
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

34

Simplification of Boolean Algebra through

DNA Computing
Sanchita Paul

B.I.T Mesra,
Ranchi

Gadadhar Sahoo

B.I.T Mesra
Ranchi

ABSTRACT

DNA Computing utilizes the properties of DNA

for performing the computations. The

computations include arithmetic and logical

operations such as simplification of Boolean

expression to its simplest form. Boolean function

can be built from ANDs, ORs, and NOTs using

minterm expansion. However, a practicing

computer engineer will very rarely be satisfied

with a minterm expansion, because as a rule, it

requires more gates than necessary. The laws and

identities of Boolean algebra will almost always

allow us to simplify a minterm expansion. The

efficiency of a logic circuit is high when the

number of logic gates used to build it is small.

However, minterm expression may be often

simplified to a simpler Boolean expression, which

can be implemented with fewer logic gates.

In this paper we introduced a new DNA

computing algorithm for reducing any Boolean

expression to its simplest form by using DNA

strands. The major benefits of this method are its

extraordinary information density, vast parallelism

and ease of operation. In addition the most merit

of this DNA Algorithm is its automation

characteristics, and simple coding steps.

Keywords

DNA computing, Minterms, Simplify, DNA

Strands, Boolean expression.

1. INTRODUCTION

DNA computing is new computation paradigms,

which proposes the use of molecular biology tools

to solve different mathematical problems. It is a

form of computing which use DNA, biochemistry

and molecular biology, instead of the traditional

silicon-based computer technologies. DNA

computing is interested in applying computer

science methods and models to understand such

biological phenomena and gain interest into early

molecular evolution and origin of biological

information processing. The primary advantage of

DNA based computation is the ability to handle

millions of operations in parallel. DNA computing

is fundamentally similar to parallel computing in

that it takes advantage of the many different

molecules of DNA to try many different

possibilities at once.

DNA computing has two important features,

which are Watson-Crick complimentarily and

massive parallelism. Using the features, we solve

some optimization problems, which usually need

exponential time on silicon-based computers, in

polynomial steps with DNA molecules.

However, for DNA computing to be applicable on

a various range of problems for primitive

operations, such as logic or arithmetic operations.

A number of procedures have been proposed for

the primitive operations with DNA molecules [1],

[3], [4], [10], [11], [12], [14].

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

35

Boolean algebra:

Boolean algebra is algebra for the manipulation of

objects that can take on only two values, typically

true and false, although it can be any pair of

values. Because computers are built as collections

of switches that are either “on” or “off,” Boolean

algebra is a very natural way to represent digital

information. In reality, digital circuits use low and

high voltages, but for our level of understanding, 0

and 1 will suffice. It is common to interpret the

digital value 0 as false and the digital value 1 as

true.

Boolean Expression:

A Boolean expression on the Boolean variables

{x1, x2, ..., xn} is an expression using those

variables and the operations of a Boolean algebra.

Every Boolean expression defines a Boolean

function. Boolean function can be built from

ANDs, ORs, and NOTs using minterm expansion.

Simplification of Boolean algebra:

The laws and identities of Boolean algebra will

almost always allow us to simplify a minterm

expression. The efficiency of a logic circuit is high

when the number of logic gates used to build it is

small. However, the sum-of-products (minterm)

expression may be often simplified to a simpler

Boolean expression, which can be implemented

with fewer logic gates.

In this paper we introduced a new DNA algorithm

for reducing any Boolean expression to its

simplest form by using different combination of

single strand DNAs. The rest of the paper is

organized as follows: in section 2, we introduce

the mathematical process to simplify Boolean

expression, in section 3, we introduce the DNA

algorithm to simplify the Boolean expression and

section 4, we will give the example that how to

simplify the Boolean Expression by using DNA

computing following by conclusion.

2. SIMPLIFICATION OF

BOOLEAN ALGEBRA

Some standardized forms are required for Boolean

expression to simplify communication of the

expression.

Sum-of-products (SOP): Example:

F(A,B,C,D)= AB+BCD+AD

The minterms in this sum correspond to those

combinations of the values for which the function

has a value of 1. This Boolean sum is sometimes

called a sum of products expansion or

disjunctive normal form.

We know that any Boolean function can be built

from ANDs, ORs, and NOTs using minterm

expansion. However, a practicing computer

engineer will very rarely be satisfied with a

minterm expansion, because as a rule, it requires

more gates than necessary. The laws and identities

of Boolean algebra will almost always allow us to

simplify a minterm expansion. For example, the

minterm expansion for a Boolean function f of

three variables might be represented as follows:

f = x'y'z' + x'y'z + x'yz' + x'yz + xyz' + xyz

This would require a circuit with maximum gates:

12 ANDs, 5 ORs and 9 NOTs.

Using the identities of Boolean algebra, this

minterm expansion can be simplified

considerably:

f = x'y'z' + x'y'z + x'yz' + x'yz + xyz' + xyz

= x'y'(z' + z) + x'y(z' + z) + xy(z' + z) distributive

law

= x'y' + x'y + xy complementarity & identity

= x'(y' + y) + xy distributive law

= x' + xy complementarity & identity

= x' + y redundancy

So, that big long minterm reduces down to x' + y

which can be built with 1 OR and 1NOT.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

36

Therefore, we will look at a very simple technique

that usually leads to a significant simplification of

minterms. It won't always produce the simplest

form, but it's close enough for most engineers

considering the difficulty of the alternative

method.

3. A NEW DNA ALGORITHM

FOR SIMPLIFICATION

BOOLEAN ALGEBRA

With the help of massive parallelism of DNA

hybridization and the complementary Watson-

Crick law, the optimal simplified expression can

be found by basic molecular operations.

By means of the basic molecular operations such

as merge, separate, denature, detect, etc., are used

to simplify the Boolean expression to its simplest

form.

For any given Boolean expression of „n‟ variables

in sum of products form, first of all we will see

that if all the minterms contains „n‟ variables or

not. If not then we expand the expression with the

possible combinations of variables left out in that

specific minterm.

Algorithm:

Step 1: We choose 4n groups of oligonucleotides

divided into four groups. The oligonucleotides of

the first group represented variables

. The oligonucleotides of the

second group represented variables

……………. (where, x=1 if and only if x=0);

the oligonucleotides of third and fourth group

represented the complementary strands of the first

group (that is) and second

group (that is …………….)

respectively.

Step 2: We generate different 2n combination of

single strands DNA molecules for n variable

where the oligonucleotides of third and fourth

group are ligated according to the 2n combinations

of „n‟ variables and placed those single stranded

DNA molecules in individual 2n test tubes.

Step 3: Now, the oligonucleotides of first and

second groups are ligated according to minterms

of the given expression. And AMPLIFY each

minterms 2n times.

Step 4: Then we MERGE the oligonucleotides of

Step 2 and Step 3. The best paired strands are

kept and remaining unpaired and semi-paired

strands are separated from the test-tubes.

Step 5: The paired strands in each of the test-tube

are denatured and keep the oligonucleotide which

represent the complementary strands of minterms,

in the test tubes and remaining strands are

separated from the test tubes.

Step 6: Two minterms can be combined if they

differ in exactly one literal. This means that their

corresponding bit strings differ at exactly one bit

position (Example: if 3 literals are present in each

minterms then 000 can combined 001, 010, 100

etc.). So, the complementary strands of minterms

which we get from step 5 are amplified n times, if

one minterm can combined with n minterms, (if

they differ in exactly one literal).

Step 7: Now, we have to generate the strands with

combination of (n-1) variables and separate those

strands in n different test tubes. Because n

variables are present in each minterms. (Example:

like 001 minterms having 3 combinations that are

00, 01 and 01seperated in three different test

tubes).

Step 8: Now we have to combined those two

minterms which are differ in exactly one bit

position. (Example: like 001 minterms having 3

combinations that are 00, 01 and 01, seperated in

three different test tubes. Now in that 3 test tube

we merge the complementary strands of 0′0′1′.

 0′

0′0′1′ 0′0′1′ 0′1′

00 01 0 1

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

37

Similarly, 001 differ 000 with exactly 1 bit

position, so 000 minterms having 3 combination of

2 variables that are 00, 00 and 00, separated in

three different test tubes and merge

complementary strands of 0′0′ 0′.

 0′

0′0′0′ 0′0′0′ 0′0′

00 00 0 0

Now we have to check that one combination is

same for both the cases and that is 00).

Step 9: We store only common terms of two

minterms (For above example, that is 00 because

for both the cases common ds DNA is 00 and 0'0')

and remaining portions are left out from the test

tubes.

Step 10: We will denature the ds DNA which we

get in step 9 and keep complementary part of the

common terms (Example: for above case it is 0′0′)

and other are discarded from the test tubes.

Step 11: We store the result.

After getting result we will check any common

terms are left between the minterms. If yes then go

to next step otherwise go to step 18.

Step 12: Then we have to generate the strands

with combination of (n-2) variables and separate

those combinations in different test tubes.

Step 13: Now we have to combined those two

minterms which are differ in exactly one bit

position same as step 8.

Step 14: We store only common terms of two

minterms and remaining portions are left out from

the test tubes.

Step 15: We will denature the ds DNA and keep

complementary part of the common terms in one

test tube.

Step 16: We store the result and check that any

common terms are left between the minterms

which we get from step 15.

Step 17: If yes, then we have to generate the

strands with combination of (n-3) variables and go

to step 7. Process will continue until no common

terms are left.

Step 18: End.

4. Example
For a given three variable expression:

Here each minterms having equal number of

variables. So there is no need of expansion.

Step 1: We choose 12 oligonucleotides which are

divided into 4 groups. The oligonucleotides of the

first group represents variables A, B, C; the

oligonucleotides of the second group represents A,

B, C; and the third and fourth group represent the

complementary strands of first and second group

respectively (Denoted as, A′, B′, C′ and A′, B′,

C′).

Step 2: We generate 23 combinations of single

strands DNA molecules for 3 variables. Where the

oligonucleotides of third and fourth group are

ligated according to the combinations of „3‟

variables and placed in individual test tubes.

Figure 1. 2

3
 combination of ss DNA molecules

are placed different test tubes

Step 3: Now, the oligonucleotides of first and

second group are ligated according to minterms of

the given expression. AMPLIFY 8 times for each

minterms. Resulting DNA strands for minterms

are as follows:

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

38

Figure 2. ss DNA molecules representing

minterms of a given Boolean Expression

Step 4: We MERGE the 8 sets of oligonucleotides

which represent the minterms of Step 3 and with

individual combinations which are already kept in

8 individual test tubes of Step 2. The best paired

strands are kept and remaining unpaired and semi-

paired strands are discarded from the test-tube.

Figure 3. Merge each minterms with different

combinations of oligonucleotides

Figure 4. Unpaired and semi-paired strands

are discarded

Step 5: The paired strands are denatured and the

oligonucleotides which represent the

complementary strands of each minterm are kept

in the test tubes. Remaining strands are separated

from the test tubes.

Figure 5. The paired strands are denatured

and the complementary strands of each

minterm are kept in test tubes

Step 6: Two minterms can be combined if they

differ in exactly one literal. This means that their

corresponding bit strings differ at exactly one bit

position. For the above example, we can compare

T0 - T1 and T0-T2, T1 - T3 , T2 - T3 and T2 – T6 and

finally T3 - T7 and T6 - T7 because in those test

tubes the strands having bit string difference is

exactly by 1 bit position.

The complementary strands of minterms which we

get from step 5 are amplified.

AMPLIFY (T0, T0′, T0′′, T00, T00′, T00′′ , T000, T000′,

T000′′)

AMPL1IFY (T1, T1′, T1′′, T10, T10′, T10′′, T100, T100′,

T100′′)

AMPLIFY (T2, T2′, T2′′, T20, T20′, T20′′, T200, T200′,

T200′′)

AMPLIFY (T3, T3′, T3′′, T30, T30′, T30′′, T300, T300′,

T300′′)

AMPLIFY (T6, T6′, T6′′, T60, T60′, T60′′, T600, T600′,

T600′′)

AMPLIFY (T7, T7′, T7′′, T70, T70′, T70′′, T700, T700′,

T700′′)

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

39

Figure6: Combined two minterms if they differ

in exactly one literal

Step 7: Now, generate the strands with

combination of 2 variables and separate those

strands in three different test tubes and amplify

those test tubes according to the minterms. For

test tubes T0, T0′ and T0′′ where, A=0, B=0, C=0,

from that, we will take the combination of two

variables and those are AB, BC, AC and put it

into 1 test tube.

Figure7: Combination of 2 variables

SEPARATE (T8, T80, T800)

AMPLIFY (T8, T80, T800, T8′, T80′, T800′, T8′′, T80′′,

T800′′) [T8: AB, T80: BC, T800: AC]

SEPARATE (T9, T90, T900)

AMPLIFY (T9, T90, T900, T9′, T90′, T900′, T9′′, T90′′,

T900′′) [T9: B C, T90: AB, T900: AC]

SEPARATE (T10, T100, T1000)

AMPLIFY (T10, T100, T1000, T10′, T100′, T1000′, T10′′,

T100′′, T1000′′)

SEPARATE (T11, T110, T1100)

AMPLIFY (T11, T110, T1100, T11′, T110′, T1100′, T11′′,

T110′′, T1100′′)

SEPARATE (T12, T120, T1200)

AMPLIFY (T12, T120, T1200, T12′, T120′, T1200′, T12′′,

T120′′, T1200′′)

SEPARATE (T13, T130, T1300)

AMPLIFY (T13, T130, T1300, T3′, T130′, T1300′, T13′′,

T130′′, T1300′′)

Step 8: Now, we have to combine those two

minterms which are differ in exactly one bit

position.

Compare T0 - T1

MERGE [T0-T8, T00-T80, T000-T800 (For T0 test

tube)

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

40

 MERGE [T1-T9, T10-T90, T100-T900 (For T1 test

tube)]

Figure8: Compare T0 - T1 and get result AB

Compare T0 and T1 test tubes, both the cases AB

is common.

Compare T0′ and T2:

MERRGE [T0′-T8′, T00′-T80′, T000′-T800′ (For T0′ test

tube)]

MERGE [T2-T10, T20-T100, T200-T1000 (For T2 test

tube)]

 Compare T0′ and T2 test tubes, both the cases AC

is common.

Compare T1′ and T3:

MERRGE [T1′-T9′, T10′-T90′, T100′-T900′ (For T1′ test

tube)]

MERGE [T3-T11, T30-T110, T300-T1100 (For T3 test

tube)

 Compare T0′ and T2 test tubes, both the cases AC

is common.

Compare T2′ and T3′:

MERRGE [T2′-T10′, T20′-T100′, T200′-T1000′ (For T2′

test tube)]

MERGE [T3′-T11′, T30′-T110′, T300′-T1100′ (For T3′

test tube)]

 Compare T2′ and T3′ test tubes, both the cases AB

is common.

Compare T2′′ and T6′:

MERRGE [T2′′-T10′′, T20′′-T100′′, T200′′-T1000′′ (For

T2′′ test tube)]

MERGE [T6′-T12′, T60′-T120′, T600′-T1200′ (For T6′

test tube)]

 Compare T2′′ and T6′ test tubes, both the cases

BC is common.

Compare T3′′ and T7:

MERRGE [T3′′-T11′′, T30′′-T110′′, T300′′-T1100′′ (For

T3′′ test tube)]

MERGE [T7-T13, T70-T130, T700-T1300 (For T7 test

tube)]

 Compare T3′′ and T7 test tubes, both the cases BC

is common.

Compare T6′′ and T7′:

MERRGE [T6′′-T12′′, T60′′-T120′′, T600′′-T1200′′ (For

T6′′ test tube)]

MERGE [T7′-T13′, T70′-T130′, T700′-T1300′ (For T7′

test tube)]

 Compare T3′′ and T7 test tubes, both the cases AB

is common.

Step 9: We store only common terms of two

minterms others are separated from the test tubes.

In common terms, we store only ds DNA part and

remaining portions are left out by cutting through

restriction enzymes.

Step 10: We will denature the ds DNA and keep

complementary part of the common terms in a test

tubes.

And the common terms are

A′B′+B′C′+B′C′+A′C′+A′C′+A′B′+A′B′

Step 11: We store the result and check if any

common terms are left between the minterms,

which we get from step 10. If yes then go to next

step otherwise go to step 18.

After denaturation, we get those minterms terms

having common terms, so again the same process

will be continued. Store the minterms in different

test tubes.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

41

Figure9: Minterms that consist some common

terms after first iteration

Step 12: Then, we generate the strands with

combination of 1 variable and separate those

combinations in different test tubes.

Figure10: Combination of 1 variable

Step 13: We have to combine those two minterms

which are differ in exactly one bit position. For

the above example, we can compare, T0 - T1, T0-

T1′, T0-T1′′ and T0′ - T 1, T0′- T1′ and T1′- T2′ , T1′′-

T2, T1 – T2.

The complementary strands of minterms which we

get from step 10 are amplified.

AMPLIFY (T0, T01, T02, T03, T04, T05, T06, T07, T08.)

AMPLIFY (T0 ′, T01 ′, T02 ′, T03 ′, T04 ′, T05 ′, T06 ′,

T07 ′, T08 ′)

AMPLIFY (T1, T11, T12, T13, T14, T15, T16, T17, T18)

AMPLIFY (T1 ′, T11 ′, T12 ′, T13 ′, T14 ′, T15 ′, T16 ′,

T17 ′, T18 ′)

AMPLIFY (T1 ′′, T11 ′′, T12 ′′, T13 ′′, T14 ′′., T15 ′′, T16

′′, T17 ′′, T18 ′′)

AMPLIFY (T2, T21, T22, T23, T24, T25, T26, T27, T28)

AMPLIFY (T2 ′, T22 ′, T23 ′, T24 ′, T25 ′, T26, ′ T27,

T28 ′)

Step 14: Now, we have to generate the strands

with combination of 1 variable and separate those

strands in 2 different test tubes and amplify those

test tubes according to the minterms.

SEPARATE (T3, T30)

AMPLIFY (T3, T30, T3′, T30′, T3′′, T30′′)

SEPARATE (T4, T40)

AMPLIFY (T4, T40, T4′, T40′, T4′′, T40′′)

SEPARATE (T5, T50)

AMPLIFY (T5, T50, T5′, T50′, T5′′, T50′′)

SEPARATE (T6, T60)

AMPLIFY (T6, T60, T6′, T60′, T6′′, T60′′)

SEPARATE (T7, T70)

AMPLIFY (T7, T70, T7′, T70′, T7′′, T70′′)

SEPARATE (T8, T80)

AMPLIFY (T8, T80, T8′, T80′, T8′′, T80′′)

SEPARATE (T9, T90)

AMPLIFY (T9, T90, T9′, T90′, T9′′, T90′′)

Now, those two minterms which differ in exactly

one bit position are combined.

Compare T0 and T1:

MERRGE [T0-T3, T01-T30]

MERGE [T1-T5, T11-T50]

Compare T0 and T1 test tubes, both the cases A is

common

Compare T0 and T1′:

MERRGE [T02-T3′, T03-T30′]

MERGE [T1′-T6, T11′-T60]

Compare T0 and T1′ test tubes, both the cases A is

common

Compare T0′ - T 1:

MERRGE [T0′-T4, T01′-T40]

MERGE [T 12- T5′, T13- T50′]

Compare T0′ and T1 test tubes, both the cases A is

common

Compare T0′ - T 1′:

 MERRGE [T02′-T4′, T03′-T40′]

MERGE [T 12′- T6, T13′- T60]

Compare T0′ and T1′ test tubes, both the cases A is

common

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

42

Compare T1′′ - T 2:

MERRGE [T1′′-T7, T11′′-T70]

MERGE [T 2- T8, T21- T80]

Compare T1′′and T2 test tubes, both the cases B is

common

Compare T0- T 1′′:

MERRGE [T04-T3′′, T05- T30′′]

MERGE [T12′′- T7′, T13′′- T70′]

Compare T1′′and T0 test tubes, both the cases C is

common

Compare T2′- T 1′:

MERRGE [T14′-T6′, T15′- T60′]

MERGE [T2′- T9, T21′- T90]

Compare T2′and T1′ test tubes, both the cases is B

common

Compare T1- T 2:

MERRGE [T15-T5′′, T15- T50′′]

MERGE [T22- T8, T23- T80]

Compare T1 and T2 test tubes, both the cases C is

common

Result is: A+ A + A + A +B+B +C+ C

After denaturation, we get those minterms terms

having common terms, so again the same process

will be continued. Store the minterms in different

test tubes and repeat the steps as above. The final

result will be A+B

5. CONCLUSION

The purpose of this chapter was to show a

mathematical application of DNA computing.

Hence, we consider DNA as Arithmetic-Logic

Unit, where human operators implement bio-

chemistry procedures to perform mathematical

operations. The power of the DNA Computing

consists in the capability to represent, and

compute, huge binary numbers, or highly small

ones which are impossible to consider in a

conventional computer. In other words, we are

able to calculate mathematical operations with

unlimited decimal digits. It is worthy noticing that

“unlimited” does not mean “endless”, but unfixed

number of bits. If we consider that 50g of DNA

contains 1033 molecules, it is clear that in few

grams of DNA we can encode a great deal of

molecular bits. In this paper we introduced a new

DNA computing algorithm for reducing any

Boolean expression to its simplest form by using

DNA strands. This feature is a beautiful remedy

for computational problems, which all depend on

the fixed number of bits reserved to the

representation in conventional computing.

6. REFERENCES

[1] Fukagaw. H., Fujiwara. A., Procedures for

multiplication and division in DNA

computing, 2004.

[2] Adleman L. M., Computing with DNA.

Scientific American, 279(2):54–61, 1998.

[3] Gupta. V., Parthasarathy. S., and Zaki. M. J.,

Arithmetic and logic operations with DNA. In

Proceedings 3rd DIMACS Workshop on

DNA Based Computers, pages 212–220,

1997.

[4] Hug. H., and Schuler. R., DNA-based

parallel computation of simple arithmetic. In

Proceedings of International Meeting on

DNA Based Computers, pages 159–166,

2001.

[5] Liption. R. J., DNA solution of hard

computational problems. Science, 268:542–

545, 1995.

[6] Qiu. Z. F., and Lu. M., Arithmetic and logic

operations for DNA computers. In

Proceedings of the Second IASTED

International conference on Parallel and

Distributed Computing and Networks, pages

481–486, 1998.

[7] Qiu. Z. F., and Lu. M., Take advantage of

the computing power of DNA computers. In

Proceedings of the Third Workshop on Bio-

Inspired Solutions to Parallel Processing

Problems, IPDPS 2000 Workshops, pages

570–577, 2000.

[8] Reif. J. H., Parallel bimolecular computation:

Models and simulations. Algorithmica,

25(2/3): 142–175, 1999.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

43

[9] Merrifield. R. B., Solid phase peptide

synthesis. I. The synthesis of a tetra peptide.

Journal of the American Chemical Society,

85:2149–2154, 1963.

[10] Frisco. P., Parallel arithmetic with splicing.

Romanian Journal of Information Science and

Technology, 2(3):113–128, 2000.

[11] Fujiwara. A., Matsumoto. K., and Chen. W.,

Addressable Procedures for logic and

arithmetic operations with DNA molecules.

International Journal of Foundations of

Computer Science, 15(3):461–474, 2004.

[12] Guarnieri, F., Fliss. M., and Bancroft. C.,

Making DNA add. Science, 273:220–223,

1996.

[13] Pˇaun. G., Rozeberg. G., and Salomaa. A.,

DNA computing. Springer-Verlag, 1998.

[14] Kamio. S., Takehara A., and Fujiwara. A.,

Procedures for computing the maximum with

dna strands. In Proceedings of the 2003

International Conference on Parallel and

Distributed Processing Techniques and

Applications, volume 1, pages 351–357,

2003.

