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Abstract

For distributed memory multicomputers such as the Intel Paragon, the IBM SP-2, the 
NCUBE/2, and the Thinking Machines CM-5, the quality of the data partitioning for a given 
application is crucial to obtaining high performance. This task has traditionally been the user’s 
responsibility, but in recent years much effort has been directed to automating the selection of 
data partitioning schemes. Several researchers have proposed systems that are able to produce 
data distributions that remain in effect for the entire execution of an application. For complex 
programs, however, such static data distributions may be insufficient to obtain acceptable per
formance. The selection of distributions that dynamically change over the course of a program’s 
execution adds another dimension to the data partitioning problem. In this paper, we present a 
technique that can be used to automatically determine which partitionings are most beneficial 
over specific sections of a program while taking into account the added overhead of performing 
redistribution. This system is being built as part of the PARADIGM (PARAllelizing compiler 
for Distributed memory General-purpose Multicomputers) project at the University of Illinois. 
The complete system will provide a fully automated means to parallelize programs written in a 
serial programming model obtaining high performance on a wide range of distributed-memory 
multicomputers.
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1 In trod u ction

Distributed-memory multicomputers such as the Intel Paragon, the IBM SP-2, the NCUBE/2, and 

the Thinking Machines CM-5 all offer significant advantages over shared-memory multiprocessors 

in terms of cost and scalability. However, lacking a global address space, they present a very 

difficult programming model in which the user must specify how data and computations are to 

be partitioned across processors and determine which sections of data need to be communicated 

among which processors. To overcome this difficulty, significant research effort has been aimed at 

source-to-source parallel compilers for multicomputers that relieve the programmer from the task 

of communication generation, while the task of data partitioning remains a responsibility of the 

programmer.

These compilers take a program written in a sequential or shared-memory parallel language and, 

based on user-specified partitioning of the data, generate code for a given multicomputer. Examples 

include Fortran D [13], Fortran 90D [5], the SUIF compiler [1], and the S u p e r b  compiler [7]. 

Many of these research efforts are also now looking into automated data partitioning techniques. 

Researchers in this area are also currently involved in defining High Performance Fortran (HPF) [17] 

to standardize parallel programming with data distribution directives.

As part of the PARADIGM (PARAllelizing compiler for Distributed memory General-purpose 

Multicomputers) project [3] at the University of Illinois, automatic data partitioning techniques 

have been developed to relieve the programmer of the burden of selecting a good data distribution. 

The compiler can currently select the best static distribution of data using a constraint-based 

algorithm [12] which determines both the best configuration of an abstract multi-dimensional mesh 

topology along with how program data should be distributed on the mesh. In this paper, we present 

a technique that will be used to extend the static partitioning algorithm to select dynamic data 

distributions which can further improve the performance of the resulting parallel program.

The remainder of this paper is organized as follows: Section 2 presents a small example to 

illustrate the need for dynamic array redistribution; related work in automatic selection of static 

and dynamic data distribution schemes is discussed in Section 3; the methodology for selection 

of dynamic data distributions is presented in Section 4; code generation issues are described in 

Section 5; an experimental analysis of the presented techniques is performed in Section 6; and 

conclusions are presented in Section 7.
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Figure 1: 2-D Fast Fourier Transform

2 M otiva tion

Figure 1 shows the basic computation performed in a two dimensional Fast Fourier Transform 

(FFT). To execute this program in parallel on a machine with distributed memory, the main 

data array, Image, is partitioned across the available processors. By examining the data accesses 

that will occur during execution it can be seen that, for the first half of the program, data is 

manipulated along the rows of the array. For the rest of the execution, data is manipulated 

along the columns. Depending on how data is distributed among the processors, several different 

patterns of communication could be generated. The goal of automatic data partitioning is to select 

the distribution which will result in the highest level of performance.

If the array were distributed by rows, every processor could independently compute the FFTs 

for each row that involved local data. After the rows had been processed, the processors would 

now have to communicate to perform the column FFTs since the columns have been partitioned 

across the processors. Conversely, if a column distribution were selected, communication would be 

required to compute the row FFTs while the column FFTs could be computed independently. Such 

static partitionings, as shown in Figure la, suffer in that they cannot reflect changes in a program’s 

data access behavior. When conflicting data requirements are present, static partitionings tend to 

be compromises between a number of preferred distributions.

Instead of requiring a single data distribution for the entire execution, program data could also 

be redistributed dynamically for different phases1 of the program. For this example, assume the

1A phase can be described sim ply as a sequence of statem ents in a program over which a given distribution is 
unchanged.
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program is split into two separate phases; a row distribution is selected for the first phase and a 

column distribution for the second (as shown in Figure lb). By redistributing the data between 

the two phases, none of the one-dimensional FFT operations would require com m unication . Such 

dynamic partitionings can yield higher performance than a static partitioning when the redistri

bution is more efficient than the communication pattern required by the statically partitioned 

computation.

3 R ela ted  W ork

3.1 Static Partitioning

Some of the ideas used in the static partitioning algorithm currently implemented in the PARADIGM 

compiler [12] were inspired by earlier work on multi-dimensional array alignment [19]. In addition 

to this work, in recent years much research has been performed in the area of multidimensional 

array alignment [8, 16, 19] as well as in a number of other areas which address various aspects of 

data partitioning. Others have approached the partitioning problem as follows: examining cases in 

which a communication-free partitioning exists [22]; showing how performance estimation is a key 

in selecting good data distributions [9, 26]; linearizing array accesses and analyzing the resulting 

one-dimensional accesses [24]; applying iterative techniques which minimize the amount of commu

nication at each step [2]; and examining issues for special-purpose distributed architectures such as 

systolic arrays [25].

3.2 Dynamic Partitioning

Anderson and Lam [2] have also proven that the dynamic decomposition problem is NP-hard by 

transforming the colored multiway cut problem (which is known to be NP-hard) into a subproblem 

of dynamic decomposition. They address the dynamic distribution problem by using a communi

cation graph in which nodes are loop nests and edges represent the time for communication if the 

two loop nests involved in an edge are given different distributions. A greedy heuristic is used to 

combine nodes in such a way that the largest potential communication costs axe eliminated first 

while maintaining sufficient parallelism.

Work by Bixby, Kennedy and Kremer formulates the data partitioning problem in the form of 

a 0-1 integer programming problem [4]. For each phase, a number of candidate partial data layouts 

axe enumerated along with the estimated execution costs. The costs of the possible transitions
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among the candidate layouts are then computed forming a data layout graph. A static performance 

estimator is used to obtain the node and edge weights of the graph. Since each phase only specifies a 

partial data distribution, redistribution constraints can cross over multiple phases, thereby requiring 

the use of 0-1 integer programming. The number of possible data layouts for a given phase is 

exponential in the number of partitioned array dimensions resulting in potentially large search 

spaces. In order to benefit from advanced techniques in the field of integer programming, the 

resulting formulation is processed by a commercial integer programming tool. In some previous 

work [18], they also examined a dynamic programming technique that could determine dynamic 

distributions in polynomial time if each candidate layout specified a mapping for every array in the 

program. The main drawback with both of these techniques is that the selection of phases must 

be made a priori to the formulation of the problem. This means that the size of the phases should 

be as small as possible so that the correct solution is found and that as many candidate layouts 

as possible should be specified in order to find the best dynamic data distribution. These factors 

contribute to the increase in the size of the search space.

Bixby, Kremer, and Kennedy have also described an . operational definition of a phase which 

defines a phase as the outermost loop of a loop nest such that the corresponding iteration variable 

is used in a subscript expression of an array reference in the loop body [4]. Even though this 

definition restricts phase boundaries to loop structures and does not allow for overlapping or nesting 

of phases, it can be seen that for the example in Section 2 this definition is sufficient to describe 

the two distinct phases of the computation.

Chapman, Fahringer, and Zima have noted that there are many known good data distribu

tions for important numerical problems that are frequently used [6]. They describe the design of a 

distribution tool that makes use of performance prediction methods when possible, but also heuris- 

tically uses empirical performance data when available. They have also developed cost estimates 

which model the work distribution, communication and data locality of a program while taking 

into account the features of the target architecture [9]. The combination of estimation techniques 

along with profile information will be used to guide their system in potentially selecting lists of 

distributions for different arrays that appear in the program. Currently, the performance prediction 

system has been integrated into a compiler based on Vienna Fortran [7], and research is under way 

on their partitioning system.

Hudak and Abraham have also proposed a method for selecting redistribution points for pro-
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grams executed on machines with logically shared but physically distributed memory [14,15]. Their 

technique is based on locating significant control flow changes in the program and inserting remap

ping points [15]. Remapping points are inserted between loop nests with different nesting levels, 

around control loops, and between a loop that requires nearest neighbor communication (which 

is assigned a block partitioning) and a loop that is linearly varying (which is given a cyclic par

titioning). Once remapping points have been added to the program structure, a merge phase is 

performed to remove any unnecessary data redistribution. Remapping points are removed between 

two phases with identical distributions as well as when one phase has an unspecified distribution 

(in which case it is assigned a distribution from an adjacent phase). This heuristic was shown to 

improve the performance of several programs as compared to a strict data-parallel implementation. 

For a program consisting of a matrix multiplication followed by an LU factorization, they observed 

a 26% improvement by applying this technique.

4 D y n a m ic  D istr ib u tio n  S election

The technique we propose to automatically select redistribution points can be broken down into 

two main steps. First, the program is recursively decomposed into a hierarchy of candidate phases. 

Then, taking into account the cost of redistributing the data between the different phases, the most 

efficient sequence of phases and phase transitions is selected.

This approach allows us to build upon the static partitioning techniques [12] previously de

veloped in the PARADIGM project. Static cost estimation techniques [11] are used to guide the 

selection of phases while static partitioning techniques are used to determine the best possible 

distribution for each phase. The cost models used to estimate com m unication and computation 

costs use parameters, empirically measured for each target machine, to separate the partitioning 

algorithm from a specific architecture.

To help illustrate the dynamic partitioning technique, an example program will be used. In 

Figure 2, a two-dimensional Alternating Direction Implicit (ADI) iterative method2 is shown which 

computes the solution of an elliptic partial differential equation known as Poisson’s equation [10]. 

Poisson’s equation can be used to describe the dissipation of heat away from a surface with a fixed 

temperature as well as to compute the free-space potential created by a surface with an electrical

2To simplify later comparison and analysis of performance measurements, the program shown performs an arbitrary 
number of iterations as opposed to periodically checking for convergence of the solution.
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program ADI2d
double precision u(N,N), uh(N,N), b(N,N), alpha •
integer i, j, k Phase

do j ■ 2, N - 1 31
*** Initial value for u Phase uh(N - l.j) * uh(N - l.j) / b(N - l.j) 32 VIdo j ■ 1, N 1 enddo 33
do i * 1, N 2 do j * 2, N - 1 34
u(i,j) * 0 .0 3 do i = N - 2, 2, -1 35

enddo 4 I uh(i,j) * (uh(i.j) + uh(i + l.j)) / b(i,j) 36 VII
u(l,j) * 30.0 5 enddo 37
u(n,j) » 30.0 6 enddo 38

enddo 7 _
*** Forward and backward sweeps along rows

*** Initialize uh do j * 2, N - 1 39
do j - 1, N 8 do i * 2, N - 1 40
do i ■ 1, N 9 n b(i,j) ■ (2 + alpha) 41
uh(i,j) * u(i,j) 10 u(i,j) * (alpha - 2) * uh(i,j) + VIIIenddo 11 ft uh(i + l.j) + uh(i - l.j) 42

enddo 12 enddo 43
enddo 44

alpha * 4 * (2.0 / N) 13 do i * 2, N - 1 45
do k = 1, maxiter 14 u(i,2) » u(i,2) + uh(i,1) 46

*** Forward and backward sweeps along columns u(i,N - 1) * u(i,N - 1) + uh(i,N) 47 IX
do j * 2, N - 1 15 enddo 48
do i ■ 2, N - 1 16
b(i,j) * (2 + alpha) 17 do j * 3, N - 1 49
uh(i.j) ■ (alpha - 2) * u(i,j) + in do i »  2, N - 1 50

ft u(i,j + 1) + u(i,j -  1) 18 b(i,j) * b(i,j) -  1 /  b(i,j -  1) 51 xenddo 19 u(i,j) = u(i,j) + u(i,j -  1) /  b(i,j -  1) 52
enddo 20 _ enddo 53
do j »  2, N -  1 21 enddo 54
uh(2,j) *  uh(2,j )  + u(l,j) 22 IV do i ® 2, N -  1 55
uh(N -  l,j) * uh(N -  l,j) + u(M,j) 23 u(i,N -  1) * u(i,N -  1) /  b(i,N -  1) 56 XIenddo 24 _ enddo 57

do j *  N - 2, 2, -1 58
do j * 2, N - 1 25 do i ■ 2, N - 1 59
do i «  3, N - 1 26 u(i,j) * (u(i, j) + u(i,j + 1)) / b(i,j) 60 XII
b(i,j) »  b(i,j) - 1 /  b(i - l.j) 27 v enddo 61
uh(i.j) *  uh(i,j )  + uh(i - l.j) /  b(i -  l.j) 28 enddo 62

enddo 29 enddo 63
enddo 30 J end 64

Figure 2: 2-D Alternating Direction Implicit method (with operational phases shown)

charge.

For the program in Figure 2, a static data distribution will result in a significant amount 

of communication for over half of the program’s execution. For illustrative purposes only, the 

operational definition of phases previously described in Section 3 identifies twelve different “phases” 

in the program. These phases exposed by the operational definition need not be known for our 

technique (and, in general, are potentially too restrictive) but they will be used here for comparison 

as well as to facilitate the discussion.
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4.1 Phase Decomposition

Initially, the entire program is viewed as a single phase for which a static distribution is determined. 

At this point, the immediate goal is to determine if and where it would be beneficial to split 

the program into two separate phases. Using the selected distribution, a communication graph 

is constructed to examine the cost of communication in relation to the flow of data within the 

program.

We define a communication graph as the flow information from the dependence graph (as gen

erated by Parafrase-2 [21] which PARADIGM is built upon) weighted by the cost of communica

tion. The nodes of the communication graph correspond to individual statements while the edges 

correspond to flow dependencies that exist between the statements. As a heuristic, the cost of 

communication performed for a given reference in a statement is reflected back along every in

coming dependence edge corresponding to the reference involved3. Since flow information is used 

to construct the communication graph, the weights on the edges serve to expose communication 

costs that exist between producer/consumer relationships within a program. The granularity of 

phase partitioning is also restricted to the statement level, therefore, single node cycles in the flow 

dependence graph are not included in the communication graph.

In addition to the costs of communication generated by a statement, we also introduce the idea 

of transparent statements. These are statements for which the target of the assignment: (1) is also 

referenced in the assignment function with identical indexing, and (2) is not referenced again with a 

different indexing function. If any communication cost is reflected back to a transparent statement, 

it is also further reflected on any incoming dependence edges originating from statements prior to 

the current position. This has a net effect of encouraging redistribution as early as possible in the 

program text by allowing selected costs to be propagated toward the start of the program. For the 

ADI program, statements 22, 23, 46, and 47 can be considered transparent.

In Figure 3, the communication graph is shown for ADI with some of the costs on the edges 

labeled with the expressions automatically generated by the static cost estimator (using a problem 

size of 512 x 512 and m axiter set to 100). For reference, the functions for an Intel Paragon and a 

Thinking Machines CM-5, corresponding to the communication primitives used in the edge weights, 

are shown in Table 1.

3There is at m ost only one edge between two nodes for each array referenced in the statem ent. For multiple 
references using the sam e array, the edge weight is the sum of till comm unication for that array.
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6

(a) 100.000000 * (P2 > 1) * Shift(510.000000)
(b) 3100.000000 * Transfer(510.000000)

Figure 3: Communication graph and example edge costs for ADI 
(Statement numbers correspond to Figure 2)

Intel Paragon TMC CM-5

Transfer (m) 95 4- 0.038m 23 + 0.12m m < 16 
86 4- 0.12m m > 16

Shift (m) 2 * Transfer(m)

Table 1: Communication primitives
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1

2
3
4
5

(a) Adjacency matrix

1 2 3 4 5
9 4

15

7 7

12

0

computed cuts

1/2  = 25 
2 /3  = 31 

13/4 = 411 
4 /5  = 19

(b) Actual representation

Figure 4: Example graph illustrating the computation of a cut

Once the communication graph has been constructed, a split point is determined by computing 

a maximal cut of the communication graph. The maximal cut removes the largest communication 

constraints from a given phase to potentially allow better individual distributions to be selected for 

the two resulting split phases. Since the communication graph can potentially contain edges with 

a zero com m unication  cost, it is also possible to find several cuts which all have the same cost. The 

following algorithm is used to determine which cut to use to split a given phase:

1. To better describe the algorithm, view the communication graph G =  (V ,E ) in the form of 

an adjacency matrix (with source vertices on rows and destination vertices on columns).

2. For each statement Si {i G [1, (|F | — 1)]} compute the cut of the graph between statements 

Si and Si+i by summing all the edges in the sub-matrices specified by [-Si, Si] x [Si+i, S\v\] 
and [-Si+i, S\y\] x [S i, Si] (an efficient implementation, which only adds and subtracts the 

differences between two successive cuts, takes O(E)  time on the actual representation)

3. While computing the cost of each cut also keep track of the current maximum.

4. The maximum cut is used to select the phase split; if there is more than one cut with the 

same maximum value, choose the first.

5. Mark the arrays involved in the cut edges to redistribute and split the phase using the selected 

cut.

In Figure 4, the computation of the maximal cut on a smaller example graph with arbitrary 

weights is shown. The maximal cut is found to be between vertices 3 and 4 with a cost of 41. This 

is shown both in the form of the sum of the two adjacency submatrices, specified by the algorithm,

10



Figure 5: Partitioned communication graph for ADI 
(Statement numbers correspond to Figure 2)

and graphically as a cut on the actual representation. Since the ordering of the nodes is related 

to the linear ordering of statements in a program, the algorithm also guarantees that the nodes on 

one side of the cut will always all precede or all follow the node most closely involved in the cut. 

This is necessary to ensure that the cut divides the program at exactly one point.

It is interesting to note (but will not be examined here) that in some cases a cut can actually 

require performing loop distribution (when allowed). Also if dependencies allow statements to be 

reordered, statements may be able to move across a cut boundary without affecting the cost of the 

cut or possibly even reduce the amount of data to be redistributed. Neither of these optimizations 

will be examined in this paper.

A new distribution is selected for each of the resulting phases and the process is continued 

recursively. Each level of the recursion is carried out in branch and bound fashion such that a 

phase is split only if the sum of the estimated execution times of the two resulting phases shows 

an improvement over the original4. In Figure 5, the partitioned communication graph is shown for 

ADI after the phase decomposition is completed.

To be able to bound the depth of the recursion without ignoring important phases and distri-

4 A further optim ization can also be applied to bound the size of the sm allest phase that can be split by requiring 
its estim ated execution tim e to be greater than a “minimum cost” of redistribution.
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Level 1 
Level 2

Level 3

Table 2: Detected phases and estimated execution times (sec) for ADI

butions, the static partitioner must also obey the following property. A partitioning technique is 

said to be monotonic if it selects the best available partition for a segment of code such that (aside 

from the cost of redistribution) the time to execute a code segment with a selected distribution is 

less than or equal to the time to execute the same segment with a distribution that is selected after 

another code segment is appended to the first. In practice, this condition is satisfied by the static 

partitioning algorithm that we are using. This can be attributed to the fact that conflicts between 

distribution preferences are not broken arbitrarily, but are resolved based on the costs imposed by 

the target architecture [12].

4.2 Phase and Phase Transition Selection

After the program has been recursively decomposed by the phase selection and initial partition 

selection, redistribution costs are estimated for the possible phase transitions [23]. Edges with 

the resulting costs are used to connect the phases in a phase transition graph (as in Figure 6) to 

determine which phases and transitions are necessary to obtain the best performance.

The distributions and estimated execution times reported by the static partitioner for the de

composed phases (described as ranges of operational phases) are shown in Table 2. The performance 

parameters of the two machines are similar enough that the static partitioning actually selects the 

same distribution at each phase for each machine. The times estimated for the static partition are 

a bit higher than those actually observed, resulting from a conservative assumption made by the 

cost estimator, but they still exhibit similar enough performance trends to be used as estimates.

Since it is possible that using lower level phases may require transitioning through distributions 

found at higher levels to keep the overall redistribution costs to a minimum, redistribution stages 

are allowed at the granularity of the lowest level of the phase decomposition. To take into account 

redistribution induced by iteration in the program, any phase which is split within a loop body will 

have its redistribution costs doubled to account for a potential reverse redistribution. Once this is

Op. Phases(s) Distribution Intel Paragon TMC CM-5
I-XII *,block 1 x 32 22.239688 35.970293
I-VIII
IX-XII

*,block 1 x 32 
block,* 32 x 1

1.454816
0.603424

2.347115
0.942850

I-III
IV-VIII

block,* 32 x 1 
*,block 1 x 32

0.376035
0.978784

0.590306
1.529350

12



completed, the shortest path in the phase transition graph is computed to select the appropriate 

phases and transitions.

If a path is selected which has a change in distribution at some point after immediately entering 

a loop, the entry distribution is compared to the exit distribution of the loop body. If they are 

different, but there is a entry phase which does have the same distribution as the exit, the redis

tribution costs in the loop are reduced by half and a new shortest sub-path is computed from the 

matching entry point to the exit. If the cost of the newly computed sub-path is close enough to 

that originally selected, it is used in place of the original. Since the redistribution costs were al

ready conservative estimates (by a factor of two) to represent possible redistribution induced by the 

iteration in these types of loops, this substitution is legal. The number of valid paths through the 

program with different active distributions can be greatly reduced by ensuring that the entry and 

exit phase distributions match (for loops without redistribution upon entry) thereby simplifying 

code generation (as will be discussed in Section 5).

On an Intel Paragon the cost of performing redistribution is low enough that a dynamic distri

bution scheme is selected (shown by the shaded area in Figure 6). The phase matching procedure 

described above can also be seen in Figure 6 as the rightmost path is selected instead of the center 

path to maintain matching entry and exit distributions. For a Thinking Machines CM-5, however, 

the cost of redistribution is more expensive than the gains that can be made using a dynamic 

distribution; therefore, a static distribution is selected for this machine. To briefly recap the entire 

procedure, pseudo-code for the dynamic partitioning algorithm is presented in Figure 7.

Since the selection of the split point during decomposition implicitly maintains the coupling be

tween individual array distributions, redistribution at any stage will only affect the next stage. This 

can be contrasted to the technique proposed by Bixby, Kremer, and Kennedy [4] which first selects 

a number of partial candidate distributions for each phase specified by the operational definition. 

Since their phase boundaries are chosen in the absence of flow information, redistribution can affect 

stages at any distance from the current stage. This causes the redistribution costs to become binary 

functions depending on whether or not a specific path is taken, therefore, necessitating the need for 

0-1 integer programming. If distributions are exhaustively enumerated for every operational phase, 

the integer programming technique will obtain an optimal solution. Since the choice of candidate 

distributions can be considered somewhat of a heuristic in itself, it would be of interest to compare 

the quality and performance of these two techniques as more results are obtained.

13



Figure 6: Selected phases for ADI

Construct the communication graph for the program 
Perform an initial static partitioning on the program 
phases — DecomposeJPhase (program) 
scheme =  Select_Redistribution(p/mses)

Decompose_Phase(p/mse)
Add phase to list of recognized phases 
Assign new costs to the communication graph 
Compute the maximal cut

phase —> phasei, phase2 
Perform static partitioning on phase 1 
Perform static partitioning on phases 
Mark the arrays to be redistributed 
if (cost(phasei) +  cost(phase2)) < cost (phase) 

phase-bleft =  Decompose JPhase(p^asei) 
=  Decompose_Phase(p/mse2 )phase-bright

else
phase-ïleft 
phase-bright 

re tu rn  (phase)

=  null 
=  null

Select _Redistribution(p/mses)
Construct the phase transistion graph 
Estimate the interphase redistribution costs 
Compute the shortest phase transition path 
return(selected phase transition path)

Figure 7: Pseudo-code for the partitioning algorithm
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5 C od e G eneration  Issues

In order to utilize the available memory on a given parallel machine as efficiently as possible, only 

the distributions which are active at any given point in the program should actually be allocated 

space. It is interesting to note that as long as a given array is distributed among the same total 

number of processors, the actual space required to store one section of the partitioned array is 

the same no matter how many array dimensions are distributed5. By using this observation, it is 

possible to statically allocate the minimum amount of memory required by simply renaming array 

references for each distribution used and declaring the newly generated names to all be “equivalent” 

for a given array. The equivalence statement in Fortran allows this to be performed at the source 

level as long as redistribution operations are guaranteed to read all source data before writing to the 

target. Compared to C, this is somewhat similar to assigning two array base pointers to point at 

the same memory location. The use of the equivalence statement also avoids the need to linearize 

array accesses at this level since the target Fortran compiler will generate the appropriate indexing 

functions for multidimensional accesses.

This also implies that the send and receive operations used to implement the communication 

are buffering the data. In the worst case, an entire copy of a partitioned array can be buffered 

by such “synchronous” communication before it is received and moved into the destination array. 

As soon as more than two different distributions are present for a given array, the equivalence 

begins to pay off, even in the worst case, in terms of the amount of memory overhead that is 

eliminated. If the performance of buffered synchronous communication is insufficient for a given 

machine, non-buffered asynchronous communication could be used instead, thereby precluding the 

use of equivalence (unless explicit buffering is performed by the redistribution operation itself).

In Figure 8, the ADI program is shown with the three phases selected in Figure 6 along with the 

use of renaming and equivalence statments to separate the distributions of the different phases. 

Assignments shown in R1 and R2 indicate the redistribution to be performed between the phases. 

This approach also fits nicely with the compilation techniques being developed for static data 

distributions as the renaming describes the code specialization that is required. The guarantee 

that only one array in an equivalence set will be in use at any given time also allows the code to

5Taking into account distributions in which the number of processors allocated to a given array dimension does 
not evenly divide the size of the dimension, it can be equivalently said that there is a given amount of memory which 
can store all possible distributions with very little excess.
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program ADI2d
doubla precision u_l(N,N), uh_l(N,N), b_l(N,N), alpha
double precision u_2(N,N), uh_2(N,N), b_2(N,N) 
distribute (block, *) :: u_l, uh_l, b_l 
distribute (*, block) :: u_2, uh_2, b_2 
equivalence u_l, u_2
equivalence uh_l, uh_2 Phase
equivalence b_l, b_2 do j a 2, N - 1 31integer i, j, k uh_2(N - l.j) « uh_2(N - l.j) / b_2(N - l,j) 32

enddo 33*** Initial value for u Phase do j * 2, N - 1 34do j ■ 1, N 1 do i * N - 2, 2, -1 35do i * 1, N 2 uh_2(i,j) » (uh_2(i,j) +
u_l(i,j) = 0.0 3 k uh_2(i + l.j)) / b_2(i,j) 36enddo 4 enddo 37 Bu_l(l.j) - 30.0 5 enddo 38

u_l(n,j) * 30.0 6
enddo 7 *** Forward and backward sweeps along rows 

do j « 2, N - 1 39*** Initialize uh do i * 2, N - 1 40do j =1, N 8 b_2(i,j) * (2 + alpha) 41do i * 1, N 9 u_2(i,j) = (alpha - 2) * uh_2(i,j) +
uh_l(i,j) * u_l(i,j) 10 k uh_2(i + l,j) + uh_2(i - l.j) 42enddo 11 A enddo 43enddo 12 enddo 44 _

alpha * 4 * (2.0 / N) 13 *** Redistribute data
do k * 1, maxiter 14 u_l a u_2 Ì

*** Forward and backward sweeps along columns uh_l » uh_2 ►R2do j * 2, N - 1 15 b_l * b_2 Jdo i * 2, N - 1 16 J

b_l(i,j) * (2 + alpha) 17 do i a 2, N - 1 45 1uh_l(i,j) » (alpha - 2) * u_l(i,j) + u_l(i,2) = u_l(i,2) + uh_l(i,l) 46
k u_l(i,j + 1) + u_l(i,j - 1) 18 u_l(i,N - 1) a u_l(i,N - 1) + uh_l(i,N) 47enddo 19 enddo 48enddo 20 _ do j * 3, H - 1 49

*** Redistribute data do i a 2, N - 1 50u_2 = u_l 1 b_l(i,j) = b_l(i,j) - 1 / b_l(i,j - 1) 51uh_2 = uh_l "RI U_l(i,j) a u_l(i,j) +b_2 = b_l J k u_l(i,j - 1) / b_l(i,j - 1) 52
enddo 53 cdo j - 2, N - 1 21 enddo 54uh_2(2,j) = uh_2(2,j) + u_2(l,j) 22 do i = 2, N - 1 55uh_2(N - l.j) = uh_2(N - l.j) + u_2(N,j) 23 u_l(i,N - 1) = u_l(i,N - 1) / b_l(i,N - 1) 56enddo 24 enddo 57do j = n - 2, 2, -1 58do j * 2, N - 1 25 B do i * 2, N - 1 59do i - 3, N - 1 26 U-l(i.j) * (u_l(i,j) +b_2(i,j) » b_2(i,j) - 1 / b_2(i - l.j) 27 k U_l(i,j + 1)) / b_l(i,j) 60uh_2(i,j) = uh_2(i,j) + enddo 61

k uh_2(i - l.j) / b_2(i - l.j) 28 enddo 62enddo 29 enddo 63enddo 30 end 64

Figure 8: 2-D Alternating Direction Implicit method (with selected phases and transitions)
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transpose(p, numproc, ID, direction, byte, 
R, rm, rn, mb, n,
C, cm, cn, m, nb, buf)

transpose2(p, numproc, ID, direction, byte, 
RI, R2, rm, rn, mb, n,
Cl, C2, cm, cn, m, nb, buf)

transpose3(p, numproc, ID, direction, byte, 
Rl, R2, R3, rm, rn, mb, n,
Cl, C2, C3, cm, cn, m, nb, buf)

Figure 9: Interfaces for library-based transpose operations

be treated in the same manner as statically partitioned code. Note that general r e d is t r ib u te  

and re a lig n  HPF directives [17] can also be handled in a similar manner. Some care must be 

taken during the renaming process when control flow (loops and conditionals) is present in order 

to ensure that all paths are always operating on active distributions. In general, this may require 

some amount of code duplication and specialization (potentially causing exponential code growth 

if some care is not taken), although this topic is beyond the scope of this paper.

The communication required to perform the individual redistribution operations will eventually 

be generated automatically by the compiler [23]. Since these techniques have not yet been integrated 

into PARADIGM, the redistribution required in ADI will be performed using library support. In 

Figure 9, the interfaces are shown for performing a transpose on a two-dimensional array between 

a row-wise and a column-wise block distribution. The transpose itself depends on the processor 

location (p), the total number of processors involved (numproc), and the transpose d ire c tio n  

(forward or reverse). For both the row-wise (R) and the column-wise (C) distributions of the array, 

the function also requires: the s ize  in bytes of an individual array element, the declared size of 

the dimensions (rm x rn, cm x cn), as well as size of the section to transpose (mb x n, m x nb). Each 

transpose is also assigned a unique ID as well as a small buffer large enough to pack or unpack one 

section of the array (mb x nb). To support the simultaneous transpose of multiple arrays, separate 

functions are also provided for a fixed number of identically sized arrays. This could instead have 

been accomplished with more generality by requiring pack and unpack operations to be provided 

to handle the individual sections of outgoing and incoming data.

Even though these functions only serve the purpose of redistributing two-dimensional arrays 

between one-dimensional block-wise distributions, it should be possible to implement a (more com

plex) operation that could exchange any two block-distributed dimensions of a multi-dimensional
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Figure 10: Modes of parallel execution for ADI and the solution for the test data

array. By considering every possible pairing of distributions (block, cyclic, and block-cyclic) over 

any number of partitioned dimensions, the number of functions required to fully implement a gen

eral redistribution library would be enormous. For this reason, redistribution operations should be 

automatically generated for specific cases, as they axe needed, in order to support general redistri

bution [23].

Also, to improve the efficiency of memory management when moving large regions of data (such 

as required during redistribution), the array section pack and unpack routines in the PARADIGM 

run-time library are optimized to use block memory operations (memcpy) when possible. Further

more, to avoid unnecessary congestion in the communication network, the order in which commu

nication takes place during the redistribution is scheduled such that every processor sends data 

to a different processor at each step in the redistribution (as opposed to each processor communi

cating with an identical sequence of destinations). Even though these optimizations are currently 

implemented as part of the run-time library, they will also be incorporated into the code generation 

techniques for automated redistribution when it is integrated with the rest of the compiler.

6 E valuation

In order to evaluate the effectiveness of dynamic distribution, the ADI program with a problem size

of 512 x 5126 is compiled with both a fully static distribution (one iteration shown in Figure 10a)

6In order to prevent poor serial performance from cache-line aliasing due to the power of two problem size, the  
arrays were also padded w ith an extra element at the end of each column. This optim ization, although here performed 
by hand, is autom ated by aggressive serial optimizing compilers such as the KAP preprocessor from KAI.
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(a) Intel Paragon (b) TMC CM-5

Figure 11: Coarse grain pipelining for ADI

well as with the best dynamic distribution (one iteration shown in Figure 10b). These two parallel 

versions of the code were run on an Intel Paragon and a Thinking Machine’s CM-5 to examine the 

performance of each on the different architectures. Recall that the time for redistribution on the 

CM-5 was high enough that a static partitioning was predicted to perform better. On the Paragon, 

the cost of redistribution was low enough that a dynamic partitioning was selected.

With initial conditions of zero within the core of the matrix and upper and lower boundaries 

with a value of 30, the two schemes return the resulting solution shown in Figure 10 (overlaid with 

contours along constant potentials) which corresponds to that computed by the serial code.

The static scheme illustrated in Figure 10a performs a shift operation to communicate some 

required values and then satisfies two recurrences in the program through a technique known 

as software pipelining [13, 20]. Since values are being propagated through the array during the 

pipelined computation, processors must wait for results to be computed before continuing with 

their own part of the computation. Depending on the ratio of communication and computation 

performance for a given machine, exactly how much data is computed before communicating to the 

next processor will have a great effect on the performance of pipelined computations.

In Figure 11, a small experiment is performed to determine the granularity of the pipelines for 

the static partitioning. A granularity of one (fine-grain) indicates that values are communicated 

to waiting processors as soon as they are produced. By increasing the granularity, more values 

are computed before communicating, thereby amortizing the cost of establishing communication in 

exchange for some reduction in parallelism. For the two machines, it can be seen that by selecting

19



120 -

40 60 80 100 120
Processore

(a) Intel Paragon (b) TMC CM-5

Figure 12: Performance of ADI

the appropriate granularity; the performance of the static partitioning can be improved. Both 

a fine-grain and an optimal coarse-grain static partitioning will be compared with the dynamic 

partitioning.

The redistribution present in the dynamic scheme appears as 3 transposes7 performed at two 

points within an outer loop (the exact points in the program can be seen in Figure 6). Since 

the sets of transposes occur at the same point in the program, the data to be communicated for 

each transpose can be aggregated into a single message during the actual transpose. It has been 

previously shown that aggregating communication improves performance by reducing the overhead 

of communication [20], so we will also examine aggregating the individual transpose operations 

here.

In Figure 12, the performance of both static and dynamic partitionings for ADI is shown for 

an Intel Paragon and a Thinking Machines CM-5. For the dynamic partitioning, both aggregated 

and non-aggregated transpose operations were compared. For both machines, it is apparent that 

aggregating the transpose communication is very effective, especially as the program is executed 

on larger numbers of processors. This can be attributed to the fact that the start-up cost of com

munication (which is usually a couple orders of magnitude greater them the per byte transmission 

cost) is being amortized over multiple messages with the same source and destination.

For the static partitioning, fine grain pipelining was compared to coarse-grain using the gran-

7This could have been reduced to 2 transposes at each point if we allowed the cuts to  reorder statem ents and 
perform loop distribution on the innermost loops (between statem ents 17, 18 and 41, 42), but these optim izations 
are not exam ined here.
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Intel Paragon TMC CM-5
procs individual aggregated individual aggregated

8 36.7 32.0 138.9 134.7
16 15.7 15.6 86.8 80.5
32 14.8 10.5 49.6 45.8
64 12.7 6.2 40.4 29.7
128 21.6 8.7 47.5 27.4

Table 3: Empirically estimated time (ms) for a 512 x 512 transpose

ularity selected earlier. The coarse-grain optimization yielded the greatest benefit on the CM-5 

while still improving the performance (to a lesser degree) on the Paragon. For the Paragon, the 

dynamic partitioning with aggregation clearly improved performance (by a factor of 1.7 over fine- 

grain static, 1.6 over coarse-grain). On the CM-5 the dynamic partitioning with aggregation showed 

performance gains of over a factor of two compared to the fine-grain static partitioning but only 

outperformed the coarse-grain version for extremely large numbers of processors. For this reason, 

it would appear that the limiting factor on the CM-5 is the performance of the communication.

As a final check, the cost of performing a single transpose is estimated from the communication 

overhead present in the dynamic runs. Ignoring any performance gains from cache effects, the 

communication overhead can be computed by subtracting the ideal run time (serial time divided by 

the selected number of processors) from the measured run time. Given that 3 arrays are transposed 

200 times, the resulting overhead divided by 600 yields a rough estimate of how much time is 

required to redistribute a single array. The results of this exercise are summarized in Table 3.

7 C onclusions

Dynamic data partitionings can provide higher performance from programs containing competing 

data access patterns. The distribution selection technique presented in this paper provides a means 

of automatically determining the best distribution scheme to use for a particular machine in an 

efficient manner. By utilizing an existing static partitioning algorithm and cost estimation frame

work, the number of phases examined as well as the amount of redistribution considered is kept to a 

minimum. Further investigation into the techniques for improving the heuristic used to obtain the 

maximal cut during phase selection is currently under way. We are also in the process of applying 

interprocedural analysis to investigate possible redistribution at procedure boundaries.
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