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ABSTRACT 
 

DNA Computing utilizes the properties of DNA 

for performing the computations. The 

computations include arithmetic and logical 

operations such as simplification of Boolean 

expression to its simplest form. Boolean function 

can be built from ANDs, ORs, and NOTs using 

minterm expansion. However, a practicing 

computer engineer will very rarely be satisfied 

with a minterm expansion, because as a rule, it 

requires more gates than necessary. The laws and 

identities of Boolean algebra will almost always 

allow us to simplify a minterm expansion. The 

efficiency of a logic circuit is high when the 

number of logic gates used to build it is small. 

However, minterm expression may be often 

simplified to a simpler Boolean expression, which 

can be implemented with fewer logic gates.  

In this paper we introduced a new DNA 

computing algorithm for reducing any Boolean 

expression to its simplest form by using DNA 

strands. The major benefits of this method are its 

extraordinary information density, vast parallelism 

and ease of operation. In addition the most merit 

of this DNA Algorithm is its automation 

characteristics, and simple coding steps. 
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1. INTRODUCTION 
 

DNA computing is new computation paradigms, 

which proposes the use of molecular biology tools 

to solve different mathematical problems. It is a 

form of computing which use DNA, biochemistry 

and molecular biology, instead of the traditional 

silicon-based computer technologies. DNA 

computing is interested in applying computer 

science methods and models to understand such 

biological phenomena and gain interest into early 

molecular evolution and origin of biological 

information processing. The primary advantage of 

DNA based computation is the ability to handle 

millions of operations in parallel. DNA computing 

is fundamentally similar to parallel computing in 

that it takes advantage of the many different 

molecules of DNA to try many different 

possibilities at once. 

DNA computing has two important features, 

which are Watson-Crick complimentarily and 

massive parallelism. Using the features, we solve 

some optimization problems, which usually need 

exponential time on silicon-based computers, in 

polynomial steps with DNA molecules.  

 

However, for DNA computing to be applicable on 

a various range of problems for primitive 

operations, such as logic or arithmetic operations. 

A number of procedures have been proposed for 

the primitive operations with DNA molecules [1], 

[3], [4], [10], [11], [12], [14]. 
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Boolean algebra: 

 

Boolean algebra is algebra for the manipulation of 

objects that can take on only two values, typically 

true and false, although it can be any pair of 

values. Because computers are built as collections 

of switches that are either “on” or “off,” Boolean 

algebra is a very natural way to represent digital 

information. In reality, digital circuits use low and 

high voltages, but for our level of understanding, 0 

and 1 will suffice. It is common to interpret the 

digital value 0 as false and the digital value 1 as 

true.  

 

Boolean Expression:  

 

A Boolean expression on the Boolean variables 

{x1, x2, ..., xn} is an expression using those 

variables and the operations of a Boolean algebra. 

Every Boolean expression defines a Boolean 

function. Boolean function can be built from 

ANDs, ORs, and NOTs using minterm expansion.  

 

Simplification of Boolean algebra: 

 

The laws and identities of Boolean algebra will 

almost always allow us to simplify a minterm 

expression. The efficiency of a logic circuit is high 

when the number of logic gates used to build it is 

small. However, the sum-of-products (minterm) 

expression may be often simplified to a simpler 

Boolean expression, which can be implemented 

with fewer logic gates.  

 

In this paper we introduced a new DNA algorithm 

for reducing any Boolean expression to its 

simplest form by using different combination of 

single strand DNAs. The rest of the paper is 

organized as follows: in section 2, we introduce 

the mathematical process to simplify Boolean 

expression, in section 3, we introduce the DNA 

algorithm to simplify the Boolean expression and 

section 4, we will give the example that how to 

simplify the Boolean Expression by using DNA 

computing following by conclusion. 

 

2. SIMPLIFICATION OF 

BOOLEAN ALGEBRA 
 

Some standardized forms are required for Boolean 

expression to simplify communication of the 

expression. 

Sum-of-products (SOP): Example:  

F(A,B,C,D)= AB+BCD+AD 

The minterms in this sum correspond to those 

combinations of the values for which the function 

has a value of 1. This Boolean sum is sometimes 

called a sum of products expansion or 

disjunctive normal form.  

We know that any Boolean function can be built 

from ANDs, ORs, and NOTs using minterm 

expansion. However, a practicing computer 

engineer will very rarely be satisfied with a 

minterm expansion, because as a rule, it requires 

more gates than necessary. The laws and identities 

of Boolean algebra will almost always allow us to 

simplify a minterm expansion. For example, the 

minterm expansion for a Boolean function f of 

three variables might be represented as follows:  

 

f = x'y'z' + x'y'z + x'yz' + x'yz + xyz' + xyz 

 

This would require a circuit with maximum gates: 

12 ANDs, 5 ORs and 9 NOTs.  

Using the identities of Boolean algebra, this 

minterm expansion can be simplified 

considerably: 

 

f = x'y'z' + x'y'z + x'yz' + x'yz + xyz' + xyz 

= x'y'(z' + z) + x'y(z' + z) + xy(z' + z) distributive 

law 

= x'y' + x'y + xy complementarity & identity 

= x'(y' + y) + xy distributive law 

= x' + xy complementarity & identity 

= x' + y redundancy 

 

So, that big long minterm reduces down to x' + y 

which can be built with 1 OR and 1NOT. 
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Therefore, we will look at a very simple technique 

that usually leads to a significant simplification of 

minterms. It won't always produce the simplest 

form, but it's close enough for most engineers 

considering the difficulty of the alternative 

method.  

 

3. A NEW DNA ALGORITHM 

FOR SIMPLIFICATION 

BOOLEAN ALGEBRA 
 

With the help of massive parallelism of DNA 

hybridization and the complementary Watson-

Crick law, the optimal simplified expression can 

be found by basic molecular operations. 

By means of the basic molecular operations such 

as merge, separate, denature, detect, etc., are used 

to simplify the Boolean expression to its simplest 

form. 

For any given Boolean expression of „n‟ variables 

in sum of products form, first of all we  will see 

that if all the minterms contains „n‟ variables or 

not. If not then we expand the expression with the 

possible combinations of variables left out in that 

specific minterm.  

Algorithm: 

 

Step 1: We choose 4n groups of oligonucleotides 

divided into four groups. The oligonucleotides of 

the first group represented variables  

. The oligonucleotides of the 

second group represented variables   

…………….   (where, x=1 if and only if x=0); 

the oligonucleotides of third and fourth group 

represented the complementary strands of the first 

group (that is    ) and second 

group (that is  ……………. ) 

respectively. 

 

Step 2: We generate different 2n combination of 

single strands DNA molecules for n variable 

where the oligonucleotides of third and fourth 

group are ligated according to the 2n combinations 

of „n‟ variables and placed those single stranded 

DNA molecules in individual 2n test tubes.  

 

Step 3: Now, the oligonucleotides of first and 

second groups are ligated according to minterms 

of the given expression. And AMPLIFY each 

minterms 2n times. 

 

Step 4: Then we MERGE the oligonucleotides of 

Step 2 and Step 3. The best paired strands are 

kept and remaining unpaired and semi-paired 

strands are separated from the test-tubes. 

Step 5: The paired strands in each of the test-tube 

are denatured and keep the oligonucleotide which 

represent the complementary strands of minterms, 

in the test tubes and remaining strands are 

separated from the test tubes. 

Step 6: Two minterms can be combined if they 

differ in exactly one literal. This means that their 

corresponding bit strings differ at exactly one bit 

position (Example: if 3 literals are present in each 

minterms then 000 can combined 001, 010, 100 

etc.). So, the complementary strands of minterms 

which we get from step 5 are amplified n times, if 

one minterm can combined with n minterms, (if 

they differ in exactly one literal). 

 

Step 7: Now, we have to generate the strands with 

combination of (n-1) variables and separate those 

strands in n different test tubes. Because n 

variables are present in each minterms. (Example: 

like 001 minterms having 3 combinations that are 

00, 01 and 01seperated in three different test 

tubes). 

Step 8: Now we have to combined those two 

minterms which are differ in exactly one bit 

position. (Example: like 001 minterms having 3 

combinations that are 00, 01 and 01, seperated in 

three different test tubes. Now in that 3 test tube 

we merge the complementary strands of 0′0′1′.  

                                0′ 

0′0′1′     0′0′1′         0′1′ 

00             01          0 1  
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Similarly, 001 differ 000 with exactly 1 bit 

position, so 000 minterms having 3 combination of 

2 variables  that are 00, 00 and 00,  separated in 

three different test tubes and merge 

complementary strands of 0′0′ 0′.      

                               0′ 

0′0′0′     0′0′0′         0′0′ 

00             00          0 0  

Now we have to check that one combination is 

same for both the cases and that is 00). 

Step 9: We store only common terms of two 

minterms (For above example, that is 00 because 

for both the cases common ds DNA is 00 and 0'0') 

and remaining portions are left out from the test 

tubes. 

Step 10: We will denature the ds DNA which we 

get in step 9 and keep complementary part of the 

common terms (Example: for above case it is 0′0′) 

and other are discarded from the test tubes. 

Step 11:  We store the result. 

After getting result we will check any common 

terms are left between the minterms. If yes then go 

to next step otherwise go to step 18. 

Step 12: Then we have to generate the strands 

with combination of (n-2) variables and separate 

those combinations in different test tubes. 

Step 13: Now we have to combined those two 

minterms which are differ in exactly one bit 

position same as step 8. 

Step 14: We store only common terms of two 

minterms and remaining portions are left out from 

the test tubes.  

Step 15: We will denature the ds DNA and keep 

complementary part of the common terms in one 

test tube. 

Step 16: We store the result and check that any 

common terms are left between the minterms 

which we get from step 15. 

Step 17: If yes, then we have to generate the 

strands with combination of (n-3) variables and go 

to step 7. Process will continue until no common 

terms are left. 

Step 18: End.  

 

 

4. Example  
For a given three variable expression:  

 

Here each minterms having equal number of 

variables. So there is no need of expansion. 

Step 1:  We choose 12 oligonucleotides which are 

divided into 4 groups. The oligonucleotides of the 

first group represents variables A, B, C; the 

oligonucleotides of the second group represents A, 

B, C; and the third and fourth group represent the 

complementary strands  of first and second group 

respectively ( Denoted as,  A′, B′, C′ and A′, B′, 

C′).  

 

Step 2: We generate 23 combinations of single 

strands DNA molecules for 3 variables. Where the 

oligonucleotides of third and fourth group are 

ligated according to the combinations of „3‟ 

variables and placed in individual test tubes.  

 
Figure 1.  2

3
 combination of ss DNA molecules 

are placed different test tubes 

Step 3: Now, the oligonucleotides of first and 

second group are ligated according to minterms of 

the given expression. AMPLIFY 8 times for each 

minterms. Resulting DNA strands for minterms 

are as follows: 
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Figure 2. ss DNA molecules representing 

minterms of a given Boolean Expression 

 

Step 4: We MERGE the 8 sets of oligonucleotides 

which represent the minterms of Step 3 and with 

individual combinations which are already kept in 

8 individual test tubes of Step 2. The best paired 

strands are kept and remaining unpaired and semi-

paired strands are discarded from the test-tube. 

 
Figure 3. Merge each minterms with different 

combinations of oligonucleotides 

 

 
Figure 4. Unpaired and semi-paired strands 

are discarded 

 

Step 5: The paired strands are denatured and the 

oligonucleotides which represent the 

complementary strands of each minterm are kept 

in the test tubes. Remaining strands are separated 

from the test tubes. 

 
Figure 5. The paired strands are denatured 

and the complementary strands of each 

minterm are kept in test tubes 

 

 

Step 6: Two minterms can be combined if they 

differ in exactly one literal. This means that their 

corresponding bit strings differ at exactly one bit 

position. For the above example, we can compare 

T0 - T1 and T0-T2, T1 - T3 , T2 - T3 and T2 – T6  and 

finally T3 - T7 and T6 - T7 because in those test 

tubes the strands having bit string difference is 

exactly by 1 bit position.  

The complementary strands of minterms which we 

get from step 5 are amplified.  

AMPLIFY (T0, T0′, T0′′, T00, T00′, T00′′ , T000, T000′, 

T000′′) 

AMPL1IFY (T1, T1′, T1′′, T10, T10′, T10′′, T100, T100′, 

T100′′) 

AMPLIFY (T2, T2′, T2′′, T20, T20′, T20′′, T200, T200′, 

T200′′) 

AMPLIFY (T3, T3′, T3′′, T30, T30′, T30′′, T300, T300′, 

T300′′) 

AMPLIFY (T6, T6′, T6′′, T60, T60′, T60′′, T600, T600′, 

T600′′) 

AMPLIFY (T7, T7′, T7′′, T70, T70′, T70′′, T700, T700′, 

T700′′) 
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Figure6: Combined two minterms if they differ 

in exactly one literal 

 

Step 7:  Now, generate the strands with 

combination of 2 variables and separate those 

strands in three different test tubes and amplify 

those test tubes according to the minterms.  For 

test tubes T0, T0′ and T0′′ where, A=0, B=0, C=0, 

from that, we will take the combination of two 

variables and those are AB, BC, AC and put it 

into 1 test tube.  

 

 

 

 

 

 

 

 

 

 
Figure7: Combination of 2 variables 

 

SEPARATE (T8, T80, T800)  

AMPLIFY (T8, T80, T800, T8′, T80′, T800′, T8′′, T80′′, 

T800′′) [T8: AB, T80: BC, T800: AC] 

SEPARATE (T9, T90, T900)  

AMPLIFY (T9, T90, T900, T9′, T90′, T900′, T9′′, T90′′, 

T900′′) [T9:   B C, T90: AB, T900: AC] 

SEPARATE (T10, T100, T1000) 

AMPLIFY (T10, T100, T1000, T10′, T100′, T1000′, T10′′, 

T100′′, T1000′′) 

SEPARATE (T11, T110, T1100) 

AMPLIFY (T11, T110, T1100, T11′, T110′, T1100′, T11′′, 

T110′′, T1100′′) 

SEPARATE (T12, T120, T1200) 

AMPLIFY (T12, T120, T1200, T12′, T120′, T1200′, T12′′, 

T120′′, T1200′′) 

SEPARATE (T13, T130, T1300) 

AMPLIFY (T13, T130, T1300, T3′, T130′, T1300′, T13′′, 

T130′′, T1300′′) 

Step 8:  Now, we have to combine those two 

minterms which are differ in exactly one bit 

position.  

Compare T0 - T1  

MERGE [T0-T8, T00-T80, T000-T800 (For T0 test 

tube) 
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    MERGE [T1-T9, T10-T90, T100-T900 (For T1 test 

tube)] 

 

     

   

Figure8:  Compare T0 - T1 and get result AB 

 

Compare T0 and T1 test tubes, both the cases AB 

is common. 

 

Compare T0′ and T2:  

MERRGE [T0′-T8′, T00′-T80′, T000′-T800′ (For T0′ test 

tube)]           

MERGE [T2-T10, T20-T100, T200-T1000 (For T2 test 

tube) ]                

  Compare T0′ and T2 test tubes, both the cases AC 

is common. 

Compare T1′ and T3:  

MERRGE [T1′-T9′, T10′-T90′, T100′-T900′ (For T1′ test 

tube)]           

MERGE [T3-T11, T30-T110, T300-T1100 (For T3 test 

tube)                 

  Compare T0′ and T2 test tubes, both the cases AC 

is common. 

Compare T2′ and T3′:  

MERRGE [T2′-T10′, T20′-T100′, T200′-T1000′ (For T2′ 

test tube)]           

MERGE [T3′-T11′, T30′-T110′, T300′-T1100′ (For T3′ 

test tube) ]             

  Compare T2′ and T3′ test tubes, both the cases AB 

is common. 

Compare T2′′ and T6′:  

MERRGE [T2′′-T10′′, T20′′-T100′′, T200′′-T1000′′ (For 

T2′′ test tube)]           

MERGE [T6′-T12′, T60′-T120′, T600′-T1200′ (For T6′ 

test tube)  ]             

  Compare T2′′ and T6′ test tubes, both the cases 

BC is common. 

Compare T3′′ and T7:  

MERRGE [T3′′-T11′′, T30′′-T110′′, T300′′-T1100′′ (For 

T3′′ test tube)]           

MERGE [T7-T13, T70-T130, T700-T1300 (For T7 test 

tube)  ]             

  Compare T3′′ and T7 test tubes, both the cases BC 

is common. 

Compare T6′′ and T7′:  

MERRGE [T6′′-T12′′, T60′′-T120′′, T600′′-T1200′′ (For 

T6′′ test tube)]           

MERGE [T7′-T13′, T70′-T130′, T700′-T1300′ (For T7′ 

test tube)]             

  Compare T3′′ and T7 test tubes, both the cases AB 

is common. 

 

Step 9: We store only common terms of two 

minterms others are separated from the test tubes. 

In common terms, we store only ds DNA part and 

remaining portions are left out by cutting through 

restriction enzymes. 

Step 10: We will denature the ds DNA and keep 

complementary part of the common terms in a test 

tubes. 

And the common terms are 

A′B′+B′C′+B′C′+A′C′+A′C′+A′B′+A′B′ 

Step 11: We store the result and check if any 

common terms are left between the minterms, 

which we get from step 10. If yes then go to next 

step otherwise go to step 18.   

 

After denaturation, we get those minterms terms 

having common terms, so again the same process 

will be continued. Store the minterms in different 

test tubes. 
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Figure9: Minterms that consist some common 

terms after first iteration 

 

Step 12:  Then, we generate the strands with 

combination of 1 variable and separate those 

combinations in different test tubes. 

 
Figure10: Combination of 1 variable 

 

Step 13:  We have to combine those two minterms 

which are differ in exactly one bit position. For 

the above example, we can compare, T0 - T1, T0-

T1′, T0-T1′′ and T0′ - T 1,  T0′- T1′ and  T1′- T2′  ,  T1′′- 

T2, T1 – T2. 

The complementary strands of minterms which we 

get from step 10 are amplified.  

 

AMPLIFY (T0, T01, T02, T03, T04, T05, T06, T07, T08.)  

AMPLIFY (T0 ′, T01 ′, T02 ′, T03 ′, T04 ′, T05 ′, T06 ′, 

T07 ′, T08 ′) 

AMPLIFY (T1, T11, T12, T13, T14, T15, T16, T17, T18 ) 

AMPLIFY (T1 ′, T11 ′, T12 ′, T13 ′, T14 ′, T15 ′, T16 ′, 

T17 ′, T18 ′) 

AMPLIFY (T1 ′′, T11 ′′, T12 ′′, T13 ′′, T14 ′′., T15 ′′, T16 

′′, T17 ′′, T18 ′′) 

AMPLIFY (T2, T21, T22, T23, T24, T25, T26, T27, T28) 

AMPLIFY (T2 ′, T22 ′, T23 ′, T24 ′, T25 ′, T26, ′ T27, 

T28 ′) 

Step 14: Now, we have to generate the strands 

with combination of 1 variable and separate those 

strands in 2 different test tubes and amplify those 

test tubes according to the minterms.  

SEPARATE (T3, T30)  

AMPLIFY (T3, T30, T3′, T30′, T3′′, T30′′) 

SEPARATE (T4, T40)  

AMPLIFY (T4, T40, T4′, T40′, T4′′, T40′′) 

SEPARATE (T5, T50)  

AMPLIFY (T5, T50, T5′, T50′, T5′′, T50′′) 

SEPARATE (T6, T60)  

AMPLIFY (T6, T60, T6′, T60′, T6′′, T60′′) 

SEPARATE (T7, T70)  

AMPLIFY (T7, T70, T7′, T70′, T7′′, T70′′) 

SEPARATE (T8, T80)  

AMPLIFY (T8, T80, T8′, T80′, T8′′, T80′′) 

SEPARATE (T9, T90)  

AMPLIFY (T9, T90, T9′, T90′, T9′′, T90′′) 

Now, those two minterms which differ in exactly 

one bit position are combined.  

Compare T0 and T1:  

MERRGE [T0-T3, T01-T30]           

MERGE [T1-T5, T11-T50]        

Compare T0 and T1 test tubes, both the cases A is 

common   

Compare T0 and T1′:  

MERRGE [T02-T3′, T03-T30′]           

MERGE [T1′-T6, T11′-T60]        

Compare T0 and T1′ test tubes, both the cases A is 

common   

Compare T0′ - T 1:  

MERRGE [T0′-T4, T01′-T40]           

MERGE [T 12- T5′, T13- T50′]        

Compare T0′ and T1 test tubes, both the cases A is 

common   

Compare T0′ - T 1′:  

 MERRGE [T02′-T4′, T03′-T40′]           

MERGE [T 12′- T6, T13′- T60]        

Compare T0′ and T1′ test tubes, both the cases A is 

common   
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Compare T1′′ - T 2:  

MERRGE [T1′′-T7, T11′′-T70]           

MERGE [T 2- T8, T21- T80]        

Compare T1′′and T2 test tubes, both the cases B is 

common   

Compare T0- T 1′′:  

MERRGE [T04-T3′′, T05- T30′′]           

MERGE [T12′′- T7′, T13′′- T70′]        

Compare T1′′and T0  test tubes, both the cases C is 

common   

Compare T2′- T 1′:  

MERRGE [T14′-T6′, T15′- T60′]           

MERGE [T2′- T9, T21′- T90]        

Compare T2′and T1′  test tubes, both the cases is  B 

common   

Compare T1- T 2:  

MERRGE [T15-T5′′, T15- T50′′]           

MERGE [T22- T8, T23- T80]        

Compare T1 and T2 test tubes, both the cases C is 

common   

Result is: A+ A + A + A +B+B +C+ C 

After denaturation, we get those minterms terms 

having common terms, so again the same process 

will be continued. Store the minterms in different 

test tubes and repeat the steps as above. The final 

result will be A+B 

 

5. CONCLUSION 
 

The purpose of this chapter was to show a 

mathematical application of DNA computing. 

Hence, we consider DNA as Arithmetic-Logic 

Unit, where human operators implement bio-

chemistry procedures to perform mathematical 

operations. The power of the DNA Computing 

consists in the capability to represent, and 

compute, huge binary numbers, or highly small 

ones which are impossible to consider in a 

conventional computer. In other words, we are 

able to calculate mathematical operations with 

unlimited decimal digits. It is worthy noticing that 

“unlimited” does not mean “endless”, but unfixed 

number of bits. If we consider that 50g of DNA 

contains 1033 molecules, it is clear that in few 

grams of DNA we can encode a great deal of 

molecular bits. In this paper we introduced a new 

DNA computing algorithm for reducing any 

Boolean expression to its simplest form by using 

DNA strands. This feature is a beautiful remedy 

for computational problems, which all depend on 

the fixed number of bits reserved to the 

representation in conventional computing. 
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