegetation dynamics in this area; however, our knowledge on the LGM 21 

vegetation composition is very limited due to the scarcity of suitable sedimentary archives. Here we 22 

present a new record of vegetation, fire and lacustrine sedimentation from the youngest volcanic 23 

crater of the Carpathians (Lake St Anne, Lacul Sfânta Ana, Szent-Anna-tó) to examine environmental 24 

change in this region during the LGM and the subsequent deglaciation. Our record indicates the 25 

persistence of boreal forest steppe vegetation (with Pinus, Betula, Salix, Populus and Picea) in the 26 

foreland and low mountain zone of the East Carpathians and Juniperus shrubland at higher elevation. 27 

We demonstrate attenuated response of the regional vegetation to maximum global cooling. 28 

Between ~22,870 and 19,150 cal yr BP we find increased regional biomass burning that is 29 

antagonistic with the global trend. Increased regional fire activity suggests extreme continentality 30 

likely with relatively warm and dry summers. We also demonstrate xerophytic steppe expansion 31 

directly after the LGM, from ~19,150 cal yr BP, and regional increase in boreal woodland cover with 32 

Pinus and Betula from 16,300 cal yr BP. Plant macrofossils indicate local (950 m a.s.l.) establishment 33 

of Betula nana and B. pubescens at 15,150 cal yr BP, Pinus sylvestris at 14,700 cal yr BP and Larix 34 

decidua at 12,870 cal yr BP. Pollen data furthermore support population genetic inferences regarding 35 

the regional presence of some temperate deciduous trees during the LGM (Fagus sylvatica, Corylus 36 

avellana, Fraxinus excelsior). Our sedimentological data also demonstrate intensified aeolian dust 37 

accumulation between 26,000 and 20,000 cal yr BP. 38 
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and temperate tree refugia  40 

1. Introduction 41 

Phylogeographical (Fér et al., 2007; Ronikier et al., 2008a,b, 2011; Bálint et al., 2011), floristic 42 

(Tasenkevich, 1998) and paleovegetational studies (Tanţău et al., 2006; Feurdean et al., 2004, 43 

2012a,b, 2013a) suggest that the diverse, endemic-rich modern flora of the Carpathians closely 44 

reflects the exceptionally varied topography and diverse meso- and macroclimate of the mountains 45 

that provided suitable habitat for temperate, boreal and alpine plants throughout the Quaternary. 46 

How the regional biomes evolved through the high amplitude climatic fluctuations of the Late 47 

Quaternary needs however further research, as existing well-dated and high-resolution studies from 48 

the Romanian Carpathians provide insight mainly into the vegetation dynamics of the late glacial 49 

(Feurdean et al., 2007, 2012, 2014; Magyari et al., 2012) and Holocene (Fărcaş, 1999, 2013; Tanţău et 50 

al., 2003, 2006, 2011; Feurdean and Bennike, 2004; Magyari et al. 2009; Feurdean et al., 2011, 51 

2013a). Knowledge on the last glacial maximum (LGM) (19,000-26,000 cal yr BP according to Clark et 52 

al., 2009 and corresponding to Greenland isotope chronostratigraphic events GS-3, GI-2.2, GS-2.2, GI-53 

2.1, GS-2.1bc as defined in Rasmussen et al., 2014) vegetation composition is however still very 54 

limited (Tanţău et al., 2006; Obidowicz, 2006; Jankovská and Pokorný, 2008; Kuneš et al., 2008; 55 

Feurdean et al., 2014). This is due to the scarcity of sites that preserve sediments suitable for pollen 56 

and plant macrofossil analysis from this period. Therefore, several important research questions 57 

await answers regarding the LGM vegetation changes in this region, such as 1) how terrestrial 58 

vegetation responded to the millennial-scale stadial/interstadial climate fluctuation of marine 59 

isotope stage 2 (e.g. GI-2.1 and GI-2.2; Rasmussen et al., 2014); 2) what temperate and boreal woody 60 

species survived the LGM  locally at mid altitudes;  3) how the LGM vegetation composition of the 61 

mountain zone compared with the surrounding lowlands both west (Magyari et al., 1999, 2014; 62 

Sümegi et al., 2013) and east (Markova et al., 2009) of the Carpathians; and finally 4) if there is any 63 

causal relationship between hydrological changes in the Black Sea water column and catchment area  64 

(Major et al., 2006; Rostek and Bard, 2013; Soulet at al., 2013) and the nearby Carpathian region. The 65 

distance between Lake St Anne and the Black Sea is c. 300 km and the weather systems of the two 66 

areas are strongly connected to each other.Therefore, it is reasonable to assume that climatic 67 

changes recorded in the Black Sea sediments, i.e. the 19,000 cal yr BP temperature increase, or the 68 

presence of Sphagnum derived alkenones from ca. 17,000 cal yr BP likely denote important 69 

boundaries when major ecosystem responses are also expected in the Carpathians.  For example, a 70 

recent lipid biomarker study on marine sediments from the NW Black Sea basin concluded that 71 

permafrost melt and peatland development in the North European and Russian Plains were initiated 72 



directly after the final retreat of the Scandinavian Ice sheet from the Russian Plain, already during 73 

Heinrich stadial 1 (~17,000 cal yr BP) (Rostek and Bard, 2013). At the same time, the Sofular cave 74 

(south of Black Sea) 13C record suggests significant regional moisture increase (Göktürk et al., 2011). 75 

These changes show up in both records just as prominently as the onset of the late glacial interstadial 76 

(GI-1e; Blockley et al., 2012).  An interesting question is thus how the terrestrial ecosystem in the 77 

Carpathian area has reacted to Scandinavian ice melt and how the Black Sea hydrological change 78 

influenced the climate system in the Carpathians, if at all. Can we detect vegetation change in the 79 

Carpathian Mountains connectable to moisture availability increase in this period? Another 80 

provoking feature of the East and Central European lowlands during the LGM is the presence of a 81 

clear latitudinal decrease in available moisture that resulted in a well-developed zonation ranging 82 

from tundra and boreal forest in the north to steppe to semi-desert to the south, over the Russian 83 

Plain (Markova et al., 2009). A similar picture is now emerging in the lowlands of East-Central Europe, 84 

west and south of the Romanian Carpathians (Feurdean et al., 2014). With its latitude 46°7′35″N and 85 

altitude 946 m above sea level (a.s.l.), Lake St Anne lies in the boreal forest steppe zone of the LGM 86 

vegetation reconstructions, so we expect a considerable input of regional pollen from this vegetation 87 

unit. A straightforward question is thus how the mid-elevation (around 1000 m a.s.l.) mountain 88 

pollen assemblages differ from the lowlands at similar latitudes especially given that during the 89 

Holocene, the Carpathians acted as an orographic barrier for regional hydroclimate influences 90 

(Drăguşin et al., 2014). It is therefore interesting to test whether changes could be identified in 91 

vegetation and climate patterns in the region following the inferred latitudinal displacement of the 92 

atmospheric circulation patterns in Europe in pace with the millennial-scale climate change events 93 

(Moreno et al., 2011). On the other hand, climate model simulations (Renssen and Isarin, 2001; 94 

Strandberg et al., 2011; Huntley et al., 2013), and niche modelling studies (Svenning et al., 2008) 95 

suggest considerably lower amplitude summer and winter temperature fluctuation during GS-2.1 in 96 

East-Central Europe than in Western Europe, with annual temperature decreasing by ~9 oC (Varsányi 97 

et al., 2011) and precipitation by maximum 60% relative to modern values (Heyman et al., 2013). 98 

Therefore the conditions were potentially much favourable for the survival of temperate floristic 99 

elements at latitudes >45o N in East-Central Europe compared to Western Europe. Although the 100 

question of cryptic northern  temperate tree refugia is still hotly debated and sometimes rejected 101 

(Willis et al., 2000; Stewart and Lister, 2001; Willis and van Andel, 2004; Provan and Bennet, 2008; 102 

Tzedakis et al., 2013; Huntley at al., 2013; Feurdean et al., 2013b), an increasing number of 103 

phylogeographical studies on temperate animal species supports northerly refugia in the Carpathian 104 

Mountains and likely also on the surrounding lowlands drained by several large river valleys 105 

(summarized in Schmitt and Varga, 2012). In this study we use the term cryptic refugia for temperate 106 

plant species that likely occurred at mid-elevations in the Carpathian Mountains. If present, their 107 



small populations were likely situated north of the species main glacial distribution range (Provan 108 

and Bennett, 2008). New paleoevegetation and paleoenvironmental data from this under-109 

investigated area can thus provide important insights into these scientific issues. Here we attempt 110 

answering these questions through a multi-proxy study of a new sediment sequence from Lake St 111 

Anne in the East Carpathian Mountains, Romania (Figure 1). This paper contributes to the aims of 112 

INTIMATE (INTegrating Ice core, MArine, and TErrestrial records) by providing a new, high resolution 113 

vegetation record for the LGM and subsequent deglaciation from a seriously underinvestigated area. 114 

This data is important for climate modelers within the INTIMATE community to test the performance 115 

of climate models and thereby reduce the uncertainty of future predictions (Renssen and Osborn, 116 

2003; Jost et al., 2005). 117 

2. Glacial environments in the Romanian Carpathians  118 

Compared to the Alps, mountain glaciation in the Carpathian Mountains was less extensive. In the 119 

Romanian Carpathians development of glaciers was confined to massifs exceeding 1600 m elevation. 120 

Recent glacial geomorphological studies suggest that maximum glacier extent pre-dated the LGM 121 

(Urdea, 2004; Urdea et al., 2011). Apparently, the glacial equilibrium line altitude (ELA, broadly 122 

equals the snowline) was lower in the north (~1500 m) than in the south (1700-1800 m), and a 123 

secondary W-E trend was also identified, with lower altitude ELA in the west suggesting more 124 

precipitation in the western side of the E Carpathians where Lake St Anne lies (Figure 1). Indeed, 125 

geomorphological investigations suggest a predominantly westward air mass circulation during the 126 

last glaciation in the Romanian Carpathians (Mîndrescu et al., 2010). Exposure ages from the Retezat 127 

and Parang Mts suggest that glacial advance in these mountain chains post-dated the LGM and 128 

occurred at 16,800 ± 1800 and 17,900 ± 1600 cal yr BP. Notable is the coincidence of these glacier 129 

advances with the final melting of the Scandinavian Ice sheet in the Russian Plain that resulted in 130 

increased water discharge to the Black Sea (Soulet et al., 2013) and likely contributed to intensified 131 

vapour circulation and precipitation in the Carpathians during the second part of Heinrich stadial 1, 132 

at ca. 17,000 cal yr BP. Maximum permafrost extension coincided with maximum northern ice sheet 133 

extent, permafrost reached as far south as 47°N with discontinuous permafrost down to 45o N 134 

(Vanderberghe et al., 2012; Fábián et al., 2013). In the Harghita Mts periglacial landforms and 135 

permafrost features are well-known (Naum and Butnaru, 1989), but in the area of Lake St Anne no 136 

glaciers were developed.  137 

3. Study site 138 

Lake St Anne (Lacul Sfânta Ana; Szent-Anna tó; 946 m a.s.l.; 46° 07′ 35″ N, 25° 53′ 17″ E) is situated in 139 

the Ciomadul Massif of the Harghita Mts (Figure 1). This area hosts the youngest eruptive volcanic 140 



activity in East-Central Europe. Radiometric dating of the youngest tephra suggests that the St Anne 141 

(Sfânta Ana) crater was likely formed during late MIS3, sometimes between 26,000-33,000 cal yr BP 142 

(Harangi et al., 2010; Karátson et al., 2013). The Ciomadul volcano is a dacitic lava dome complex 143 

consisting of a central edifice truncated by the twin craters of Lake St Anne and Mohoş, and 144 

surrounded by a number of individual lava domes, as well as a narrow volcaniclastic ring plain (Figure 145 

1). The mid-elevation hills (700-900 m, highest peak 1301 m a.s.l.) rise above the Lower Ciuc Basin 146 

(700 m a.s.l.), which is located to the north (Figure 1b). Post-volcanic activity is present in the form of 147 

CO2 degassing and mofettas (Szakács et al., 2002); degassing shows varying intensity in the St Anne 148 

crater. Geologically the volcano is considered to be still active (Popa et al., 2011), which is unique in 149 

East-Central Europe.  150 

The crater lake has been formed between dacitic lava dome as well as pyroclastic rocks, both being 151 

poor in calcium. The predominant soil type is acidic, non-podzolic, brown earth at heights of below 152 

900 m a.s.l., while andosols (dark soils with high organic content and traces of podsolization) are 153 

generally formed above this height on young volcanic rocks (Jakab et al., 2005; Jakab, 2011). 154 

The area of the lake is ~ 189900 m2; maximum water depth is ~6 m, mean depth is ~3.1 m, mean 155 

width is ~310 m (Pandi, 2008). The lake water is neutral (summer) to acidic (winter); pH is between 4 156 

and 7.3; summer pH has increased considerably in recent years due to human impact (Pál 2001; 157 

Magyari et al., 2009). Today the crater slope is covered by mixed Fagus sylvatica and Picea abies 158 

forest; the latter species is more abundant on shaded locations and on the lake shore.  Carpinus 159 

betulus, Betula pendula, Salix caprea Salix cinerea, Acer platanoides, and Pinus sylvestris appear as 160 

admixtures in the crater slope forest. In the shallow NE corner of the lake a floating fen develops (Pál, 161 

2000). Its main constituents are Carex rostrata, C. lasiocarpa, Sphagnum angustifolium and 162 

Lysimachia thyrsiflora.  A typical feature of the crater and also the nearby Olt river valley is the 163 

phenomenon of thermal inversion, which results in reversed order vegetation zonation; deciduous 164 

forests on higher slopes are often underlain by Picea abies forests in the river valleys and in closed 165 

basins. The area belongs to the East Carpathian floristic province that abounds in alpine endemic and 166 

relict plants (~200 species). In the Transylvanian Basin and in the piedmont area the potential 167 

vegetation is oak forest up to 700 m, which is however fragmented due to historic deforestation. Oak 168 

forests are mainly replaced by hay meadows, pastures and crop fields. Beech forest grows between 169 

700-1100 m, and spruce forest above 1100 m. 170 

The climate is temperate continental. Annual mean temperature at the elevation of the crater is 6-7 171 

oC; January means range between -5 to -6 oC. The warmest month is July, with mean temperature 172 

~15 oC.  Annual precipitation is 800 mm. Prevailing winds come from the west and north-west, with a 173 



frequency above 50% (Diaconu and Mailat, 2010).  174 

Lake St Anne is a medium sized lake meaning that approximately ~50 % of its incoming pollen rain is 175 

of regional source, while local and extra-local pollen make up the other ~50% (Sugita, 2007). Note 176 

however that the pollen source area of the lake likely varied considerably through time, especially 177 

between forested periods (Holocene) and periods when the surroundings of the lake were not 178 

forested (LGM, for example). In unforested periods the pollen source area was likely much larger.  179 

Materials and methods 180 

3.1. Drilling 181 

The sediment of Lake Saint Anne was sampled during the winter of 2010 using a 7-cm-diameter 182 

Livingstone piston corer with a chamber length of 200 cm (core SZA-2010). The borehole was cased 183 

down to 1200 cm depth.  At this core location, drilling started at 600 cm water depth and reached 184 

1700 cm (including water-depth). The basal sediment was claysilt with dropstones. The 2010 core 185 

used in this study has not reached the bottom of the lake sedimentary succession wrapping the 186 

volcanic rocks. We returned to the site in 2013 and obtained a new core (core SZA-2013) that 187 

reached the bottom of the lake sediment at approximately 2100 cm; under this depth pumice gravel 188 

alternates with sandy silt down to 2300 cm, followed by coarse pumice gravel. 189 

3.2. Radiocarbon dating 190 

Radiocarbon dating was the main method used to establish an age-depth model for the sediment 191 

sequence SZA-2010. Material for radiocarbon dating was selected from 10 horizons, and comprises 192 

plant macrofossils and charcoal down to 1127 cm sediment depth. Below 1340 cm Cladocera eggs 193 

and chironomid head capsules were also used for dating since either no, or very few terrestrial 194 

macrofossils were found. All samples were pretreated according to Rethemeyer et al. (2013), but 195 

using shorter treatment times with acid and alkali to avoid loss of the very small plant fragments, and 196 

samples were graphitized at Cologne University. The graphite targets were measured by accelerator 197 

mass spectrometry (AMS) at ETH in Zurich, Switzerland (Table 1). The radiocarbon ages of all samples 198 

were converted into calendar ages reported in years before present (cal yr BP) using the INTCAL13 199 

calibration curve (Reimer et al., 2013). 200 

3.3. Physical and chemical proxies 201 

The analytical work presented here focuses on the 950-1700 cm sediment section of core SZA-2010, 202 

which comprises the LGM, late glacial and early Holocene. Individual core segments were split into 203 

two halves in the laboratory. Subsequently, one core half was photographed, described, and used for 204 



MSCL core logger derived magnetic susceptibility at 5-mm resolution, and high-resolution X-ray 205 

fluorescence (XRF) scanning. The XRF scanner (ITRAX core scanner; COX Ltd., Sweden) was equipped 206 

with a Cr-tube set to 30 kV and 30 mA, and a Si-drift chamber detector (Croudace et al., 2006). XRF 207 

scanning was performed at a resolution of 2 mm and an analysis time of 20 s per measurement. The 208 

obtained count rates for individual elements can be used as semi-quantitative estimates of their 209 

relative concentrations. Only a selection of elemental data from the XRF scanning is presented here. 210 

The other core half was continuously cut at 1 cm intervals and stored in self-sealing bags. For grain-211 

size analysis, 20 raw sediment samples with a dry weight of 1 g each were selected at 20 cm intervals 212 

between 1100-1700 cm. Grain-size analysis on the clastic fraction was carried out after removing the 213 

>630 m fraction by sieving and using a Micromeritics Saturn DigiSizer 5200 laser particle analyser. 214 

The volume percentages (vol %) of the individual grain-size fractions were calculated from the 215 

average values of 3 runs. 216 

 217 

3.4. Biological proxies 218 

Pollen analysis was carried out on 107 samples taken at 2-8 cm intervals. 2 cm3 wet sediment was 219 

treated with HCl, NaOH, HF and acetolysis and sieved between the 180 and 10 micron fractions 220 

(Bennett and Willis, 2001). Identification of pollen and other palynomorphs was performed with 221 

relevant keys and atlases (Moore et al., 1992; Reille, 1995, 1998, 1999; Beug, 2004). The relative 222 

percentages of pollen taxa and non-pollen palynomorphs (NPP) are based upon the sum of terrestrial 223 

pollen (excluding aquatics, spores and algae). A minimum of 500 pollen grains were counted per 224 

sample (except for two samples, where 350 terrestrial pollen were counted due to low pollen 225 

concentration). Pollen accumulation rates (PAR) were calculated using the pollen concentrations that 226 

were divided by the sediment deposition times inferred by the linear age-depth model. PAR was used 227 

to infer past plant population size changes (Seppä and Hicks, 2006). Microcharcoal was counted on 228 

the pollen slides. All particles > 10 micron were enumerated, and the results were expressed as 229 

microcharcoal accumulation rates in addition to pollen accumulation rates. For the reconstruction of 230 

major vegetation types pollen taxa were grouped into ecological types following the protocol of 231 

Feurdean et al. (2014). The 6 main plant types were: coniferous, cold deciduous trees, temperate 232 

deciduous taxa, warm temperate taxa, warm /dry steppe, and other grassland and dry shrubland 233 

(Supplementary Table 1).  234 

The presence of plant macrofossils was first tested in several large volume sediment samples, of 235 

which twelve were studied in detail. These 15 cm3 sediment samples were soaked in 10% NaOH for 236 



30 minutes, heated at 70 oC and subsequently sieved through a 250 m mesh. In these samples 237 

macrocharcoal and identifiable plant macrofossils were tallied. 238 

3.5. Data analysis 239 

Local pollen assemblage zones were defined using stratigraphically constrained cluster analysis 240 

(CONISS; Birks and Gordon, 1985) as implemented in the program Psimpoll 3.00 (Bennett, 2007). The 241 

analysis was performed using all terrestrial taxa (excluding ferns) that reached 5% at least in one 242 

sample, following re-calculation of the dataset to proportions. Rarefraction analysis was used to infer 243 

changes in palynological diversity or richness using the software Psimpoll 3.00 (Bennett, 2007). 244 

Ordination analysis was carried out on the pollen data to facilitate interpretation of the vegetation 245 

shifts. To estimate the linearity of the latent gradients in the data, detrended correspondence 246 

analysis (DCA) was carried out. The longest DCA axis gradient length was <2.0 standard deviation 247 

units, and thus the linear ordination method (principal component analysis, PCA) was chosen 248 

(Legendre and Birks, 2012). PCA was performed on the covariance matrix following square-root-249 

transformation of the percentages pollen data. Only terrestrial taxa with values exceeding 5% at least 250 

in one sample were included in this analysis.  251 

Detrended canonical correspondence analysis (DCCA) was used to determine the amount of 252 

palynological change along time (turnover) that is a reliable statistical tool to estimate changes in 253 

floristic composition within a landscape (Birks and Birks, 2008). This analysis uses age as the external 254 

constraint (Birks, 2007). An age–depth file is uploaded as environmental data. Results were scaled in 255 

SD units (units of species standard deviations), and changes in pollen composition for the LGM, late 256 

glacial and early Holocene were estimated by looking at the range of sample scores on the first, time-257 

constrained DCCA axis, where each value represents a position of a pollen sample relative to the 258 

entire gradient scale. Thus, larger variation in the sample scores within a sequence implies greater 259 

compositional changes. Ordinations were performed with Canoco 5. 260 

4. Results 261 

 262 

4.1. Age-depth models 263 

Table 1 lists all radiocarbon dates obtained from core SZA-2010. Generally, but particularly in the 264 

lowermost 2 samples, the sample dry weights were very small (1-5 mg) resulting in relatively low 265 

amounts of carbon (90-180 µg) available for graphitization. In addition, all radiocarbon dates below 266 

1340 cm were measured partly on aquatic remains, which may include reservoir effect. Given the 267 

volcanic origin of the lake and the varying intensity of CO2 upwelling that might bring old carbon into 268 



the water column, we may expect an ageing effect in the results below 1340 cm. Taking these 269 

potential problems into account, the results are reassuring in that they show only one age reversal at 270 

1091-1092 cm. This sample yielded an older age (15,400±44 yr BP) than the one below and above it 271 

(14,038±38, 14,541±67 years BP). Facing these facts, we used two different methods to examine age-272 

depth relationship in the core. As shown in Figure 2a, the Bayesian method (Blaauw, 2013) identifies 273 

one outlier and suggests fast and nearly linear sediment accumulation between 1700 and 1072 cm 274 

(26,400 - 16,100 cal yr BP, deposition time: 12-44 yr cm-1), followed by much slower sediment 275 

accumulation above, that is again close to linear until 980 cm (16,100 - 7200 cal yr BP; deposition 276 

time: 70-124 yr cm-1). In an alternative age-depth model we used linear interpolation (Figure 2b) and 277 

excluded two radiocarbon dates on the basis of the pollen stratigraphy and XRF data (1073 cm: 278 

14038±38 yr BP, 1092 cm: 15400±44 yr BP). Both records suggested that these post LGM radiocarbon 279 

dates that were measured on terrestrial sediment components are probably too old. The Bayesian 280 

model (which takes into account all dates) suggest the first increase in Pinus pollen at 17,000 cal yr 281 

BP and a rapid decreases in Ti and Al counts even earlier, at 17,500 cal yr BP. Although we cannot 282 

exclude that these warming indicator events took place as early as Heinrich stadial 1 (GS-2.1a in 283 

NGRIP, Rasmussen et al., 2014), we can also assume the presence of re-deposited old carbon in these 284 

samples, which were deposited at the time of active melting on the crater slope and during major 285 

ecosystem-reorganisation. The linear model differs from the Bayesian model between 12,000 and 286 

18,000 cal yr BP; in this period the linear model shows younger ages. Particularly, the timing of 287 

xerophytic steppe increase (mainly Artemisia and Chenopodim-type) agrees better with the timing of 288 

the Younger Dryas stadial (GS-1) in the NGRIP record (Figure 3). For these reasons, we chose the 289 

linear age-depth model and present our results along this timescale. 290 

4.2. Sediment stratigraphy, grain size, magnetic susceptibility, selected XRF data, LOI 291 

Figure 3, Supplementary Table 2 and Supplementary Figure 2 show the major physical and chemical 292 

characteristics and lithostratigraphy of core SZA-2010. Based on the sediment stratigraphy, the core 293 

is characterised by coarse peaty gyttja (Unit I) with very high organic content (>80%) between 950-294 

977 cm, followed by clayey silty gyttja down to 1036 cm (Unit II; LOI: 30-80%). Silt becomes the 295 

dominant sediment component in the late glacial (Unit 3; 1036-1100 cm) that is separated by the 296 

LGM silt rich sediments by its more yellowish colour and by the absence of distinct pumice gravel 297 

layers (LOI: 5-30%). The yellowish colour of this sediment unit is likely attributable to Fe(III) 298 

compounds, while black mottling may represent FeS precipitation. The LGM section of the core (Unit 299 

IV) shows frequent alternation among dark and light grey and occasionally laminated silt rich 300 

sediments with very low organic content (2-5%). Vivianite precipitates (large patches) are abundant 301 

between 1582-1617 cm suggesting reducing conditions in the top sediment layer, phosphorous 302 



availability (likely from decaying organic matter) and abundant ferrous ions in the sediment 303 

(Manning et al., 1991). Dropstones (pumice gravels) with sizes 5-40 mm appear frequently in 304 

sediments below 1090 cm. Some layers in unit IV resemble turbidites with dark coloured bottom 305 

horizon overlain by coarser, sand-rich sediment gradually grading into silt-rich lighter coloured 306 

sediment. Since these turbidite-like strata are thin and infrequent, often miss grain-size grading, and 307 

do not show different pollen, chemical composition and organic content, we have not cut them out 308 

from the sediment stratigraphy.  309 

Magnetic susceptibility (MS) readings are characterised by high and fluctuating values between 1300-310 

1700 cm (20,140-26,850 cal yr BP) suggesting variations in the abundance of magnetic minerals and 311 

rapid changes in sediment environmental magnetic characteristics until ca. 20,140 cal yr BP. This is 312 

followed by a stepwise decrease in MS, and gradually decreasing values were recorded towards the 313 

top of the sequence. Notable is that the MS record does not show a strong correlation with the Fe 314 

record suggesting that concentration changes of Fe do not explain changes in MS. MS fluctuation 315 

therefore likely correlate with changes in the composition of the allochtonous sediment components, 316 

overprinted by syn- and postsedimentary redox changes as suggested by the presence of vivianite in 317 

the sediment. Preliminary rock-magnetic results suggest that the main magnetic carrier is magnetite, 318 

and only some of the sharp increases in MS values reflect the presence of hematite. Furthermore, 319 

low MS values usually characterise sediment with high water and organic matter contents, indicating 320 

that dilution effects in highly organic sediments substantially influence MS readings. 321 

Titanium, an element indicative of detrital input into the basin (Kylander et al., 2011)  shows high 322 

values in the LGM and late glacial part of the sequence; the first decline is detected at 1100 cm 323 

(16,150 cal yr BP) followed by declining and fluctuating values during the late glacial. The final 324 

decrease in these clastic-associated elements occurs at 1035 cm (12,460 cal yr BP).    325 

In the GS-3 and GS-2 part of the sequence, between 1700 and 1094 cm (26,850-15,810 cal yr BP), 326 

loss-on-ignition inferred organic contents are very low, below 5% (av. 4%). This is followed by gradual 327 

increase to 12% at 1080 cm (15,040 cal yr BP). At this depth/time a step-wise increase is detected in 328 

LOI; values increase from 12% to 32% between 1080 and 1051 cm (15,040-13,430 cal yr BP). The 329 

highest value is 36% at 1067 cm (14,320 cal yr BP). This is followed by a short decrease in LOI 330 

between 1051 and 1037 cm (13,430-12,650 cal yr BP). In the same period Al and Ti values increase, 331 

while AP decrease. This short reversal in LOI is followed by steep increase from 1037 cm; organic 332 

contents increase to c. 80% by 1011 cm (10,150 cal yr BP) and such high values characterise the 333 

sediment up to 950 cm. 334 



Overall, the comparison of the MS, LOI and XRF records (Figure 3) suggests that the sediment section 335 

between 1051 and 1031 cm likely corresponds with the GS-1 climatic reversal (Rasmussen et al., 336 

2014). The linear age-depth model places this interval between 13,430 and 12,650 cal yr BP that is 337 

~530 years earlier than the same period in the NGRIP event stratigraphy, between 12,896-11,703 cal 338 

yr BP (Blockley et al., 2012). This suggests that the linear age-depth model is likely biased in the 339 

lateglacial sediment section.   340 

 341 

4.3. Pollen, algae, non-pollen palynomorphs (NPP) and microcharcoal 342 

Percentage and accumulation rates of selected pollen and spore types are displayed in Figures 4, 5, 6 343 

and Supplementary Figure 3; the main characteristics of each pollen assemblage zones as defined by 344 

CONISS are discussed in Table 2. Zones SZA 1-4 represent the LGM and late glacial, while SZA-5 and 345 

SZA-6 date to the Holocene; their pollen and plant macrofossil composition were discussed in 346 

Magyari et al. (2006, 2009). Inferred terrestrial and aquatic vegetation changes are also discussed in 347 

Table 2; of these changes climatically and ecologically the most important are the following. 348 

Dry/cold continental steppe herbs, such as Artemisia and Chenopodium-type are the most abundant 349 

in SZA-1 (26,350-22,870 cal yr BP) and SZA-3 (19,150-14,600 cal yr BP) pointing to the expansion of 350 

xerophytic steppe against grass steppes in these periods. Maximum development of xerophytic 351 

steppes dates between 1230-1033 cm (19,150-12,300 cal yr BP) on the basis of the pollen influx 352 

values.  353 

Palynological richness, which is a measure of past regional vegetation diversity, displays the highest 354 

values within the LGM, in zone SZA-2, with peak values between 20,000-22,000 cal yr BP. This 355 

diversity is mainly attributable to increased diversity of arctic/alpine herbs (Figure 4, Table 2). 356 

Pinus, Juniperus and Poaceae are the most abundant pollen types in the LGM pollen zones (SZA-1 to 357 

SZA-3). Arboreal pollen percentages are relatively high (av. 45%) in this period.  358 

Thalictrum shows two prominent percentage peaks at 1526 and 1243 cm (23,350 and 19,320 cal yr 359 

BP); both precede important changes in the terrestrial pollen composition indicated by pollen zone 360 

boundaries between SZA-1-2 and SZA-2-3 (Figure 4). Although species-level identification in light 361 

microscope is not possible within this genus; the modern distribution of Thalictrum species in the 362 

Carpathian region suggests that the most eurithermic, widespread and wet ground species is 363 

Thalictrum lucidum that is a typical element of waterside tall forb communities. Its increased 364 

representation therefore likely indicates changes in the water level or permafrost conditions. 365 



The pollen accumulation rate (PAR) diagram is presented (Figure 6) to examine changes in terrestrial 366 

vegetation cover during the LGM, late glacial and Holocene. Provided that our timescales 367 

approximate changes in past sediment accumulation rates well, PAR values should be indicative of 368 

past population size and/or pollen productivity changes of terrestrial plants (Seppä and Hicks, 2006). 369 

Generally, PAR values are the lowest in SZA-1 suggesting low overall vegetation cover; relatively high 370 

Poaceae PARs suggest that grass-steppes likely reached their largest coverage during SZA-2; while 371 

increased Artemisia and Chenopodium-type PARs suggest that a major increase in xerophytic steppe, 372 

semi-desert cover appeared in SZA-3 and SZA-4. This was followed by Pinus, Betula and Picea PAR 373 

increases in SZA-4 suggesting increasing population sizes of boreal forest trees during the late glacial. 374 

Total terrestrial pollen accumulation rates (Figure 4) furthermore suggest that pollen productivity 375 

and in connection with this likely overall vegetation cover in the vicinity of Lake St Anne was very low 376 

between 26,350 and 13,300 cal yr BP and increased rapidly afterwards.  377 

Strongly fluctuating PAR values in the late glacial and early Holocene pollen assemblage zones (SZA-4 378 

to SZA-6) suggest that sediment accumulation rates are likely much more variable than we see in the 379 

age-depth model. This is indicated by common PAR peaks in case of all taxa, e.g. at 1010, 1040, 1073 380 

cm depth. 381 

Microcharcoal accumulation rates varied strongly in the sequence. Most notable is the increase in 382 

SZA-2 and SZA-4 suggesting increased regional fire activity in both periods. 383 

4.4. Plant macrofossils 384 

Table 3 lists terrestrial plant species and some mosses identified in the GS-2, GI-1 and GS-1 sections 385 

of core SZA-2010 on the basis of studying twelve large volume samples (15 cm3 each). High-386 

resolution plant macrofossil analysis of the late glacial section of this core is underway, and the 387 

results of this analysis will be published in a separate paper.  As mentioned in the radiocarbon dating 388 

section, the GS-3 and most GS-2 section of the core was devoid of terrestrial plant macrofossils 389 

suggesting sparsely vegetated crater slope in this period. Wood macrocharcoals were however 390 

sporadically detected in three samples between 20,830-21,930 cal yr BP (1352, 1375, 1430 cm) 391 

suggesting that trees or shrubs were likely ocassionally sporadically present in the crater in this 392 

period of the LGM. Tree/shrub wood macrocharcoal remains and plant macrofossils were 393 

continuously detected in the sediment from ~15,700 cal yr BP (1092 cm) suggesting the expansion of 394 

trees and shrubs on the crater slope from this time onwards. Betula nana and B. pubescens were first 395 

recorded at 15,150 cal yr BP, followed by recoveries of Pinus sylvestris needles at 14,700 cal yr BP, 396 

i.e. directly at the onset of the lateglacial interstadial, when Pinus pollen accumulation rates also 397 

increased rapidly (Figure 6). In addition, Larix decidua needles were recently found in in the late 398 



glacial section of the SZA-2013 core of Lake St Anne at 1041 cm (~12,870 cal yr BP) overall suggesting 399 

that following an initial shrub and forest tundra phase characterised by Betula pubescens and B. nana 400 

around 15,700-15,100 cal yr BP, boreal forest elements expanded on the carter slope during the late 401 

glacial.   402 

4.5. PCA, biome reconstruction and pollen compositional change analyses 403 

The PCA biplot (Figure 7) separates clearly the Holocene pollen assemblages from the glacial 404 

assemblages along axis 1. Samples with high positive values along this axis are associated with 405 

temperate deciduous trees and Picea abies.  The largest compositional change in the pollen spectra 406 

appears at ca. 11,600 cal yr BP (between 1027-1023 cm). Axis 2 separates GS-3, GS-2 and GI-1 (late 407 

glacial) pollen assemblages; negative values along this axis are associated with Poaceae, Juniperus, 408 

Cyperaceae, Caryophyllaceae and Thalictrum, while positive values with Pinus, Betula and Artemisia. 409 

The stratigraphic plot of Axis 2 sample scores suggest that the second largest compositional change is 410 

the pollen assemblages is at ~16,300 cal yr BP (between 1103-1107 cm).  411 

The cumulative plot of plant types on Figure 3 shows that grassland and dry shrubland were the most 412 

abundant during the LGM, conifer trees representing mainly eurithermic pine forests also attained 413 

relatively high percentages (up to 60%); this plant type is however likely overrepresented due to low 414 

overall pollen accumulation rates and high pollen production of Pinus. Pollen compositional change 415 

(DCCA axis 1) is displayed on Figure 8. This curve indicates rapid compositional change at 23,000 and 416 

21,000 cal yr BP, but otherwise the LGM pollen assemblages are rather stable. Similarly to the PCA 417 

results, pollen compositional change increase at 16,300, 14,700 and 12,700 cal yr BP. The largest 418 

compositional turnover (1.2 SD units) is between 12,700 and 11,000 cal yr BP. 419 

5. Discussion  420 

5.1. Physical environment during the LGM and last deglaciation 421 

The frequent occurrence of coarse sand and gravel in the GS-3 and GS-2.1c sediment section of Lake 422 

St Anne can best be explained by ice floe transport and is thus interpreted as ice rafted debris (IRD) 423 

that in turn imply much longer ice-cover on the lake and unstable/sparsely vegetated crater slopes. 424 

IRD accumulation stops at 16,100 cal yr BP (Figures 3 and 8, Supplementary Table 2) suggesting that 425 

the crater slopes started to stabilize at this time and winter ice cover likely became shorter. 426 

Frequent and abrupt fluctuation in Fe can reflect several different processes (redox changes, 427 

alternating input of terrigenous material, soil changes); Fe compounds furthermore can move in the 428 

sediment pore water, making the interpretation of the Fe peaks difficult. In order to disentangle 429 

these processes, we plotted Fe on the sediment photo for a short LG section of the core, where the 430 



most abrupt changes in Fe were found (Supplementary Figure 1). It is apparent that Fe shows 431 

increases either before or after major changes in sediment composition suggesting that post-432 

depositional iron mobilisation is a likely cause of the iron increases during the late glacial and early 433 

Holocene. The dark humic horizons of turbidites also show Fe peaks occasionally in the LGM 434 

sediment layers, suggesting terrestrial inwash likely in association with FeS formation during highly 435 

reducing conditions (Kylander et al., 2011). Overall, the Fe and Fe/Ti curves suggest that the most 436 

frequent redox changes occurred during the late glacial likely in association with abrupt lake-level 437 

changes in this period. Low organic content associated with relatively high Si/Ti (an indirect measure 438 

of biogenic silica production and aeolian quartz; Liu et al., 2013) and Fe/Ti values during the LGM 439 

furthermore suggest that the lake was iron-rich, well-oxygenated and the generally low in-lake 440 

productivity was likely accompanied by relatively high aeolian silt input and/or increased diatom 441 

productivity until 20,000 cal yr BP, followed by strong fluctuation likely reflecting changes in diatom 442 

productivity (Figure 3). The lake internal plysicochemical environment (ie. oxygenated water bottom) 443 

likely facilitated the decomposition of organic matter during the LGM (e.g., Veres et al., 2009).  444 

High and strongly fluctuating MS values during the LGM likely reflect the interplay between lake-445 

internal chemical processes and aeolian input into the basin, and at varying intensity. Since the MS 446 

curve, a measure of the magnetic mineral concentration into the sediment, does not show strong 447 

correlation with the Fe and Fe/Ti ratio curves, and with the typically clastic element readings (e.g. Ti), 448 

we infer that an aeolian imprint is the most likely interpretation of the MS record over the LGM. 449 

Aeolian deposits (typical loess and loess-derived sediments) cover the lowlands surrounding the 450 

Ciomadul volcano, in places with deposits several meters thick. Grain-size analyses indicate that over 451 

this interval silt is the dominant particle size in Lake St Anne sedimentary sequence (Supplementary 452 

Figure 2); we thus infer intensive aeolian activity in the East Carpathians between 26,000-20,200 cal 453 

yr BP. Extremely high accumulation rates for aeolian deposits during this time interval have recently 454 

been inferred in a study of loess deposits, south of the Carpathians (Fitzsimmons and Hambach, 455 

2014), corroborating our findings. Our data shows also good correspondence with the accumulation 456 

of thick loess deposits during the LGM in several lowland areas south, west and east of the Romanian 457 

Carpathians (Markovid et al., 2008; Újvári et al., 2010; Novothny et al., 2011; Stevens et al., 2011). 458 

Several periods of likely diminished aeolian input are also noticeable; the most conspicuous minima 459 

are between 22,000-21,000 and 23,500-23,000 cal yr BP (Figure 8). The first corresponds with 460 

increased arboreal pollen (AP%) suggesting increased regional woody cover at that time, while the 461 

second does not show concurrent arboreal pollen increase; Pinus pollen frequencies increase only 462 

after the low MS interval (Figure 8). However the 23,500-23,000 cal yr BP low MS interval is 463 

coincident with Greenland interstadias GI-2.1 and GI-2.2 (Rasmussen et al., 2014).  464 



 465 

The XRF data suggest that clastic input into the lake decreased in several steps from ca. 16,500 cal yr 466 

BP (Figure 3). Although the timescale of the late glacial sediment section is ambiguous, major 467 

decrease in clastic input, as indicated by the Ti counts, occurred at  ~16,200, 14,700, 12,500 cal yr BP. 468 

The timing of these decreases agrees well with the timing of significant and stepwise AP increases 469 

(mainly attributable to Pinus in the first two cases), the timing of major pollen compositional 470 

changes, organic content increases and changes in the green algae community of the lake (Figures 4, 471 

5 and 8). The S and Ca peak between 16,200-15,000 cal yr BP coincides with the first phase of clastic 472 

input decrease and likely denotes a phase with intensive organic production, decomposition and 473 

accumulation of Ca and S compounds under fluctuating redox conditions at the core location. 474 

Increasing nutrient availability in the lake and rapidly changing environmental conditions are also 475 

corroborated by the green algae record (Pediastrum, Scenedesmus increases, Figure 5). The onset of 476 

the late glacial interstadial (GI-1e, around 14,700 cal yr BP) is well-marked in the element and LOI 477 

records. It shows a large increase in organic content, decreases in S and Ca that together with the 478 

sudden disappearance of green algae reflect warming, terrestrial productivity increase, lake level 479 

decrease and catchment soil stabilization.  These proxy data suggest that the rapid warming at the 480 

onset of the late glacial interstadial (GI-1e) led to the seasonal desiccation of the lake at the core 481 

location, followed by water level increase at ca 13,200 cal yr BP when green algae re-appeared. 482 

Clastic input increased once again during GS-1, when Ti increased, organic content decreased. The 483 

timing of this event however precedes GS-1 in Greenland (Blockley et al., 2012), as we discussed in 484 

the chronology section, this is likely due to the bias of the age-depth model. The LOI and XRF data 485 

suggest that organic production increased steeply during the early Holocene, and the lake 486 

transformed into a peatbog with >90% organic accumulation (Magyari et al., 2009)  487 

 488 

5.2. Pollen and plant macrofossil inferred vegetation changes and regional fire history 489 

Our centennial-resolution pollen record shows three distinct vegetation phases within the last glacial 490 

maximum (26,000 – 19,000 cal yr BP; Clark et al., 2009) and clear vegetation responses to two short-491 

term climatic fluctuations within this period (GI-2.1 and GI-2.2; Figure 8). 492 

Qualitative and quantitative assessment (Figures 4 and 6) of the LGM pollen spectra from Lake St 493 

Anne suggests that between c. 26,350-22,870 cal yr BP the regional vegetation was composed of 494 

boreal  forest steppe vegetation mainly with Pinus and Larix, Juniperus shrubs, grass steppes, 495 

shrubby tundra and steppe-tundra. A comparison with surface pollen samples from South Siberia 496 

suggested that the LGM ecosystems showed only weak similarity with the modern continental 497 



hemiboreal and taiga forests and forest steppes of South Siberia (Magyari et al., 2014). This 498 

comparison furthermore showed that despite the relatively high AP values (av. 42%), if statistically 499 

significant analogue vegetation was found, it was dry steppe and wet/mesic grassland (Magyari et al., 500 

2014). Thus we infer that arboreal pollen percentages overestimate the actual share of trees in the 501 

LGM vegetation, explained by the large pollen production of pines (mainly Pinus sylvestris) (Seppä 502 

and Hicks, 2006). Another important woody component of the LGM flora was Juniperus (8-20%). This 503 

shrub is a common constituent of the LGM pollen assemblages in Europe (Tzedakis, 1999; Digerfeldt 504 

et al., 2000; Fletcher et al., 2010), but particularly high values are attained in some alpine GS-2.1a 505 

and late glacial (GI-1) pollen diagrams (e.g. Amman, 2000; Vescovi et al., 2007). Based on the modern 506 

ecology of Juniperus in the high mountains of Central Asia (Agakhanyants, 1981), we assume that 507 

Juniperus was mainly occupying northern slopes in the Carpathians where available moisture allowed 508 

replacement of meadow-steppe or steppe-tundra by Juniperus scrubland.  Terrestrial plant 509 

macrofossils were not found in the LGM section of the sediment, only one conifer stomata and a few 510 

unidentified wood macrocharcoals at 20,830 and 21,930 cal yr BP (Table 3) suggesting that trees 511 

were likely not growing on the crater slopes. We assume that the diverse mixture of alpine tundra 512 

and steppe plants, and ruderal elements at least partially derived from the crater slopes (see Table 2 513 

for herb flora composition). Aquatic plants were very rare in this period that is difficult to interpret, 514 

since we are still very close to the formation of the lake in this period following the last volcanic 515 

activity (Harangi et al., 2010; Karátson et al., 2013). The lake was nutrient poor and likely shallow in 516 

this phase.  517 

A significant change in the vegetation composition was detected at 22,870 cal yr BP, when decreased 518 

representation of xerophytic herbs (Artemisia and Chenopodim-type) and increased representation 519 

of Poaceae and Pinus suggested regionally increasing woody cover associated with the expansion of 520 

grass-dominated steppe or steppe-tundra vegetation. The diversity of herbs further increased in this 521 

period, the start of which coincides with the GI-2.2 interstadial (Figures 4, 7; Rasmussen et al., 2014), 522 

while the end of it, 19,150 cal yr BP, corresponds with the end of the global last glacial maximum 523 

according to Clark et al. (2009). This phase of the LGM showed the highest palynological richness 524 

(Figure 4, Table 2) suggesting that the LGM herb flora of the East Carpathians was particularly well-525 

developed and included tall forbs, steppe, tundra and talus slope elements (e.g. Saxifraga hirculus-526 

type, Saxifraga sp., Ranunculus, Aconitum, Cariophyllaceae, Thalictrum, Hypericum). Polypodiaceae 527 

spores were also typically encountered in this phase, and the ferns that belong to this large group 528 

were likely associated with the boreal ecosystems of lower altitude in this period. Other important 529 

characteristics of this final LGM period were the increased regional fire frequencies as suggested by 530 

the microcharcoal accumulation rates and the increased representation of temperate deciduous 531 



pollen types (Corylus, Fagus, Ulmus, Carpinus betulus, Fraxinus excelsior- type and Quercus).  532 

Increased regional fire events suggest that the climate was strongly continental and combustible 533 

biomass was regionally available (Daniau et al., 2010). We also infer that the presence of temperate 534 

deciduous tree pollen supports population genetic inferences (Palmé and Vendramin, 2002; Heuertz 535 

et al., 2004; Magri et al., 2006), according to which some temperate deciduous tree species (e.g. 536 

Fagus sylvatica, Fraxinus excelsior, Corylus avellana) were likely present sporadically at lower 537 

altitudes in the western, rainward slopes of the Carpathians or in the adjoining lowlands. The 538 

possible LGM survival of temperate deciduous trees in the Carpathian Basin and adjoining mountain 539 

area has been discussed recently by Magyari et al. (2014). Comparing three LGM pollen sequences 540 

from this region (one is Lake St Anne) this study concluded that both LGM climate model and 541 

reconstructed climatic parameters would allow for the survival of temperate deciduous trees 542 

especially in this region; pollen data support their restricted occurrence, but macrofossils dating to 543 

the LGM have yet to confirm their local presence. Macrofossils of temperate deciduous trees dated 544 

to the LGM are yet missing, but appear as north as the Moravian basin during MIS3 (Willis and van 545 

Andel, 2004). The St Anne pollen diagram shows repeated occurrence and occasionally increased 546 

percentages of temperate deciduous pollen types (esp. Quercus, Corylus, Fraxinus excelsior-type, 547 

Ulmus, Fagus, Carpinus betulus) that is provoking, since most S European pollen records show similar 548 

or even lower values, and the recorded values in the Lake St Anne pollen diagram are particularly 549 

prominent for Fagus (Figure 4, Supplementary Figure 3; Tzedakis et al., 2002, 2004, 2013; Allen et al., 550 

1999; Müller et al., 2011). Even though the Tusnad Gorge (630 m a.s.l.) and Ciuc Basin (640-700 m 551 

a.s.l.) are characterised by strengthened continental climate due to basin effect (absolute minimum-552 

38 oC, absolute maximum 33 oC; annual temperature 3.8-7.6 oC; Ujvárosi et al., 1995; Demeter and 553 

Hartel, 2007), there are several hills with warm microclimate that support today warm-indicator flora 554 

(e.g. Prunus nana, Salvia nutans, Spiraea crenata, Hiacinthella leucophyllea) lying south and west of 555 

Lake St Anne (e.g. Vargyas Valley (555-945 m), Perkő near Sânzieni (588-720 m), the Olt river valley 556 

near Ariușd (500 m); see Jakab et al., 2007). If temperate trees survived the LGM in the nearby lower 557 

mountains, then these areas within the elevation range 500-600 m a.s.l. were likely the most suitable 558 

habitats for temperate tree growth. The increased abundance of wet-tundra vegetation in this period 559 

is best captured by the Saxifraga hirculus-type pollen curve that attains the highest values in this 560 

phase (22,870-19,150 cal yr BP, Figure 8). Overall, our data suggest that the LGM was less arid in the 561 

East Carpathian Mountains than in the SE Mediterranean Basin and Thrace (Tzedakis et al., 2004; 562 

Müller et al., 2011; Connor et al., 2013), while Ioannina in NW Greece was likely comparably humid 563 

but considerably warmer (especially in winter) allowing for larger populations of temperate 564 

deciduous trees (Tzedakis et al., 2002). On the other hand, the Lake St Anne pollen record suggests 565 

that if temperate deciduous trees survived the LGM in the region, they might have been disfavoured 566 



by available moisture decrease and xerophytic steppe expansion after the LGM, between 19,000 – 567 

15,000 cal yr BP, which period showed the expansion of Artemisia, Chenopodium-type and several 568 

other elements of xerophitic steppes in the area of Lake St Anne (SZA-3, Figures 3, 4 and 7). Alpine 569 

and tundra plants were still present in this period (e.g. Polygonum viviparum, Dryas octopetala). We 570 

infer an increase in overall vegetation cover from increasing PAR values; decreasing forest fire 571 

activity, and a major increase in boreal woodland cover (Betula, Pinus, Larix and Picea) from ~16,300 572 

cal yr BP. According to the preliminary plant macrofossil record, trees and shrubs likely appeared on 573 

the crater slope a few hundered years later, around 15,700 cal yr BP, when several unidentified wood 574 

macrochrcoals were found in the sediment. Subsequently, Betula nana and B. pubescens appeared at 575 

15,150 cal yr BP, followed by the first recovery of Pinus sylvestris at 14,700 cal yr BP (Table 3). These 576 

findings corroborate the pollen based inference that the crater slope became partially wooded 577 

already prior to the onset of the late glacial interstadial (GI-1), and elements of shrub/forest tundra 578 

and boreal forest associations were present on the crater slope suggesting the emergence of boreal 579 

ecosystems similar to the present vegetation of S Siberia (Chytrý et al., 2008; Magyari et al., 2014). 580 

From 16,300 cal yr BP green algae relative frequencies (Pediastrum, Scenedesmus) and aquatic 581 

macrophytes (Myriophyllum verticillatum) indicated increasing nutrient availability and likely 582 

increasing lake level, although this inference may contradict with the xerophytic steppe expansion. 583 

From the overall vegetation cover increase we assume that Artemisia and Chenopodium-type 584 

dominated steppe likely expanded on places that were formerly either not vegetated or covered by 585 

Juniperus, which declined in this period. Increasing pollen percentages and accumulation rates of 586 

Betula, Pinus, Larix, Picea and Ulmus suggest that available moisture increased with temperature 587 

after 16,300 cal yr BP. The short-term re-increase of Juniperus and Poaceae around 17,000 cal yr BP 588 

can likely be connected to cooling during Heinrich stadial 1 (within GS-2.1a; Figures 4 and 7). 589 

The final pollen zone of the last glaciation covers the late glacial (GI-1 and GS-1). Due to very low 590 

sediment accumulation rates in this period, the pollen diagram is not very detailed. The onset of the 591 

late glacial interstadial (GI-1e) is marked by abrupt increase in Pinus pollen percenatges and PAR, and 592 

more gradual increases in Picea abies, Larix, Betula and a major drop in Juniperus pollen values 593 

indicating afforestation by boreal trees mainly. Pine-birch (Pinus sylvestris - Betula pubescens) and 594 

larch (Larix decidua) forests likely expanded in the vicinity of Lake St Anne as indicated by the 595 

presence of their macrofossils (Table 3),  but notably temperate deciduous tree pollen frequencies 596 

remained lower in this period than between 22,870 and 19,150 cal yr BP. This can at least partially be 597 

explained by the massive expansion of the rich pollen producer Pinus sylvestris during the late glacial 598 

(see Pinus PAR values on Figure 6). Decreasing AP values and re-expansion of Artemisia and 599 

Chenopodium-type between 1047 and 1035 cm (13,300-12,300 cal yr BP) mark the GS-1 stadial. An 600 



important feature of the aquatic pollen assemblages is the disappearance or decrease of green algae 601 

that together with the organic content increase suggest decreasing lake level during the late glacial 602 

interstadial (GI-1). Scenedesmus and Pediastrum relative frequencies, on the other hand increased 603 

during GS-1 suggesting increasing nutrient availability and possibly increased lake levels (probably 604 

due decreased evaporation or decreased tree cover on the crater slope).  From these data we may 605 

infer that in the East Carpathian Mountains cooling during the LGM and late glacial did not 606 

necessarily coincide with decreasing lake levels; temperature decrease likely compensated at least 607 

partially for the decreasing rainfall via decreased evaporation. A similar relationship has been found 608 

in Serbian last glacial loess sequences by Zech et al. (2013). In this continental and considerably 609 

warmer lowland area, lipid biomarker studies suggested increasing woody cover during stadial 610 

phases and increasing steppe cover during the warm interstadials, overall pointing to decreasing 611 

moisture availability during the warm interstadials. 612 

The above detailed vegetation picture agrees well with continent-wide LGM vegetation assessment 613 

of Fletcher et al. (2010), which showed decreasing severity of stadial conditions in Eastern Europe, 614 

explained by the larger distance of this area to the North Atlantic.  615 

 616 

5.3. Distinctive features of the GS-2 and GS-3 vegetation in comparison with more 617 

southerly latitudes and westerly longitudes in Europe  618 

When the LGM pollen spectra of Lake St Anne are compared with the relevant sections (26-19 ka cal 619 

yr BP) of several long SE European pollen records (mainly the Eastern Mediterranean basin), Lake St 620 

Anne stands out by having 1) generally higher AP frequencies during the LGM due higher 621 

representation of Pinus and Juniperus; 2) comparable and in some cases even higher representation 622 

of temperate deciduous pollen types; 3) an expansion of xerophitic steppe vegetation after the LGM 623 

(at c. 19 ka cal yr BP) that is antagonistic with the decreasing share of xerophitic steppes in several SE 624 

european mountains at the same time (Allen et al., 1999; Tzedakis, 2002; Panagiotopolous et al., 625 

2013). Similar to the E Carpathians, steppe expansion in the Iberian Penninsula also commenced 626 

after the global LGM; however, it occurred later, and was clearly associated with Heinrich stadial 1 627 

(around 17,500 cal yr BP).  Moreno et al. (2012) explained the dry conditions with a considerable 628 

reduction in the Atlantic Meridional Overturning Circulation (AMOC) that initiated sea ice formation 629 

and reduced sea surface evaporation in the North Atlantic region. Contrary to this, the major 630 

vegetation change at Lake St Anne during Heinrich stadial 1 was the recurrent expansion of Juniperus 631 

(against Pinus; Figures 4 and 8) and the decrease of xerophytic steppe elements suggesting that the 632 

vegetation likely responded to cooling forcing. 633 



In several south Europen long pollen records, short term AP increases are coincident with 18O 634 

maxima in Greenland during MIS 3 (Allen et al., 1999, 2000; Tzedakis et al., 2002; Panagiotopoulos et 635 

al., 2013; Müller et al., 2011).  However, MIS 2 (broadly corresponding to GS-3, GS-2 and GS-4) is 636 

characterised by steadily low AP values in these records (Tzedakis et al., 2013; Helmes et al., 2014), 637 

even though weak stadial/interstadial fluctuations are still observebale in the Greenland isotope 638 

records (Figure 8). It is therefore not surprising that the Pinus percentage and MS fluctuations in core 639 

SZA-2010 cannot be strictly connected to stadial/interstadial fluctuation within the GS-2 and GS-3 640 

section of Lake St Anne (Figure 8; Rasmussen et al., 2014). 641 

Due to the calcareous or volcanic settings, chronologies of the LGM and lateglacial sections of several 642 

SE European long cores are loaded with similar uncertainties/biases like Lake St Anne (Allen et al., 643 

1999; Digerfeldt et al., 2000; Tzedakis, 2002; Jones et al., 2013). Bearing in mind possible age offsets, 644 

an important feature of these records is the early start of afforestation by conifers and/or temperate 645 

deciduous trees after the LGM. In most records significant increases of arboreal pollen start at 17,000 646 

– 16,000 cal yr BP (Tinner et al., 1999; Müller et al., 2011; Magyari et al., 2014), similarly to Lake St 647 

Anne. In this context, the onset of the late glacial interstadial (GI-1) is marked by secondary rises in 648 

arboreal pollen, suggesting that 1) afforestation of both lowland and mid mountain habitats 649 

commenced gradually after and/or during Heinrich stadial 1 (GS-2.1a), and similarly to the 650 

Carpathians, SE European lowlands and mid mountains were at least partially wooded by this time. 651 

 Melt-water pulses in the Black Sea region were demonstrated by a depletion of δ 18O values in 652 

isotope records of stalagmite So-1 from the Sofular Cave and from the combined Black Sea δ 18O 653 

record (Figure 8; Fleitmann et al., 2009; Badertscher et al., 2011) at ~16.1 ka BP, which date shows 654 

good correspondence with the earliest onset of Pinus PAR increase and wood 655 

macrocharcoal/macrofossil expansion in the Lake St Anne proxy record and reinforces the origin of 656 

available moisture increase already at 16.1 ka (Fleitmann et al., 2009). Note however that despite the 657 

inevitable sediment source changes in the Black Sea (red layer deposition suggesting water level 658 

increase and connection with the Caspian Sea) arboreal vegetation in the Black Sea area did not 659 

increase until 14,500 cal yr BP, except for a slight increase in temperate deciduous biome scores from 660 

15,400 cal yr BP (Shumilovskikh et al., 2012). In the Bulgarian Thracian Plain, available pollen data 661 

suggest the persistence of steppic conditions from the LGM to the late glacial (Connor et al., 2013); 662 

here the composition of the vegetation shows a major change from cold steppe to semi-desert at 663 

17,900 cal yr BP supporting the notion of intensifying summer drought in this region. 664 

Overall, this comparison suggest that vegetation in the East Carpathians responded to warming and 665 

increasing moisture more rapidly via the spread of shrub tundra, forest tundra, boreal and cool 666 



temperate trees during the last deglaciation, while the Black Sea zone still remained dominated by 667 

various steppe biomes (Shumilovskikh et al., 2012; Connor et al., 2013).       668 

Climate modelling experiments (e.g. Strandberg et al., 2011; Huntley et al., 2013) suggest a shift of 669 

the summer westerly jet from the Mediterranean Sea region to a more northerly position between 670 

18,000 and 12,000 cal yr BP, in response to the decrease in ice volume. Summer insolation was 671 

increasing at the same time (Berger and Loutre, 1991), and our proxy data suggest that the 672 

cumulative ecosystem impact of these climatic changes was twofold in the East Carpathians: an 673 

increase in warm steppes between 19-16.1 ka reflecting the overwhelming effect of summer 674 

isolation increase in this period, followed by the joint effect of warming and precipitation increase 675 

around 16,100 cal yr BP. 676 

 677 

5.4. Comparison with late glacial (GI-1, GS-1) pollen, plant macrofossil and stable isotope 678 

profiles in the Romanian Carpathians 679 

Although the late glacial section of core SZA-2010 has low sampling resolution, and deposition times 680 

are low (70-124 yr cm-1), several similarities can be identified when the pollen and plant macrofossil 681 

records are compared with the relatively large network of late glacial sites in the Romanain 682 

Carpathians (Feurdean et al., 2007, 2012). In the vicinity of Lake St Anne, the Luci and Mohoş peat 683 

bog pollen profiles cover the late glacial (Tanţău et al., 2003, 2014), and similarly to SZA-2010 show 684 

large increase in Pinus pollen frequencies at the beginning of GI-1e (Figure 8), around 14,700 cal yr 685 

BP (Feurdean et al., 2007, 2012, 2014; Tanţău et al., 2014). None of these sequences show high 686 

Juniperus pollen frequencies in their bottom layers comparable to pollen zones SZA-1 to SZA-3 (Table 687 

2), but Juniperus pollen is continuously present at values 1-5% until 14,700 cal yr BP overall 688 

suggesting that most of the pollen sequences do not extend beyond 17,000 cal yr BP and hence do 689 

not cover Heinrich stadial 1. The longest pollen sequence, Avrig (400 m a.s.l.) extends back to 690 

~19,000 cal yr BP according to its updated age-depth model (Feurdean et al., 2014). Low Juniperus 691 

values in the lower part of this core suggest that Juniperus shrubs were more abundant at higher 692 

altitudes in the mountains during the terminal part of GS-2, while at low altitudes Pinus and mixed 693 

steppe components played a more important role. Notable is that both the Setregoiu and Avrig 694 

pollen sequences show the first increase of Pinus pollen frequencies around 16,000 cal yr BP, 695 

corroborating that Pinus expanded in both low and mid altitudes before the onset of GI-1.  696 

Regarding the macrofossil detected first occurrence times of various trees in the Romanian 697 

Carpathians the Stergoiu (790 m a.s.l.) and Preluca Tiganului (730 m a.s.l.) sequences show good 698 



agreement with Lake St Anne regarding the on-site arrival time of Pinus sylvestris (14,500 cal yr BP at 699 

Steregoiu; Feurdean et al., 2012). These two mid altitude sites however showed a much more diverse 700 

wood macrofossil assemblage (Populus, Alnus, Picea, Larix, Prunus padus, Pinus cembra, Betula 701 

pubescens, B. pendula, P. mugo, P. sylvestris, Salix) during the late glacial suggesting that climate was 702 

likely more favourable for open forest development at lower altitudes. Notable is that Betula 703 

pubescens and B. nana were already recorded in core SZA-2010 before the onset of GI-1. 704 

When we compare the palynological richness inferred plant diversity changes in various parts of the 705 

Romanian Carpathians during the terminal part of GS-2, during GI-1 and GS-1, we see that at Lake St 706 

Anne plant diversity likely significantly decreased during GI-1 relative to GS-2 (including the LGM). 707 

Average palynological richness values dropped from 25-21 to 17 (Figure 4 and Table 2), the latter 708 

being similar to late glacial interstadial values at other sites (Feurdean et al., 2012). This is likely 709 

attributable to the extirpation of various alpine and tundra herbs in the pollen source area of Lake St 710 

Anne at the onset of GI-1. Note however that due to the increasing vegetation cover of the study 711 

area in GI-1, it is also conceivable that the effective pollen source area of the lake has changed in this 712 

period that might bias the inferred plant diversity changes (van der Knaap, 2009). Nonetheless, other 713 

pollen records in the Romanian Carpathians show comparable palynological richness values (10-25) 714 

during GI-1 and GS-2 with the strongest increases at the onset of the Holocene explained by 715 

recruitment much exceeding local extirpation. Palynological richness also increases temporarily in 716 

the Early Holocene in the Lake St Anne record, but here the amplitude of this increase is not the 717 

largest in the record (Figure 4). Another important and so far unique characteristic of the SZA-2010 718 

pollen record is the repeated decrease of palynological richness at the onset of each pollen zone 719 

implying that the first step of each climate induced vegetation reorganization was a decrease in plant 720 

diversity followed by steep increases. The large compositional turnover (1.2 SD units on Figure 8) of 721 

the vegetation between 12,700 and 11,000 cal yr BP compares well with other Romanain pollen 722 

profiles (Feurdean et al., 2012) and confirms that similarly to other mid altitude sites in the Romanian 723 

Carpathians the largest floristic compositional change occurred between GS-1 and the Holocene. 724 

Stable isotope records of several late glacial stalagmites in the Romanian Carpathians  (Tămaş et al., 725 

2005; Constantin et al., 2007) suggest that at the onset of each late glacial warming phase moisture 726 

availability (inferred by 13C) also increased, which inference was also supported by the pollen and 727 

plant macrofossil based climatic inferences (Feurdean et al., 2008, 2012). As discussed above, the 728 

Lake St Anne pollen and plant macrofossil records agree well with other Romanian records, therefore 729 

the terrestrial vegetation components seemingly support the stable isotope and other pollen based 730 

inferences. However, planktonic green algae in Lake St Anne are in partial disagreement with this 731 

climatic interpretation. This record shows that following an initial increase in both diversity and 732 



relative frequancies of green algae from ~16,300 cal yr BP (see Sum Pediastrum and Scenedesmus on 733 

Figure 5), an abrupt decrease can be detected at ~14,600 cal yr BP suggesting that planktonic 734 

habitats and thus likely water level decreased at the onset of the late glacial interstadial (GI-1). Even 735 

more surprisingly, relative frequencies of planktonic green algae increased again at ~13,300 cal yr BP 736 

when xerophitic steppe herbs were on increase (e.g. Artemisia, Chenopodiaceae) and overall hinted 737 

at the onset of GS-1. Therefore this record infers that lake level and thus likely effective moisture 738 

(precipitation minus actual evapotranspiration) migh have decreased with warming. This feature of 739 

the Lake St Anne paleorecord agrees with some lipid-based inferences of the Serbian loess sequences 740 

(Zech et al., 2013); however, it needs further testing by the diatom study of the same deposit before 741 

any firm conclusion is made. We also need to understand why a mismatch between the 13C 742 

stalagmite and green algae records exist. Is it possible that the difference arises because 13C in 743 

stalagmites reflects annual moisture changes, while green algae indicate summer water-depth 744 

changes? Alternatively, can increasing woody cover on the crater slope decrease runoff in the warm 745 

intervals and thereby decrease water-depth? 746 

6.  Conclusions 747 

Pollen based reconstruction of the LGM vegetation types provided evidence for attenuated response 748 

of the regional vegetation to maximum global cooling. Between ~22,870 and 19,150 cal yr BP we 749 

found species rich steppe-tundra and grass steppe vegetation at mid altitudes (~1000 m a.s.l.) in the 750 

mountain in association with Juniperus shrubland; furthermore, our data supported earlier 751 

inferences for the persistence of coniferous and deciduous trees likely in parkland forests at lower 752 

altitudes (with Pinus, Betula, Salix and Picea). Our pollen record supports population genetic 753 

inferences regarding the possible regional survival of some temperate deciduous trees (Fagus 754 

sylvatica, Corylus avellana, Fraxinus excelsior) in this period. Probably the most intriguing result of 755 

this study is the increased regional biomass burning between 22,870- 19,150 cal yr BP that is 756 

antagonistic with the global trend of decreased biomass burning. Increased regional fire activity 757 

confirms the regional presence of combustible biomass and indicates extreme continentality in this 758 

period, likely with relatively warm and dry summers. 759 

Xerophytic steppes expanded in the East Carpathian forelands from ~19,150 cal yr BP. Our pollen 760 

accumulation rate record suggested that this expansion took place partially at the expense of the 761 

grass steppes and boreal forest steppe. This vegetation change implies that warming directly after 762 

the LGM likely resulted in increasing summer drought in the East Carpathians and its forelands. We 763 

conclude that xerophytic steppe expansion is a characteristic feature of the East-Central European 764 



sector at latitudes 46-48 oN, as similar vegetation changes were also demonstrated in the Pannonian 765 

Basin.   766 

In accordance with the Black Sea and Sofular cave proxy records, forest expansion in the E 767 

Carpathians started already around 16,300 cal yr BP. Pinus and Betula dominated forests expanded in 768 

accordance with available moisture increase in the southern Black Sea area, permafrost melting and 769 

wetland expansion in the European Russian Plain. 770 
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Figure legend 1157 

Figure 1 Topographic map showing the location of Lake St Anne within East-Central Europe (a) and 1158 

within the Ciomadul Mountains (b). Elevation gradients within the Ciomadul Mountains are shown 1159 

along three transects.  1160 

Figure 2 Age-depth model for core SZA-2010 (1700-950 cm depth), Lake St Anne, Romanian 1161 

Carpathians. Two age depth models are shown: the Bayesian model (a) takes into account all 1162 

radiocarbon dates; while the linear model (b) excludes one radiocarbon date from 1092 cm. 1163 

Figure 3 Lithology, lithozones (LZ), magnetic susceptibility (MS), titanium (Ti), iron (Fe), calcium (Ca) 1164 

and sulphur (K) intensities (103 counts), organic content (LOI%), major vegetation types (% pollen 1165 

data), depth and age (cal yr BP) of core SZA-2010 from Lake St Anne (1682-970 cm depth). Dashed 1166 

lines in the figure mark major changes in the MS and XRF element data. In the summary percentage 1167 

pollen diagram each pollen type was assigned to a major vegetation type following a simple biome 1168 

scheme (Feurdean et al., 2014). 1169 

Figure 4 Relative frequencies of selected terrestrial pollen types from core SZA-2010, Lake St Anne, 1170 

Romanian Carpathians (ca. 6200-26,400 cal yr BP). Results of the rarefraction analysis E(T350) 1171 

reflecting palynological richness, microcharcoal accumulation rates and terrestrial pollen 1172 

accumulation rates are alos shown on the right. LPAZ: local pollen assemblage zones. 1173 

Figure 5 Relative frequencies of selected wetland and aquatic pollen types and non-pollen 1174 

palynomorphs (algae and Sordaidaceae fungal spores) from core SZA-2010, Lake St Anne, Romanian 1175 

Carpathians (ca. 6200-26,400 cal yr BP). LPAZ: local pollen assemblage zones. 1176 

Figure 6 Pollen accumulation rates (pollen cm-2 yr-1) of major terrestrial pollen types from Lake St 1177 

Anne, core SZA-2010. Local pollen assemblage zone (LPAZ) descriptions are given in Table 1. 1178 

Figure 7 Results of the principal component analysis (PCA) for which we used the 30 most abundant 1179 

terrestrial pollen types from core SZA-2010, Lake St Anne (samples between 971 and 1676 cm). SZA-1 1180 

to SZA-6 are pollen assemblage zones according to Figure 4 and Table 2. 1181 

Figure 8 High-resolution paleovegetation and magnetic susceptibility records of core SZA-2010, lake 1182 

St Anne, Romanian Carpathians  compared to (a) the 18O record of NGRIP ice core (Andersen et al., 1183 

2004), to (b) the composite atmospheric CH4 record from Greenland (Blunier et al., 2007) and to (c) 1184 

the Sofular cave stalagmite 13C record (Gögtürk et al., 2011). (d) Magnetic susceptibility as indicator 1185 

of aeolian dust accumulation during the LGM (not reversed scale); (e) Pinus pollen percentages; (f) 1186 

Xerophytic steppe representation; (g) DCCA axis one scores as a measure of pollen compositional 1187 



change and thereby the magnitude of vegetation change. HE: Heinrich-event; DO: Dansgaard-1188 

Oeschger event; GI: Greenland interstadial; GS: Greenland stadial. 1189 

Supplementary material 1190 

Supplementary Table 1 List of pollen types included in the calculation of major vegetation types 1191 

(biomes) around Lake St Anne. Each pollen type was assigned to one of these biomes.  1192 

Supplementary Table 2 Sediment stratigraphy of core SZA-2010, Lake St Anne (Lake Sfanta Ana), 1193 

Harghita Mts, Romania. Note that sediment depths shown in this table include 600 cm water depth; 1194 

sediment stratigraphy of the 600-950 cm sediment section representing the middle and late 1195 

Holocene was described elsewhere (Magyari et al., 2006, 2009). 1196 

Supplementary Figure 1 Photo of the 1000-1095 cm sediment section from Lake St Anne with Fe 1197 

intensities (103 count), core SZA-2010.  1198 

Supplementary Figure 2 Grain size distribution in core SZA-2010 as measured by laser particle 1199 

analyser. 1200 

Supplementary Figure 3 Relative frequencies of all terrestrial pollen types from Lake St Anne, core 1201 

SZA-2010 plotted against depth (cm). LPAZ: local pollen assemblage zones. 1202 

 1203 
  1204 



Table 1 AMS radiocarbon dates and from Lake St Anne, core SZA-2010. Depths, materials chosen as 1205 

well as radiocarbon ages and calendar ages are given. The radiocarbon ages of all samples were 1206 

calibrated into calendar years before present (cal yr BP) using the INTCAL13 calibration curve (Reimer 1207 

et al., 2013). 1208 

Depth (cm) Lab code Material dated conv. age 

(yr BP) 

± Calibrated range BP 

(2σ) 

Age (cal BP) 

age used for 

linear 

modelling 

± Carbon 

weight 

(mg) 

Remarks 

980-982 COL1116.1+2.1 

Sphagnum leaves 
and stems, Picea 
abies needles, bract 
scales 

6246 26 7155–7258 7206.5 51.5 1  

1000-1002 COL1117.1+2.1 
moss leaves and 
stems, bract scales, 
periderm 

8216 28 9082–9286 9184 102 1  

1036-1038 COL1118.1+2.1 
Charcoal, moss 
stems, periderm, 
bract scale 

10739 42 12,562–12,742 12652 90 0.58  

1072-1073 COL1119.1.1 
micro & 
macrocharcoal 

14038 38 16,830–17,263 17046.5 216.5 1  

1091-1092 COL1121.2.1 
herb stems, likely 
Cyperaceae stem 

15400 44 18,556–18,784 18670 114 1 
rejected 
in linear 
model 

1126-1127 COL1122.2.1 
Cyperaceae  
stem/leaf  
fragments 

14541 67 17,371–17,976 17673.5 302.5 0.26  

1340-1342 COL1123.1.+2.1 

Charcoal 
Cyperaceae 
stem  fragments, 
chironomid head 
capsules, Cladocera 
egg 

17338 84 20,290–21,138 20714 424 0.28  

1365-1366 COL1124.1+2.1 

Cyperaceae stem 
fragments, 
chironomid head 
capsules, Cladocera 
egg 

17626 96 20,523–21,387 20955 432 0.18  

1538-1540 COL1127.1.+2.1 

Moss leaves, stems, 
chironomid head 
capsules, Cladocera 
egg 

19717 122 23,133–23,953 23543 410 0.13  

1661-1662 COL1128.1.1 Cladocera egg 21685 163 25400–26713 26056.5 656 0.09  

 1209 
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Zone Depth/Age 
cm/cal yr BP 

Zone characteristics (Figs 4 & 5, ages are according to the linear model)   AP 
% 

CHAR PAR PAL 
RICH 

  Terrestrial Aquatic & NPP      

SZA-1 1676-1493.5 
linear model: 
26,350-22,870 
Bayesian model: 
25,965-23,025 

Pinus (12-45%) and Juniperus (8-15%) dominate woody taxa; haplo- and diploxylon pines are 
present; other characteristic trees are Betula, Picea abies, Larix, Quercus and Corylus, Hippophaë 
rhamn.; herbs are dominated by Poaceae (22-35%), Artemisia (5-17%), Chenopodiaceae, 
Caryophyllaceae and Asteraceae; charcateristic herbs are Plantago m/m., Rumex, Helianthemum, 
Polygonum viviparum, Soldanella, Jasione, Galium; Thalictrum shows a peak at 1526 cm (23,350 
cal yr BP); one degraded conifer stomata was found at 1628 cm (25,370 cal yr BP); inferred 
vegetation: the crater slopes were likely not wooded, regional presence of hemiboreal and taiga 
forests/forest steppes are inferred; Juniperus was likely present in the mountains, crater slope 
was likely covered with alpine/tundra and ruderal herbs; overall vegetation cover was low 

Very few aquatic taxa, occasional occurrence of 
Typha ang., Rincospora, Equisetum, Sphagnum; 
green alge are represented by few 
Botryococcus, Spyrogyra and Pediastrum 
remains; some Cypearaceae likely of wetland 
origin; species poor shallow, likely seasonal or 
year-round ice-covered lake is inferred with 
Cypearaceae on the shore 

max. 57 721 2705 26 

min. 24 61 432 15 

av. 42 265 1270 21 

SZA-2 1493.5-1230 
linear model: 
22,870-19,150 
Bayesian model: 
23,025-19,140 

Pinus percentages are high (40-50%) between 22,000-23,000 cal yr BP, then decrease to 10-20%; 
Corylus, Ulmus, Fraxinus exc., Fagus sylv., Carpinus betulus, Salix increase or more often recorded; 
note their peak values at 1493 cm (22,860 cal yr BP); Juniperus high (10-20%); Ephedra more 
often recorded; Artemisia decreases (10→ 3%); Poaceae increases above 1355 cm (20,860 cal yr 
BP); characteristic herbs are Thalictrum, Armeria, Ranunculus, Aconitum, Saxifraga, Cardamine, 
Scrophularia-type, Valeriana off., Apiaceae, Hypericum, Helleborus; regionally increasing woody 
cover is inferred and increased regional forest fires; temperate deciduous trees/shrubs were likely 
present at lower altitude; locally increased vegetation cover in the crater, tall forbs and cushion-
forming herbs spread likely on wet and stony surfaces, xerophytic steppe cover decreased, grass 
steppes dominated 

Sudden increase in Botryococcus; 
Polypodiaceae, Pediastrum, Spyrogyra and 
Zygnemataceae also increase; Cyperaceae 
decrease; shallow, dystrophic lake is inferred 
with slight increase in nutrient availability; ferns 
likely originate from regional pollen rain 

max. 75 5814 7549 33 

min. 30 269 1025 18 

av. 52 1698 3103 25 

SZA-3 1230-1073 
linear model: 
19,150-14,600 
Bayesian model: 
19,140-16,010 

Pinus fluctuates between 20-50%; deciduous temperate taxa are present, but less abundant; 
Betula and Pinus increase in SZA-3b (1103 cm, 16,310 cal yr BP); Artemisia and Chenopodiaceae 
increase significantly, while Poaceae and Juniperus decrease; note that Juniperus re-increases 
between 1139-1107 cm (17,830-17,070 cal yr BP); typical herb pollen types are Polygonum 
viviparum, Soldanella, Trientalis, Sangusiorba officinalis, Dryas octopetala; inferred vegetation 
change: expansion of xerophytic/Artemisia steppes against grass steppes and juniper scrubland at 
~19,150 cal yr BP; pine-birch forests spread regionally from 1107 cm (16,500 cal yr BP); overall 
veg. cover increased; locally alpine/tundra and wet meadow herbs spread in the crater; regional 
fire activity decreased; re-expansion of Juniperus may indicate cooling during Heinrich-event 1 

rapid increase in Pediastrum; Rincospora, 
Equisetum, Potamogeton, Miryophyllum vert., 
PinguicaIula are present; Botryococcus, 
Pediastrum, Secenedesmus further increase in 
SZA-3b; inferred vegetation in the lake 
becomes richer in green algae and suggests 
increasing lake levels and/or nutrient levels, 
with further lake level rise in SZA-3b  

max. 67 998 6379 28 

min. 38 90 1525 13 

av. 51 467 3314 21 

SZA-4 1073-1033 
linear model: 
14,600-12,300 
Bayesian model: 
16,010-12,290 

Pinus increases rapidly (50→70%); Larix, Picea and Betula are important tree taxa; Juniperus 
(10→2%), Artemisia (), Chenopodiaceae decrease rapidly at 1071 cm (14,540 cal yr BP); 
Polygonum viviparum, Caryophyllaceae, Potentilla, Dryas, Helianthemum disappear/decrease; 
Epilobium appears; in SZA-4b (1047-1033 cm, 13,300-12,300) Artemisia and Poaceae increase, 
while Pinus, Betula and Picea decrease; inferred vegetation change involves the regional 
expansion of hemiboreal pine-birch and larch forests and spruce taiga at the expense of 
xerophytic steppes; re-expansion of steppes likely indicate decreasing available moisture and may 
correspond to the YD event; regional fire activity increased 

Disappearance/decrease of green algae in SZA-
4a followed by re-appearance of the same taxa 
in SZA-4b; Scenedesmus high in SZA-4b, 
Sordaidaceae spores appear first;  
lake-level likely decreased rapidly in SZA-4a; 
lake level likely increased in SZA-4b 
concurrently with the AP decline 

max. 89 9553 37657 19 

min. 54 1076 3214 11 

av. 77 3188 9703 17 

SZA-5 1033-1021 
linear model: 
12,300-11,100 
Bayesian model: 
12,290-11,160 

Ulmus (1.6→10%) and Betula (5-32%) increase rapidly followed by increases in Fraxinus exc., 
Corylus and Quercus; Pinus decreases at 1031 cm (12,070 cal yr BP), while Betula decrease in the 
second part of the zone; following initial afforestation by early successional birch trees, forest 
expanded at elevations below 1000 m; the crater slopes also became forested (locally birch and 
spruce were likely important) 

rapid increase in Botryococcus; Pediastrum 
disappears; Scenedesmus has similar values 
than in SZA-4b; telmatophytes disappear; 
the lake became warmer & shallower, pH 
decreased 

max. 89 3862 13516 16 

min. 84 1730 4110 12 

av. 86 2606 8039 14 

SZA-6 1021-971 
linear model: 
11,100-6200 
Bayesian model: 
11,160-6200 
 

Ulmus, Fraxinus, Quercus, Tilia, Picea, Corylus dominate the pollen assemblages 
regionally we infer the maximum development of mixed deciduous forests; regionally Picea abies 
appeared on the lakeshore (Magyari et al. 2006, 2009) 

Sordaidaceae spores dominate; Botryococcus 
and Zygnemataceae are abundant; testate 
amoebae are present; Sphagnum dominated 
shallow hollows and pools are inferred locally; 
Sordaidaceae likely grew on woods/shrubs 
falling down the lake 

max. 96 18150 21779
5 

22 

min. 88 524 9928 12 

av. 94 3322 41881 15 

Table 2 Pollen assemblage zone characteristics of core SZA-2010, Lake St Anne, Romanian Carpathians.



Depth 
(cm) 

Age 
cal yr BP 
(linear model) 

Plant macrofossils 

1050 13370 Sphagnum sec. Cuspidata leaf (1) 
1051 13430 Betula pubescens seed (1), Equisetum fluviatile epidermis fragments (many, >100), Warnstorfia fluitans leaf 

(1), Sphagnum sec. Cuspidata leaves (2) 
1074 14705 Pinus sylvestris needle (1); Pinus sylvestris epidermis (1) 
1081 15095 cf. Scheuchzeria epidermis fragments 
1082 15150 Betula nana seed (1), Betula pubescens seed (1), Carex sp.  achene fragment (1), Polytrichum sp. leaf (1) 
1091 15650 Typha minima seed (1), UI Cyperaceae stems (several) 
1092 15705 UI Cyperaceae stems (several), macrocharcoal (several) 
1111 16760 identifiable plant macrofossils were not found 
1112 16815 identifiable plant macrofossils were not found 
1352 20830 UI macrocharcoal 
1375 21115 UI moss stems 
1430 21930 UI macrocharcoal 

Table 3 Plant macrofossils in selected sediment samples of Lake St Anne, core SZA-2010, Ciomadul 
Mts, Romania. Note that tree/shrub macrofossils were not detected below 1082 cm (15,150 cal yr 
BP). Numbers in brackets after the taxon name indicate number of fossil findings. UI: unidentifiable. 
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Figure 03
Click here to download high resolution image

http://ees.elsevier.com/jqsr/download.aspx?id=258372&guid=ceb4debb-38cf-4d59-a633-b7c89abb0eab&scheme=1
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