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Abstract

Multiplex is a set of graphs on the same vertex set, i.e. {G(V,E1), . . . , G(V,Em)}.
It is a type of generalized graph to model the multiple relationships in a
system with parallel edges between vertices. An important application in
Network Science is to capture community structures in multiplex as a way
to modularize the system. This paper is a literature review and comparative
analysis on the existing communities detection algorithms for multiplex.
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1. Introduction

Complexity Science studies the collective behaviour of a system of inter-
acting agents, and a graph (network) is often an apt representation of such
systems. Traditionally the agents are expressed as the vertices, and an edge
between a vertex pair implies that there are interactions between them.

However the modern outlook in Network Science is to generalize the edges
to encapsulate the multiple type of relationships between agents. For example
in a social network, people are acquainted through work, school, family, etc.
This is to preserve the richness of the data and to reveal deeper perspectives
of the system. This is known as a multiplex.

Multiplex is a natural transition from graphs and many disciplines in-
dependently studied this mathematical model for various applications like
communities detection. A community refers to a set of vertices that behaves

Email addresses: c.loe11@imperial.ac.uk (Chuan Wen, Loe),
h.jensen@imperial.ac.uk (Henrik Jeldtoft Jensen)

Preprint submitted to Physica A August 26, 2015



differently from the rest of the system. This modularizes a complex system
into simpler representations to form an overview of the information flow.

The first half of this paper is a literature review of the different commu-
nities detection algorithms and some theoretical bounds from graph cutting.
Next we propose a suite of benchmark multiplexes and similarity metrics to
determine the similarity of various communities detection algorithms. Finally
we present the empirical results for this paper.

2. Preliminaries

Definition 2.1. (Multiplex) A multiplex G is a finite set of m graphs on
the same vertex set V , where every graph Gi = (V,Ei) has a distinct edge set
Ei ⊆ V × V , i.e. G = {G1(V,E1), . . . , G

m(V,Em)}.

There are many synonymous names for multiplex and occasionally they
simultaneously used in the same paper. This assists readers to visualize
the system through the different descriptions. E.g. a “multi-layer network”
describes the multiplex as layers of graphs, i.e. layer i implies Gi. The
following synonymous names for multiplex will be avoided for the rest of
the paper: Multigraph [1, 2], MultiDimensional Network [3, 4, 5, 6],
Multi-Relational Network [7, 8, 9], MultiLayer Network [10, 11, 12],
PolySocial Networks [13], Multi-Modal Network [14, 15, 16], Hetero-
geneous Networks [17] and Multiple Networks [18].

A more complete list of these names can be found in the literature reviews
by Boccaletti et al. [19] and Kivelä et al. [20]. Note that we will use the ith

layer, relationship or dimension to refer to the graph Gi ∈ G. This is to help
us to express certain ideas in a more concrete manner.

For example when layers of graphs are stacked on top of each other,
there will be vertex pairs with edges “overlapping” each other (Def. 2.2).
The distribution to the number of the overlapping edges is an important
characteristic of a multiplex, where it is used to classify different multiplex
ensembles [21, 22, 23, 24, 25].

Definition 2.2. (Overlapping Edges) Let two edges from two different
graphs in G be e(u, v) ∈ Ei and e′(u′, v′) ∈ Ej, where i 6= j. The edges e and
e′ overlap if and only if e = e′, i.e. u = u′ and v = v′.

If there arise ambiguity to the context, we will distinguish the “com-
munity” between a multiplex and a monoplex (a graph in a multiplex)
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as multiplex-community and monoplex-community respectively. This
will avoid confusion when we review the different multiplex communities de-
tection algorithms.

Many of these multiplex-algorithms divide the multiplex problem into
independent communities detection problems on the monoplexes. The solu-
tions for these monoplexes, known as auxiliary-partitions, provide the sup-
plementary information for the multiplex-algorithm to aggregate. The prin-
cipal solution from the aggregation forms the multiplex-partition, which
defines the communities in the multiplex.

3. Definitions of a Multiplex-Community

A community vaguely describes a set of interacting agents that collec-
tively behaves differently from its neighboring agents. However there is no
universally accepted formal definition, since the concept of a community de-
pends on the problem domain [26, 27, 28]. We categorize this diversity by
the communities’ Local Definitions, Global Definitions and Vertex Similarity.

3.1. Local Definition

From the assumption that a community has weak interactions with their
neighboring vertices, the evaluation of a community can be isolated from the
rest of the network. Thus it is sufficient to establish a community from the
perspective of the members in the community.

Consider each graphs in a multiplex as an independent mode of com-
munication between the members, e.g. email, telephone, postal, etc. A high
quality community should resume high information flow amongst its members
when one of the communication modes fails (1 less graph). Hence Berlingerio
et al. proposed the redundancy of the communities [3] as a measure to the
quality of a multiplex-community.

Definition 3.1. (Redundancy) Let W ⊆ V be the set of vertices in a
multiplex-community and P ⊆ W ×W be the set of vertex pairs in W that
are adjacent in ≥ 1 relationship. The set of redundant vertex pairs are P ′ ⊆
P where vertex pairs in W that are adjacent in ≥ 2 relationships. The
redundancy of W is determined by:

1

|G| × |P |
∑
Gi∈G

∑
{u,v}∈P ′

δ(u, v, Ei), (1)

where δ(u, v, Ei) = 1 (zero otherwise) if {u, v} ∈ Ei.
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Eq. 1 counts the number of edges in the multiplex-community where
their corresponding vertex pairs are adjacent in two or more graphs. The
sum is normalized by the theoretical maximum number of edges between all
adjacent vertex pairs, i.e. (|G| × |P |). The quality of a multiplex-community
is determined by how identical the subgraphs (induced by the vertices of the
multiplex-community) are across the graphs in the multiplex.

Thus the redundancy does not depends on the number of edges in the
multiplex-community, i.e. not a necessary condition to its quality. This
can lead to an unusual idea that a community can be low in density. For
instance a cycle of overlapping edges form a “community” of equal quality
as a complete clique of overlapping edges.

3.2. Global Definition
The global measure of a partition considers the quality of the communities

and their interactions among the communities. For example the modular-
ity function by Newman and Girvan measures how different a monoplex-
communities are from a random graph (Def. 3.2) [29].

Definition 3.2. (Modularity) Let Aij be the adjacency matrix of a graph
with |E| edges and ki is the degree of vertex i. δ(vi, vj) = 1 if vi and vj are
in the same community, otherwise δ(vi, vj) = 0. The Modularity function
measures how far the communities differs from a random graph:

Q =
1

2|E|
∑
ij

(
Aij −

kikj
2|E|

)
δ(vi, vj). (2)

Given a fixed partition on the vertex set, the modularity on each of the m
graphs in the multiplex differs. Thus a good multiplex-communities suggests
that all the monoplex-communites in the graphs have high modularity.

To quantify this concept, Tang et. al claims that if there exists latent
communities in the multiplex, a subset of the graphs in the multiplex, G ′ ⊂ G
has sufficient information to find these communities [6]. If the hypothesis is
true, then the communities detected from G ′ should reflect high modularity
on the rest of the graphs in the multiplex, i.e. G \ G ′.

In the language of machine learning, pick a random graph G ∈ G as the
test data and let G ′ = G \ G be the training data. The multiplex-partition
P yielded from a communities detection algorithm on G ′ is evaluated with
the modularity function on the test data G. P is a good multiplex-partition
if the modularity of partition P on the graph G is maximized. This extends
the modularity metric for multiplex.
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3.3. Vertex Similarity
Two vertices belongs to a Vertex Similarity community if they are simi-

lar by some measure. For example the Edge Clustering Coefficient [30] of a
vertex pair in a graph measures the (normalized) number of common neigh-
bors between them. A high Edge Clustering Coefficient implies that there
are many common neighbors between the vertex pair, thus suggesting that
the two vertices should belong in the same community. In the extension for
multiplex, Brodka et. al introduced Cross-Layer Edge Clustering Coefficient
(CLECC) [10].

Definition 3.3. (Cross-Layer Edge Clustering Coefficient) Given a
parameter α, the MIN-Neighbors of vertex v, N(v, α) are the set of vertices
that are adjacent to v in at least α graphs. The Cross-Layer Edge Clustering
Coefficient of two vertices u, v ∈ V measures the ratio of their common
neighbors to all their neighbors.

CLECC(u, v, α) =
|N(u, α) ∩N(v, α)|

|N(u, α) ∪N(v, α) \ {u, v}|
. (3)

A pair of vertices in a multiplex of social networks with low CLECC
suggests that the individuals do not share a common clique of friends through
at least α social networks. Thus it is unlikely that they form a community.

3.4. Densely Connected Community Cores
Communities detection is the process to partition the vertices such that

every vertex belongs in at least a community. However there are cases where
one just desires some substructures in a multiplex with certain properties.
For example a Dense Connected Community Core is the set of vertices such
that they are in the same community for all the auxiliary-partitions [31].

4. Theoretical Bounds

The Max-Cut problem finds a partition of a graph such that the number
of edges induced across the clusters are maximized. Thus the same parti-
tion over the complement graph minimizes the number of edges between the
clusters. This is known as the Balanced-Min-Cut problem and it is closely
related to our communities detection problem, where the number of edges
induced between the communities are minimized.

Therefore to extend our understanding for multiplex, we begin with a
known result for the Max-Cut problem. It allows us to prove a corollary for
the Balanced-Min-Cut problem on multiplex.
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4.1. Maximum Cut Problem on Multiplex

Theorem 4.1. Consider graph G1, . . . , Gm on the same vertex set V . There
exists a k-partition of V into k ≥ 2 communities C1, . . . , Ck such that for all
i = 1, . . . ,m and sufficiently large |V | [32]:

# edges cut in Gi ≥ (k − 1)|Ei|
k

−
√

2m|Ei|/k. (4)

Eq. 4 can be improved for cases where the maximum degree is bounded
[32] or when k = m = 2 [33]. Since the solution for Max-Cut on graphs
is NP-complete, the extension to simultaneously Max-Cut all the graphs in
a multiplex is naturally NP-complete too. Thus this also implies that the
following balanced minimum bisection problem is NP-complete too [34].

4.2. Balanced Minimum Cut Problem on Multiplex

Corollary 4.1. Consider graph G1, . . . , Gm on the same vertex set V . There
exists a k-partition of V into k ≥ 2 equal-sized communities C1, . . . , Ck (i.e.
|Ci| ≈ |Cj|) such that for all i = 1, . . . ,m and sufficiently large |V |:

# edges cut in Gi ≤
(
n

2

)
− (k − 1)|Ē|

k
−
√

2m|Ē|/k, (5)

where |Ē| =
(
n
2

)
− |Ei|.

Proof. Let Ḡi be the complement graph of Gi, and its edge set is denoted
by Ēi. Since the maximum number of edges in a graph is

(
n
2

)
, hence |Ēi| =(

n
2

)
− |Ei|. Apply (Max-Cut) Theorem 4.1 on the set of complement graphs

Ḡi and substitutes |Ē|i into the result, the expression in the corollary follows.
The proof in Theorem 4.1 ensures that the communities are equal in size.

A partition that fulfills Eq. 5 is not necessary a good community de-
fined in Section 3, vice versa. However the edges induced between partition
classes are often perceived as bottlenecks when information flows through the
network/multiplex. They are similar to the bridges between cities and com-
munities. Therefore Communities Detection Algorithms tend to minimize
the number of edges between different communities.

Unfortunately none of the algorithms in section 5 guarantees communities
of equal size, thus there is no reasonable way to measures the quality of the
algorithms with Eq. 4.1. However in the cases it can be applied, a solution
that is greater than the bound implies that the algorithm performs worse
than randomization. This is due to the proof in Theorem 4.1.
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5. Communities Detection Algorithms for Multiplex

The general strategy for existing communities detection algorithm for
multiplex is to extract features from the multiplex and reduce the prob-
lem to a familiar representation. In solving the reduced representation, the
multiplex-communities are then deduced from the auxiliary solutions of the
reduced problems.

Thus many multiplex algorithms rely on existing monoplex-communities
detection algorithms to get the auxiliary-partitions for the interim steps. The
choice of algorithms is often independent of their extension for multiplex, and
hence any communities detection algorithm in theory can be chosen to solve
the interim steps. In this paper our experiments used Louvain Algorithm to
generate the auxiliary-partitions.

5.1. Projection

The naive method is to projected the multiplex into a weighted graph.
I.e. let Ai be the adjacency matrix of Gi ∈ G. The adjacency matrix of the
weighted projection of G is given by Ā = 1

m

∑m
i=1A

i. We will call this the
“Projection-Average” of multiplex.

It was been independently proposed as a baseline for more sophisticated
multiplex algorithms as the performance is often “sub-par” [3, 4, 35, 7, 5].
In our experiments we will compare this with the unweighted variant, that
is the “Projection-Binary” of a multiplex, i.e. G(V,E1 ∪ . . . ∪ Em).

An alternative weight assignment between vertex pair is to consider the
connectivity of their neighbors, where a high ratio of common neighbors
implies stronger ties [3]. This is based on the idea that members of the same
community tend to interact over the same subset of relations, which was
independently proposed by Brodka et. al in Def. 3.3 [10]. This alternative
will be known as “Projection-Neighbors”.

5.2. Consensus Clustering

The previous strategy aggregates the graphs first, and then it performs
the communities detection algorithm over the resultant graph. It is a poor
strategy as it neglects the rich information of the dimensions [6]. Therefore
the Consensus Clustering strategy is to first apply the communities detection
algorithm on the graphs separately as auxiliary partitions, and then the
principal clustering (multiplex communities) is derived by aggregating these
auxiliary partitions in a meaningful manner.
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The key concept behind consensus clustering is to measure the frequency
with which two vertices are found in the same community among the auxiliary
partitions. Vertices that are frequently in the same monoplex-community are
more likely to be in the same multiplex-community. Therefore the communi-
ties detection algorithm on the individual graphs on the multiplex determines
the structural properties of multiplex-communities, whereas Consensus Clus-
tering determines the relational properties of the multiplex-communities.

5.2.1. Frequent Closed Itemsets Mining

Data-mining is to find a set of items that occurs frequently together in
a series of transactions. For example items like milk, cereal and fruits are
frequently bought together in supermarkets based on a series of sales trans-
actions. These sets are known as itemsets. Berlingerio et. al translates the
Consensus Clustering of the auxiliary-partitions as a data-mining problem
to discover multiplex-communities [36].

The vertices in the multiplex defines the |V | transactions for the data-
mining, and the items are tuples (c, d) where the respective vertex belongs
in monoplex-community c in dimension d. For example suppose vertex vi
belongs to monoplex-communities c1, c5 and c2 in dimensions d1, d2 and d3
respectively. The ith transaction is the set of items {(c1, d1), (c5, d2), (c2, d3)}.
Therefore when we use data-mining methods like Frequent Closed Itemsets
Mining, we are able to identify the frequent (relative to a predefined thresh-
old) itemsets as multiplex-communities.

For example each vertex is a customer’s transaction in a supermarket, and
a community is a target market that the supermarket wants to discover. It
is only meaningful if the target market is sufficiently large, and thus we need
to defined the minimum community size (e.g. 10). In this case a customer’s
transaction is his auxiliary-communities membership. Therefore Frequent
Closed Itemsets Mining will extract a multiplex-community on at least e.g.
10 vertices with which each customer’s transaction is a subset of the target
market’s itemsets.

5.2.2. Cluster-based Similarity Partitioning Algorithm

Cluster-based Similarity Partitioning Algorithm averages the number of
instances vertex pairs are in the same auxiliary-communities. For example in
a multiplex with 5 dimensions, if there are 3 instances where vertices vi and
vj are in the same auxiliary-community, then the similarity value of vertex
pair (vi, vj) is 3/5.
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Once the similarity is measured for all the vertex pairs, the principal
cluster is determined with k-means clustering — vertices with the closest
similarity at each iteration are grouped together. Therefore vertex pairs that
are frequently in the same auxiliary-communities will have high similarity
value, and hence more likely to be clustered together in the same principal-
community. This is known as Partition Integration by Tang et. al [6].

5.2.3. Generalized Canonical Correlations

Each of the auxiliary-partitions maps the vertices as points in a l-dimensional
(this dimension is independent to the dimensions of a multiplex) Euclidean
space. The points are positioned in a way that the shorter the shortest path
between two vertices are, the closer they are in the Euclidean space. One of
such mapping can be achieved by concatenating the top eigenvectors of the
adjacency matrix. Thus given d graphs in a multiplex, there are d structural
feature matrices Si of size l × n where the column in each matrix is the
position of a vertex in the l-dimensional Euclidean space.

Tang et. al wants to aggregate the structural feature matrices to a prin-
cipal structural feature matrix S̄ such that the principal partition can be
determined from S̄ [6]. The “average” S̄ = 1

d

∑d
i=1 S

(i) however does not re-
sult in sensible principal structural feature matrix since the matrix elements
between S(i) and S(j) are independent.

A solution to fix this problem is to transform the S(i) such that they
are in the same space and their “average” is sensible. That is the same
vertex in the d different Euclidean spaces are aligned in the same point in a
Euclidean space. Specifically we need a set of linear transformations wi such
that they maximize the pairwise correlations of the S(i), and Generalized
Canonical Correlations Analysis is one of such standard statistical tools [37].
This allows us to “average” the structures in a more sensible way:

S̄ =
1

d

d∑
i=1

S(i)wi. (6)

Finally the principal partition is determined via k-mean clustering of the
principal feature matrix S̄.

5.3. Bridge Detection

A bridge in a graph refers to an edge with high information flow, like the
busy roads between two cities, where the absence of these roads separates the
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cities into isolated communities. One way to do this is to project the multi-
plex G to a weighted network and determine the bridges from the projection.
Alternatively one can remove them by the definition of a multiplex-bridge to
get the desired partitions.

In social networks, strong edge ties are desirable within the communities.
Hence to identify weak ties between vertex pairs, Brodka et. al proposed
CLECC (Eq. 3) as a measure. At each iteration, all connected vertex pairs
are recomputed and the pair with the lowest CLECC score will be discon-
nected in all the graphs. The algorithm halts when the desired number of
communities (components) are yielded greedily [10]. This is the same strat-
egy presented by Girvan and Newman, where the bridges of a graph were
identified by their betweenness centrality score [38].

5.4. Tensor Decomposition

Algebraic Graph Theory is a branch of Graph Theory where algebraic
methods like linear algebra are used to solve problems on graph. Hence the
natural representation for a multiplex is a 3rd-order tensor (as a multidimen-
sional array) instead of a matrix (2nd-order tensor). The set of m graphs in
a multiplex is a set of m n×n adjacency matrices, which can be represented
as a m×n×n multidimensional array (tensor) [8]. This allows us to leverage
on the available tensor arithmetics like tensor decomposition.

Tensor decompositions are analogues to the singular value decomposition
and ’Lower Upper’ decomposition in matrices, where they express the tensor
into simpler components. For example a PARAFAC tensor decomposition
[39] is the rank-k approximation of a tensor T as a sum of rank-one tensors
(vectors ū(i), v̄(i) and w̄(i)), i.e.:

T ≈
k∑

i=1

ū(i) ◦ v̄(i) ◦ w̄(i). (7)

where ā ◦ b̄ denotes the vector outer product. The components in the ith

factor, ū(i), v̄(i) and w̄(i), suggest that there are strong ties (possibly a clus-
ter/community) between the elements in ū(i) and v̄(i) via the dimension in
the top component in w̄(i).

For instance suppose the jth element in w̄(i) is the most largest element.
This suggests that in the ith community, the top 10 (or any predefined thresh-
old) elements in ū(i) are in the same cluster as the top 10 elements in v̄(i) via
the jth dimension/relationship [40, 41, 42, 43].
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6. Benchmark Multiplex

An Erdős-Rényi Graph is a graph where vertex pairs are connected with
a fixed probability [44]. The random nature of this construction usually does
not have meaningful communities structures in them. Hence it is not an good
benchmark graph for Communities Detection Algorithms.

A benchmark graph should be similar to the Girvan and Newman Model
where some random edges are induced between a set of dense subgraphs
(as communities) to form a single connected component/graph. The set
of dense subgraphs acts as “ground-truth” communities of the graph for a
Communities Detection Algorithm to discover. The goal of this section is to
design similar benchmarks for multiplex.

The main challenge is that there is not yet a universally accepted defi-
nition of a good multiplex community. Hence there is no methodology for
us to construct a benchmark such that it does not favor certain algorithms.
Therefore the objective of the following benchmark graphs is to study the
correlations between these multiplex-communities detection algo-
rithms. This allows us to use a collection of highly uncorrelated algorithms
to study different perspectives of a multiplex-community.

6.1. Unstructured Synthetic Random Multiplex

The simplest construction of a random multiplex is to generate a set of
independent graphs on the same vertex set. However many algorithms are
based on the observations of real world multiplexes and hence will not yield
interesting results on such random construction. We name such random
multiplexes as Unstructured Synthetic Random Multiplex (USRM), and they
are analogous to Erdős-Rényi Graphs where Communities Detection Algo-
rithms should not find any meaningful communities in them. Table 1 lists all
six combinations of Erdős-Rényi, Watts Strogatz [45] and Barabási-Albert
graphs [46] as benchmark USRMs.

For higher dimensional USRMs, we will only consider the combinations of
Watts Strogatz and Barabási-Albert graphs as their projections exhibit real-
world characteristics like high clustering coefficient and power-law like degree
distribution [47]. Furthermore in the experiments (later) we show that only
USRMs with Watts Strogatz graphs yield meaningful communities. Hence it
is reasonable to include at least one Watts Strogatz graph for multiplexes with
> 2 relationships. Thus let USRM-Rdi refer to a multiplex on d relationships
with i Watts Strogatz graphs and (d− i) Barabási-Albert graphs.
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Name Graph 1 Graph 2
USRM1 Erdős-Rényi Erdős-Rényi
USRM2 Erdős-Rényi Watts Strogatz
USRM3 Erdős-Rényi Barabási-Albert
USRM4 Watts Strogatz Watts Strogatz
USRM5 Watts Strogatz Barabási-Albert
USRM6 Barabási-Albert Barabási-Albert

Table 1: Different combinations of USRM benchmark

6.2. Structured Synthetic Random Multiplex

This construction is similar to the Girvan and Newman Model where
independently generated communities are connected in a way such that the
“ground-truth” communities remains. However we saw above that there are
different perspectives of multiplex communities and we want to encapsulate
these ideas into a single multiplex benchmark.

Structured Synthetic Random Multiplex (SSRM) is a construction where
different definitions of high quality multiplex-communities exists in distinct
multiplex-partitions. However at the same time each partition is “less-than-
ideal” quality by the other definitions of multiplex-communities.

We begin with a collection of high quality multiplex-communities as de-
fined in section 3. Next we modify these multiplex-communities such that
it remains good in one of the three multiplex-communities definitions and
poor quality by the others. Lastly combine these multiplex-communities into
a single multiplex as our SSRM benchmark (Fig. 1).

Fig. 1 shows {[c1, c2], [c3, c4]} as a partition with 2 communities where
clusters 1 and 2 form a community and cluster 3 and 4 form the second com-
munity. This partition has high redundancy, low modularity and low CLECC
multiplex-communities. Whereas partition {[c1, c3], [c2, c4]} has high modu-
larity communities, but low in the remaining metrics. Finally {[c2, c3], [c1, c4]}
is the partition where communities have high CLECC vertex pairs. This con-
struction expresses the multi-perspectives of multiplex communities.

6.2.1. High Modularity, Low Redundancy & CLECC Multiplex-Communities

To create a high modularity multiplex-community, we begin with c1 and
c3 (cluster 1 and 3) as cliques in both dimensions. For these clusters to be
low in redundancy, we have to remove some edges in both clusters such that
there are very few overlapping edges in the clusters while maintaining high
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c1

c2

c3
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III
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Figure 1: To aid visualization, the edges in this two dimensional SSRM are drawn with
solid and dashed lines. Let clusters c1 and c3 be dense subgraphs where there are more
solid edges than dashed edges. Similarly c2 and c4 are dense subgraphs with more dashed
edges than solid edges. I: The solid edges between c1 & c4 implies that there are only solid
edges between them. This applies the same to the dashed edges between c2 & c3. II: All
the edges between c1 & c2 (or c3 & c4) overlap. III: None of the edges between c1 & c3
(or c2 & c4) overlaps. We denote {[c1, c2], [c3, c4]} as a partition with 2 communities where
clusters 1 and 2 form a community and cluster 3 and 4 form the second community. This
partition has high redundancy, low modularity and low CLECC multiplex-communities.

modularity. This is done by making the first dimension graph in both clusters
to be the complement graph in the second dimension.

Next, add edges between c1 and c3 such that the resultant cluster is a
connected component. We denote [c1, c3] as the component that connects c1
and c3. To maintain a low redundancy, the new edges cannot overlap.

Finally tweak the clusters such that the CLECC score is low between a
significant number of the vertex pairs in the combined component of c1 and
c3. Specifically we want the vertex pairs connected by the new edges in the
previous step to have low CLECC scores. This is possible if c1 has more edges
in the first dimension whereas c3 has more edges in the second dimensions.
In doing so the neighbors of the vertex in c1 will be significantly different
from the neighbors of vertex in c3, thus a low CLECC score.

The same construction applies to c2 and c4 (cluster 2 and 4), where they
are similar to c3 and c1 respectively.
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6.2.2. High CLECC, Low Modularity & Redundancy Multiplex-Communities

Since all the clusters do not have overlapping edges, the redundancy re-
mains low for the multiplex. Therefore the first step is to increase the CLECC
of c1 and c4, and apply the same construction for c2 and c3.

Since c1 and c4 are similar from the previous subsection, the neighbors
of any vertex in each cluster will be similar too. Therefore by adding new
edges between c1 and c4 will increase the CLECC score. However these new
edges should only be drawn in the first dimension, since it is the dominant
dimension in [c1, c4]. This simultaneously reduces the modularity of [c1, c4]
in the second dimension, since the clusters are not connected and the graph
in the second dimension is sparse. This gives a low modularity for multiplex
communities while maintaining the high CLECC score.

The construction is similar for c2 and c3, expect that only edges in the
second dimension connects the clusters together.

6.2.3. High Redundancy, Low Modularity & CLECC Multiplex-Communities

Given [c1, c3] have low CLECC score, the same score should apply for
[c1, c2] since c2 and c3 are similar. The main goal is to connect c1 and c2
such that the redundancy of [c1, c2] is high. Redundancy is measured by
Eq. 1, where it counts the number of edges that overlaps. Since there is
no overlapping edges at this point of the construction, the simplest way to
increase the redundancy is to add new overlapping edges between clusters to
form the components [c1, c2] and [c3, c4].

Although [c1, c2] and [c3, c4] have relatively high redundancy as compare
to other partition in the multiplex, it can still have lower redundancy than
a random community in USRM1. To nudge the redundancy higher, it is
necessary to add new edges such that there are overlaps in the four clusters.
However this might increase the modularity of [c1, c2] which we want to avoid.
Therefore this final step has to be done incrementally.

6.2.4. Evaluation of the different ground truth partitions

There are three different “ground-truth” partitions, i.e. {[c1, c2], [c3, c4]},
{[c2, c3], [c1, c4]} and {[c1, c3], [c2, c4]}, where they each represents a different
“ideal-partition”. However simultaneously they are “less-than-ideal” from
the perspective of the other metrics. Although some of these metrics are
correlated (from our experiments) in general, the ground-truth partitions of
SSRM show that these metrics are each able to capture essential aspects of
the community structure.
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Redundancy *CLECC **Modularity
[c1, c2] 0.0492 0.1142 -0.0287
[c3, c4] 0.0537 0.1087 -0.0332
[c2, c3] 0 0.1541 0.007
[c1, c4] 0 0.1642 0.012
[c1, c3] 0 0.1113 0.0317
[c2, c4] 0 0.1083 0.0245
Random 0.0217 0.1056 0.0033

Table 2: The rows are paired up to infer communities in the same partition. E.g. the
first two rows are communities of the partition {[c1, c2], [c3, c4]}. The redundancy and
CLECC score of community [c1, c2] are 0.0492 and 0.1142 respectively. *CLECC: The
CLECC score is the average CLECC score between all vertex pairs in the community.
**Modularity: The two values in the partition refers to the modularity of the two graphs
in the multiplex. E.g. partition {[c1, c2], [c3, c4]} has modularity -0.0287 and -0.0332 for
the first and second dimensions of SSRM respectively. A partition is “less-than-ideal” if
its measurement is closer to a random partition (last row) than the maximum (bold).

For example Table 2 shows that the partition {[c1, c2], [c3, c4]} has com-
munities with the maximum redundancy. However it has multi-modularity
and CLECC scores similar to a random partition, suggesting that it is “less-
than-ideal” relative to other metrics.

6.3. Real World Multiplex

6.3.1. Youtube Social Network

Youtube is a video sharing website that allows interactions between the
video creators and their viewers. Tang et al. collected 15,088 active users
to form a multiplex with 5 relationships where two users are connected if 1)
they are in the contact list of each other; 2) their contact list overlaps; 3)
they subscribe to the same user’s channel; 4) they have subscription from a
common user; 5) and they share common favorite videos. [6].

6.3.2. Transportation Multiplex (Multimodal Network)

Cardillo et al. constructed an air traffic multiplex from the data of Euro-
pean Air Transportation (EAT) Network with 450 airports as vertices [48].
An edge is drawn between two vertices if there is a direct flight between
them. Each of the 37 distinct airlines in the EAT Network forms a relation-
ship between airports.
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7. Comparing Partitions

Normalized Mutual Information [49] and Omega Index [50] will be used to
compare the partitions. Although NMI is a popular choice in the literature,
only Omega Index allows us to measure solutions where the communities
overlaps and accepts vertices with no community membership. Such cases are
common in algorithms like Frequent Closed Itemsets Mining and PARAFAC.

7.1. Normalized Mutual Information (NMI)

Let H(A) = −
∑

k P (ak) logP (ak) be the Shannon entropy where P (ak)
is the probability of a random vertex is in the kth community of partition A.
Mutual Information I(A;B) measures the information of the communities-
membership of all vertex-pairs in A given the communities-membership in B,
vice versa. Roughly speaking given B, how well can we guess that a vertex
pair is in the same community in A? Formally this is defined as:

I(A;B) =
∑
j

∑
k

P (ak ∩ bj) log
P (ak ∩ bj)
P (ak)P (bj)

, (8)

where P (ak ∩ bj) is the probability that a random vertex is both in kth and
jth communities. Basically the larger the intersection of the kth and jth

communities of A and B respectively is, the higher the Mutual Information.
Finally we normalize the Mutual Information score between [0, 1] so that
NMI=1 implying identical partition:

NMI(A,B) =
I(A;B)

[H(A) +H(B)]/2.
(9)

7.2. Omega Index

The unadjusted Omega Index averages the number of vertex pairs that
are in the same number of communities. Such vertex pairs are known to
be in agreement. Consider the case with two partitions A and B, and the
number of communities in them are |A| and |B| respectively. The function
tj(A) returns the set of vertex pairs that appears exactly in j ≥ 0 overlapping
communities in A. Thus the unadjusted Omega Index:

ωu(A;B) =
1(
n
2

) max(|A|,|B|)∑
j=0

|tj(A) ∩ tj(B)|. (10)
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To account for vertex pairs that are allocated into the same communities
by chance, we have to subtract it from expected omega index of a null model:

ωe(A;B) =
1(
n
2

)2 max(|A|,|B|)∑
j=0

|tj(A)| · |tj(B)|. (11)

Finally normalize the Omega Index:

ω(A;B) =
ωu(A;B)− ωe(A;B)

1− ωe(A;B)
. (12)

Identical partitions have a score of 1 and negative Omega Index simply
means there are less agreement than pure stochastic coincidence would expect
(i.e. not similar). Omega Index can also be used to measure non-overlapping
partitions. In such case the metric is then reduced to the Adjusted Rand
Index, which is also a popular alternative to NMI [51].

7.3. Notations For Empirical Results

To simplify the plots exhibiting the results from our experiments, we will
use some shorthands to denote the algorithms and partitions. For communi-
ties detection algorithms, we useA and P to denote “Algorithm” and “SSRM
Partition” respectively (Table 3).

Notation Description
A1 Projection-Binary
A2 Projection-Average
A3 Projection-Neighbors
A4 Cluster-based Similarity Partition Algorithm
A5 Generalized Canonical Correlations
A6 CLECC Bridge Detection
A7 Frequent Closed Itemsets Mining
A8 PARAFAC, Tensor Decomposition
P1 {[c1, c2], [c3, c4]} of SSRM
P2 {[c2, c3], [c1, c4]} of SSRM
P3 {[c1, c3], [c2, c4]} of SSRM

Table 3: Shorthands for the different algorithms and “ground-truth” communities.
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8. Comparison of Multiplex-Communities Detection Algorithms

8.1. Benchmark Parameters

To thoroughly compare the algorithms, the size of the vertex set for the
synthetic networks is |V | = 128. This is to allow us to run 100 trials on
each benchmark within manageable time as algorithms like Cluster-based
Similarity Partition can be computationally inefficient (∼ O(|V |2)).

Moreover it is important that the number of edges are equal for all graphs
so that none of them dominates the interactions of the multiplex. To ensure
that the Erdős-Rényi graphs are connected with high probability, the prob-
ability that a vertex pair is connected has to be > ln |V |/|V |. Therefore the
number of edges in every graph is

(
128
2

)
2 ln 128/128 ≈ 616.

8.2. Algorithm Parameters

Some of the multiplex-communities detection algorithms require addi-
tional parameters which are independent to the network. For example Fre-
quent Closed Itemsets Mining is parameterized by the minimum size of a
community. In the case for the synthetic multiplexes on 128 vertices, the
minimum size of a community is 10. This is derived by fine-tuning the pa-
rameter such that there are ≥ 2 communities in the solution. Similarly for
the real-world multiplexes, the size of the community is ≥ 50.

The main parameter for CLECC Bridge Detection is the α in Def. 3.3,
which defines a vertex’s set of neighbors where they are adjacent in at least
α graphs. Despite experimenting with different α, there is no consistent
value such that it will always yield meaningful communities for all 100 trials
on any given synthetic benchmark. Thus in the experiments, we simply set
α = d|G|/2e for the CLECC score in Eq. 3.

PARAFAC is parameterized by the rank of the approximation and the
threshold to define the top x components in the rank-one tensors. This is
usually done by manually fine-tuning [40, 41, 42, 43], however it is infeasible
for our numerous random trials. Thus x is chosen for every rank-one tensor
such that the difference between the xth and x+ 1th element is greater than
the average difference among the elements in the rank-one tensor.

Lastly the final step for Cluster-based Similarity Partition and Gener-
alized Canonical Correlations is k-mean clustering. Since these algorithms
maximize the modularity of every graph in the multiplex, the best values of
k is chosen such that it maximizes the multi-modularity (section 3.2).
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8.3. Unstructured Synthetic Random Multiplex
Figure 2 shows the Omega Index of all pairwise multiplex communities

detection algorithms for the USRM benchmarks. The last 13 boxplots on the
right are the pairwise comparisons with overlapping-communities algorithms,
i.e. A7 and A8 (Frequent Closed Itemsets Mining and PARAFAC).

The first observation is that A8 (PARAFAC) is not similar to any of the
algorithms. One of the reasons is that it is hard to choose the right parame-
ters (without manual fine-tuning) for PARAFAC such that it is consistently
similar to any of the other algorithms. Furthermore there is no strong reason
that such parameter exists.

Overlapping-communities algorithm A7 (Frequent Closed Itemsets Min-
ing) is similar to a class of non-overlapping algorithms, i.e. A1 to A4. Specif-
ically Frequent Closed Itemsets Mining is similar to the class of Projection
algorithms (A1 to A3). In fact the Omega Index for all pairwise comparisons
of F = {A1,A2,A3,A4,A7} is generally greater than the other algorithm
pairs. This is supported by their NMI scores in Fig. 3.

However the family of algorithms F has low pairwise Omega Index and
NMI scores for USRM 1, 3 and 6. There is no fundamental reasons to why
the class of projection algorithms (A1 to A3) should produce non similar
communities, therefore we can deduce that USRM 1, 3 and 6 are not good
multiplexes for benchmarks.

The reason is that USRM1 is the combination of two Erdős-Rényi graphs,
thus there is no community structure. Whereas USRM 3 and 6 are the com-
binations of Barabási-Albert graph with Erdős-Rényi and Barabási-Albert
respectively. Although Barabási-Albert has structural properties, it has low
Clustering Coefficient (similar to Erdős-Rényi), which measures the tendency
that vertices cluster together. Therefore the vertices in USRM 3 and 6 do
not form communities.

To increase the clustering coefficient of a multiplex, we can introduce a
Watts Strogatz graph to the system. We can approximate the clustering
coefficient of the projection of such multiplexes [47] and deduce the tendency
that communities exists. This allows us to observe interesting relationships
between the algorithms from benchmark multiplexes like USRM 2, 4 and 5.

For example USRM 5 in Fig. 3 shows that the similarity range of F with
A6 (CLECC Bridge Detection) is wide. This is more apparent when we study
their relationship with SSRM benchmark.

However in higher dimension, the observations are different where Fig.
4 shows the Omega Index of various parameters of USRM-Rdi. Firstly the
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Figure 2: The Omega Index of all pairwise multiplex-communities detection algorithms for
the different benchmark USRM. The tuple (i, j) on the x-axis refers to the pairwise com-
parison ofAi andAj . The tuples are arranged such that the comparisons with overlapping-
communities algorithms (13 tuples) are placed on the right. Note that the scale of the
figures on the left is different from the scale on the right.
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Figure 3: The NMI scores of all pairwise non-overlapping multiplex-communities detection
algorithms for USRM benchmarks. The tuples are arranged such that pairwise compar-
isons of {A1,A2,A3,A4} are grouped to the left of the boxplots. The “interesting” figures
USRM 2, 4 and 5 are placed to the right for comparison.
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Figure 4: The Omega Index of all pairwise multiplex-communities detection algorithms
on USRM-R31, USRM-R32, USRM-R51, USRM-R53, USRM-R73 and USRM-R75. The
behavior of the algorithms is drastically different from the 2-dimensional cases.
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family of algorithms F = {A1,A2,A3,A4,A7} is no longer pairwise similar.
Although Projection-Binary (A1) is somewhat similar to Projection-Average,
Projection-Neighbors and Cluster-based Similarity Partition (A2,A3,A4), the
rest of the algorithms are not pairwise similar.

The assignment of the weight on the edges for Projection-Average and
Projection-Neighbors are clearly different since the former concerns the con-
nectivity between vertex pairs whereas the latter concerns the connectivity
between the neighbors of vertex pairs. This difference is more apparent for
higher dimensions. However this disparity does not appears in real-world
data (section 8.5).

It is particularly interesting that although Projection-Average (A2) and
Cluster-based Similarity Partition (A4) are not similar, they are both rela-
tively similar to CLECC Bridge Detection (A6). Moreover only at higher
dimensions Projection-Average is similar to Generalized Canonical Corre-
lations (A6). There is no strong arguments to this statistical observations
besides that these algorithms follows the general strategy to prefer vertex
pairs that are similar locally.

8.4. Structured Synthetic Random Multiplex

In the previous section, USRM benchmark suggests that {A1,A2,A3,A4}
yields similar communities. However Fig. 5 shows that the SSRM commu-
nities from A4 (Cluster-based Similarity Partition Algorithm) are distinct
from the class of projection algorithms (A1 to A3). Therefore we can con-
clude that Cluster-based Similarity Partition Algorithm provides an alter-
native perspective for multiplex-communities, and it is not reducible to the
class of projection algorithms.

Recall from the last observation in the previous section that the similarity
range of A6 (CLECC Bridge Detection) with projection algorithms is wide.
Fig. 5 shows that there are cases where they are very different (close to NMI
= 0), and there are cases where the NMI > 0.8. In this way our experiments
highlights the weakness of the CLECC Bridge Detection algorithm.

CLECC occasionally yields separate components prematurely, where one
of the components is a small cluster of vertices or even a single vertex as a
community. Therefore it appears that CLECC yields significantly different
communities since the rest of the algorithms tend to produce balanced-size
communities. Hence if we exclude such cases, CLECC Bridge Detection is
similar to projection algorithms for SSRM.
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Figure 5: The NMI scores of all pairwise non-overlapping multiplex-communities detection
algorithms for SSRM benchmarks. The tuples are arranged in the same way as Fig. 3.

Finally we will compare the algorithms with the “ground-truth” partitions
P1, P2 and P3. Table 4 shows that none of the algorithms were able to capture
P1, which is the partition with high redundancy. A3 (Projection-Neighbors)
was proposed to extract high redundancy communities [3].

In contrast, A6 (CLECC Bridge Detection) was able to find the high
CLECC partition P2. However it does not have any advantage over any of
the projection algorithms (A1 to A3). This further supports that CLECC
Bridge Detection is similar to the class of projection algorithms.

The results by Tang et. al shows that A5 (Generalized Canonical Cor-
relations) tends to be better than A4 (Cluster-based Similarity Partition
Algorithm) to capture high-modularity communities like P3 [6]. This was
also observed in this experiment.

8.5. Real World Multiplex

The results for the European Air Transportation Network is similar to
the Youtube Social Network, hence Fig. 6 is sufficient for this discussion.
The general observation is similar to USRM 2, 4 and 5 in Fig. 2, where
the set of projection algorithms, Cluster-based Similarity Partition and Fre-
quent Closed Itemsets Mining ({A1,A2,A3,A4,A7}) are relatively similar
with pairwise NMI score of ≈ 0.55.
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P1 P2 P3

A1 0 0.983 0
A2 0.002 0.94 0.017
A3 0 0.978 0
A4 0.019 0.14 0.083
A5 0.004 0.002 0.158
A6 0.006 0.964 0.006

Table 4: The NMI scores between the algorithms and the different ground-truth partitions.
The entries in bold represents the algorithms that are “close” to the ground-truth partition.

In addition, Fig. 6 highlights that overlapping-communities detection al-
gorithmA8 (PARAFAC) is relatively more similar toA5 (Generalized Canon-
ical Correlations) than the other non-overlapping communities detection al-
gorithms. This observation was less apparent in Fig. 2.

Unfortunately A6 (CLECC Bridge Detection) tends to halt prematurely
despite different parameter choices. Hence we did not managed to get any
insight for CLECC Bridge Detection in this experiment.
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Figure 6: The Omega Index heatmap of all pairwise algorithms for the European Air
Transportation Network. This result is similar to the Youtube Social Network.
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8.6. Summary

The parameters in CLECC Bridge Detection, Frequent Closed Itemsets
Mining and PARAFAC (A6, A7 and A8) require manual fine-tuning to yield
meaningful communities. Hence it is not practical to exhaustively test for
all configurations for these algorithms. However the outcome of the analysis
doesn’t change in any essential way for the different choice of parameters.

From USRM benchmarks and real world multiplexes, algorithms in the
set {A1,A2,A3,A4,A7} tends to generate relatively similar partitions, i.e.
the projection algorithms, Cluster-based Similarity Partition and Frequent
Closed Itemsets Mining. However SSRM demonstrates that Cluster-based
Similarity Partition is able to capture high redundancy communities and
yielded differently from the class of projection algorithms.

Our experiments with USRM and SSRM benchmarks support that A6

(CLECC Bridge Detection) is similar to the class of projection algorithms
{A1,A2,A3} when the algorithm does not infer small clusters of vertices as
communities. Therefore CLECC Bridge Detection is not very stable without
careful analysis.

Finally we have to emphasize that the Omega/NMI Index are generally
low (< 0.5) for most pairwise comparisons. This implies that the algorithms
perceive less-than-ideal multiplex-communities differently. Moreover our re-
sults show that there are some vertex clusters within communities that are
more likely to be captured by certain algorithms than the others.

This paper emphasizes that there is no notion that one algorithm su-
persedes another in accuracy as the definition of a multiplex-community
varies according to the applications. Therefore there is no meaningful ad-
vantages/disadvantages for any of the algorithms as they were designed for
different purposes. Some algorithms like Generalized Canonical Correlations
prioritize on structural features (e.g. multi-modularity) while others like
CLECC Bridge Detection prioritize on relational features (e.g. high density
of overlapping edges).

Therefore there is no quantitative way to measure the pros and cons of the
algorithms, although by the anecdotal experiences during the experiments,
certain algorithms requires more attention to fine-tune their parameters and
hence not easily applied in practice. This is particularly true for algorithms
that requires > 1 parameters like CLECC Bridge Detection and PARAFAC.

This paper left out the explanation to why in 2-dimensional USRMs the
algorithms behave different from higher dimensional USRMs. Currently the
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literature do not have the sufficient understanding to the stability of the
dynamics (e.g. centrality, information propagation, etc) in general when new
layers are added into the multiplex. Therefore it is hard for us to make a
meaningful statement without further development from multiplex research
(read section 9).

The diversity of the algorithms, multiplex parameters, and the different
concepts of multiplex-communities illustrate the complexity and multifaceted
nature of multiplex research. There is no consistent observation that is true
for all the different benchmarks which is the highlight of this paper. There are
many degrees of freedom to construct a multiplex benchmark or to tweak the
algorithm parameters such that we get a different perspective and conclusion.
Thus it is important for this paper to consolidate these algorithms and be
consciously aware of the complexity around the problem. Due to the low
pairwise similarity of many algorithms, the wrong choice of algorithm (or
concept) can easily deviates one from the intended direction!

9. Discussions, Conclusion and Future Work

The literature review and SSRM benchmark highlight the additional com-
plexity to define a multiplex-community. It is a balance between the struc-
tural topology of the communities and their relationships. Thus SSRM is
a useful benchmark to bring out the fundamental differences between these
algorithms. Therefore further research is done to improve SSRM such that
the different definitions of communities are more apparent.

The main contribution of this paper is to consolidate and compare all
the existing multiplex-communities detection algorithms. The long list of
synonymous names for multiplex causes many researchers to be unaware of
related efforts for multiplex, and hence has a tendency to make this research
some what diffuse and fragmented [19, 20]. Therefore we hope that this
paper brings awareness for further developments on multiplex-communities
detection algorithm such that researchers can build on to the existing ideas.

During the peer review and the revisions of this paper, more related
research (preprints) surfaced into the literature. Some are relatively new
research and some are from disciplines that we have not explored during our
research. Regrettably it is hard to include them without major rewriting,
re-simulations and the time to review these preprints (as they are not peer
reviewed yet). However for completeness the following is an outline of these
research.
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• Barzinpour et al. proposed a spectral approach to communities detec-
tion. It is similar to Generalized Canonical Correlations (section 5.2.3)
where the multiplex is mapped to a Euclidean Space (using the top
few eigenvectors) and apply k-mean clustering. In addition from the
communities one can define the closeness centrality of multiplex [52].

• Multiplex communities detection can be presented as a heterogeneous
data clustering in computer science, specifically database management.
Thus using their specialized tools like Relational Bayesian Networks,
one can use the result to interpret the communities in multiplex [53].

• Given two auxiliary-partitions of two networks in a multiplex, Hao et
al. proposed a metric (impact-strength-index) to measure how much
influence the monoplex-communities in one of the auxiliary-partitions
onto the monoplex-communities of the other auxiliary-partition[54].

• Zhu and Li proposed another type of projection algorithm. The first
step is to quantify the importance of every monoplex by measuring
how correlated one monoplex is to the rest of the multiplex. In the
second step, every monoplex yield a similarity matrix (with another
proposed metric) between all pairwise nodes. The projected network is
a function of the results from the earlier steps. [55]

• MutuRank by Wu et al. is also based on the strategy of projection. It
uses both the probability distributions that a vertex chooses its neigh-
bors and that the same vertex chooses its dimension to form a distri-
bution on the frequency of the relationships. This relation distribution
is then used to project the multiplex in a linear way [56].

• Infomap is a popular monoplex-communities detection algorithm based
on the compressibility of a random walk. Domenico et al. proposed a
multiplex extension by factoring the probability of swapping dimensions
for every node’s transition probability [57].

• Bródka and Grecki proposed a benchmark multiplex based on a well
known network benchmark — LFR Benchmark. Unfortunately only the
source code (with little documentation) is given, hence we are unable
to further describe the construction [58].
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Lastly we thank the anonymous reviewers for their time and constructive
comments. Although we began this paper with the goal to consolidate the
disparate literature, it appears that the criticisms and the questions from the
reviewers also open the Pandora’s Box for future work. With hindsight it
is really peculiar that none of the algorithms or research (including the first
revision of this paper) attempts to understand the change of the communities
when layers are added/removed from the system. Hence we believe that the
stability of the dynamics (e.g. communities and centrality) of multiplex is
paramount for future work.

[1] G. Cormode, S. Muthukrishnan, Space efficient mining of multigraph
streams, in: Principles of Database Systems, 2005.

[2] M. Gjoka, C. T. Butts, M. Kurant, A. Markopoulou, Multigraph sam-
pling of online social networks, IEEE J. Sel. Areas Commun. on Mea-
surement of Internet Topologies (2011) –.

[3] M. Berlingerio, M. Coscia, F. Giannotti, Finding and characterizing
communities in multidimensional networks., in: ASONAM, 2011.

[4] P. Kazienko, K. Musial, E. Kukla, T. Kajdanowicz, P. Bródka, Mul-
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