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The earliest known iron artefacts are nine small beads securely dated to circa 3200 BC, from two burials
in Gerzeh, northern Egypt. We show that these beads were made from meteoritic iron, and shaped by
careful hammering the metal into thin sheets before rolling them into tubes. The study demonstrates the
ability of neutron and X-ray methods to determine the nature of the material even after complete
corrosion of the iron metal. The iron beads were strung into a necklace together with other exotic
minerals such as lapis lazuli, gold and carnelian, revealing the status of meteoritic iron as a special

f\;egtvgg:?tsi; iron material on a par with precious metal and gem stones. The results confirm that already in the fourth
Egypt millennium BC metalworkers had mastered the smithing of meteoritic iron, an iron—nickel alloy much

Beads harder and more brittle than the more commonly worked copper. This is of wider significance as it
demonstrates that metalworkers had already nearly two millennia of experience to hot-work meteoritic
iron when iron smelting was introduced. This knowledge was essential for the development of iron
smelting, which produced metal in a solid state process and hence depended on this ability in order to
replace copper and bronze as the main utilitarian metals.

Neutron methods
X-ray methods

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction and archaeological background

The production of iron metal from ore only started in the mid-
second millennium BC, but a number of earlier iron artefacts are
known to exist (Waldbaum, 1999, and literature therein), or at least
have been claimed at various stages to be early iron artefacts. These
could either be made from accidental by-products of copper
smelting, or represent meteoritic iron, or be younger iron intruded
into older archaeological contexts, such as the alleged 6th millen-
nium iron object from Samarra (Herzfeld, 1930), later dismissed by
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the excavator as an Islamic intrusion (Herzfeld, 1932). Confusion also
exists over objects made from minerals such as magnetite, which
can be mistaken to be corroded iron and even exhibit exsolution
lamellae which appear in the microscope similar to the famous
Widmannstaetten texture of meteoritic iron; this seems to be the
case for instance with the nodules reported by Ghirshman (1939:
206) from Tepe Sialk II, identified as magnetite ore by Pigott (1984).
Microchemical and metallographic criteria clearly distinguish these
different materials (Buchwald, 1975, 1977, 2005), but their investi-
gation requires invasive sampling, which is not acceptable for
archaeological finds of such importance and rarity. The nature and
origin of mankind’s earliest iron artefacts have therefore remained a
matter of uncertainty and dispute. The same is true for the set of iron
beads reported here ever since their excavation in 1911, in a pre-
dynastic cemetery near the village of el-Gerzeh in Lower Egypt
(Fig. 1), believed to be the earliest known extant iron artefacts.

0305-4403/$ — see front matter © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
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Fig. 1. Map of lower Egypt in the 4th millennium BC, with key predynastic sites
marked. Gerzeh is near the entrance to the Fayum. Shaded area indicates cultivated
land. Map by Gianluca Miniaci, adapted from Bard (2007).

The excavation of these beads was supervised by G.A. Wain-
wright and ].P. Bushe-Fox as part of investigations in the district of
Rigqgeh for the Flinders Petrie British School of Archaeology in Egypt
(Petrie et al, 1912). Wainwright recorded about 277 burials,
securely dated by ceramic and other finds to Nagada Period phases
IIC to IIIA, or in terms of absolute chronology about 3400—3100 BC
(Stevenson, 2009: 11—-31,10: 25).

A total of nine tubular iron beads were retrieved from the
cemetery, all from two closed archaeological contexts, and so of
secure date. Seven were recorded in tomb 67: three from the waist
of the deceased, and four as part of a necklace placed round his neck
(Petrie et al., 1912: 15—16). The necklace beads were found in their
original order as strung with tubular lapis lazuli, carnelian, agate,
and gold beads. Petrie et al. (1912: pl. IV.2) present the necklace
beads in order as found; UC10742 is the modern restringing in a
different order and excluding the iron beads (Fig. 2). In addition to
the beads, tomb 67 contained also a limestone mace-head, a copper
harpoon, and a small ivory vessel, a mudstone fish-shaped palette,
an ivory spoon, a flint bladelet, two stone vessels, and twelve
ceramic vessels (Petrie et al., 1912; Gerzeh tomb card no. 67 in
Petrie Museum archive PMA WFP1/103/1/1; Stevenson, 2009: 198,
Appendix E under ms 67).

One of the beads had been analysed in the 1920s and found to
contain about 7.5 wt% nickel (Desch, 1929; Wainwright, 1932);
another analysed later did not yield any nickel (Gowland and
Bannister, 1927). More recent analyses of surface samples of three
beads by electron microprobe revealed a fully oxidised structure
incorporating sand grains (i.e. analysing most likely a secondary
corrosion crust rather than the original metal body), with a nickel
content below 0.2 wt% (EI Gayar, 1995).

The other two iron beads come from grave 133, and according to
the report they were placed at the hands of the deceased, but not
such that the original order could be determined (Petrie et al., 1912:
16). This tomb contained the largest number of beads and of the
most diverse materials in the entire cemetery: lapis lazuli, obsidian,

© 2013 University College London. Licensed under CC BY-NC-SA license.
Permissions beyond the scope of the license may be available from
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Fig. 2. Collection of stone and faience beads from Tomb 67. UC10741, modern
re-stringing, without the iron beads.

gold, carnelian, calcite, chalcedony, steatite, faience, garnet, and
serpentine. In addition the burial equipment included an extraor-
dinary heterogeneous assemblage of artefacts and unworked ma-
terials: a porphyry bowl, a miniature pink limestone jar, a bird
scutiform-shaped palette, an ivory spoon, a flint flake, an ivory
comb (?), shells, a jackal canine tooth, 16 stones of carnelian, green
jasper, and quartz, a lump of red resin, and nine pottery vessels
(Petrie et al., 1912: 16; Stevenson, 2009: 195—196, Appendix E
under ms 133).

The report places particular emphasis on the absence of any
signs of plundering or later intrusion in both tombs (Petrie et al.,
1912: 16—17): criteria for both tombs include the presence of
valuable and unbroken objects; for tomb 67, there is also the
preservation of the body in original position, and for tomb 133,
where the bones were not well preserved, there was an intact mud
coating, two inches thick, over the burial equipment and the body.

The gender of the deceased is not documented: the individual
buried in grave 67 is said to belong to a “fair-sized boy” (Petrie et al.,
1912: 5) with “a small body” (tomb card) but no more detail can be
obtained either from the published report or from the tomb cards.
However, both tombs present the widest range of object types in
the cemetery, with unusually rich burial equipment and including a
number of exotic materials, notably the iron beads. Both the ma-
terial diversity and the wealth indicate marked social and economic
distinction (status and wealth), and perhaps also a specific link to
some particular role in specialised networks of exchange relations
(Stevenson, 2009: 192—199). As such, the el-Gerzeh beads support
the idea that the initial use of a metal, (e.g., iron, copper, gold), is
less about exploiting characteristic material properties for func-
tional uses, and more impelled by “the desire for new materials to
serve as aesthetic visual displays of identity, whether of a social,
cultural or ideological nature” (Roberts et al., 2009: 1019).

Since both tombs are securely dated to Naqada IIC—IIIA, ¢ 3400—
3100 BC (Adams, 1990: 25; Stevenson, 2009: 11-31), the beads
predate the emergence of iron smelting by nearly 2000 years, and
other known meteoritic iron artefacts by 500 years or more
(Yal¢in 1999), giving them an exceptional position in the history of
metal use. Their early date makes it reasonable to assume that they
were made from meteoritic iron; however, while the tombs were
undisturbed, the intrusion into the tomb of man-made iron
through taphonomic processes or contamination during excavation
cannot be a priori entirely excluded. Here we present positive proof
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of a meteoritic origin of these beads, strengthening the argument
that these are indeed the earliest known examples of worked iron
metal, and revealing unparalleled information about their
manufacturing technology.

2. Materials and methods

We analysed the three beads currently held at the UCL Petrie
Museum of Egyptology in London, UK for their chemical compo-
sition and metallurgical structure using non-invasive methods
(Fig. 3). Bead UC10738 has a maximum length of 1.5 cm and a
maximum diameter of 1.3 cm, bead UC10739 is 1.7 cm by 0.7 cm,
and bead UC10740 is 1.7 cm by 0.3 cm. All three beads are of rust-
brown colour with a rough surface, indicative of heavy iron
corrosion. Initial analysis by pXRF indicated an elevated nickel
content of the surface of the beads, in the order of a few per cent,
and their magnetic property suggested that iron metal may be
present in their body (Jambon, 2010).

Meteoritic iron has several characteristics that distinguish it from
smelted iron (Buchwald, 1977, 2005; Knox, 1987). Most prominent
are the large crystal grain size reaching meter-scale (Buchwald, 1975;
cited after Vander Voort, 1992) and Widmannstaetten texture,
elevated bulk concentrations of nickel (typically 5 to 10 wt%, but
reaching 30 wt% Ni and more, Vander Voort, 1992), cobalt (0.4—1 wt
%), phosphorus (0.1—1 wt%), and germanium (mostly 200—400 ug/g),
and the presence of mineral phases such as schreibersite and rhab-
dite ([Fe,Ni]|3P), cohenite ([Fe,Ni]3C), troilite (FeS) and sphalerite
(ZnS). Some of these characteristics, however, are not diagnostic.
While germanium has not been found in smelted iron above c 10 pg/
g, nickel and cobalt are common alloying elements in modern steel,
and have been found in similar concentrations in some ancient
smelted iron (Photos, 1989). Similarly elevated phosphorus concen-
trations are also found in some smelted iron. Curatorial consider-
ations prevented us from attempting invasive analysis, traditionally
necessary to obtain microstructural information or bulk composi-
tional data. Pure surface analyses, such as by XRF analysis of the
corrosion-covered surface, was unlikely to provide conclusive evi-
dence about the bulk composition though, requiring the use of non-
invasive methods instead that would still provide information about
the entirety of the beads, and not just their near-surface area.

Using an access agreement for cultural heritage material under
the EU-funded CHARISMA programme, we obtained permission
from the Petrie Museum and the UK authorities to take the beads to
Budapest, Hungary, for a series of measurements. Neutron-based
and X-ray based analytical methods such as prompt-gamma

Fig. 3. Photographs of three of the originally nine iron beads from Gerzeh, Lower
Egypt. From left UC10738, UC10739 and UC10740. © Petrie Museum of Egyptian
Archaeology. Photo by Gianluca Miniaci.

activation analysis (PGAA), particle-induced X-ray emission (PIXE),
neutron radiography (NR), and time-of-flight neutron diffraction
(ToF-ND) were used to characterise surface and body of the beads,
at the laboratories of the Centre for Energy Research and Wigner
Research Centre for Physics, Hungarian Academy of Sciences.

2.1. PGAA

Prompt gamma activation analysis (PGAA or PGNAA, Révay and
Belgya, 2004) is a nuclear analytical technique for non-destructive
quantitative determination of elemental compositions, and has
been successfully applied to characterise archaeological objects
made of various rocks (Kasztovszky et al., 2008), glass (Kasztovszky
and Kunicki-Goldfinger, 2011), as well as metals (Rogante et al.,
2010). In this study, it was used to determine the bulk composi-
tion of the entire beads rather than just the surface composition.
For analysis, the sample is irradiated in a beam of slow (i.e. low
energy) neutrons and the gamma-rays from the radiative capture
are detected. Since neutrons can go as deep as a few centimeters
underneath the surface, PGAA of sufficiently small objects provides
bulk composition characteristic for the entire volume. Contrary to
the conventional neutron activation analysis (NAA), the irradiation
and the detection occur simultaneously. The energies and in-
tensities of the peaks in the gamma spectra are independent of the
chemical state of the material; hence the analytical result is free of
matrix effects. In most cases, major components and a few signif-
icant trace elements can be quantified from one spectrum; unfor-
tunately, the expected diagnostic levels of platinum group
elements in meteoritic iron are too low for detection by PGAA.

The present measurements were carried out at the PGAA
experimental station of the Budapest Neutron Centre (Szentmikl4si
etal.,, 2010). The intensity of the neutron beam, characterised by the
thermal equivalent flux, was about 8 x 10’ cm~2 s~ L. The Compton-
suppressed HPGe detector has been precisely calibrated (Belgya
and Révay, 2004; Fazekas et al., 1999; Molnar et al., 2002). The
gamma-ray spectra were evaluated using the Hypermet-PC pro-
gram (Révay et al., 2005). The spectroscopic data library used in the
analysis was established earlier at the Centre for Energy Research
(Révay and Molnar, 2003; Révay et al., 2004). The composition of
the analysed samples was determined using the methods described
in Révay (2009), while the uncertainties of the concentrations were
calculated according to ISO GUM (1995) and Révay (2006).

Due to the elevated germanium background (about 1000 pg/g)
caused by the detector crystal itself, this PGAA setup has an un-
usually high detection limit for germanium; accordingly, our test
analyses did not show a significantly higher response for this
element for a small piece of known meteoritic iron than for fully
corroded smelted iron.

2.2. Neutron radiography

Neutron radiography is based on the attenuation of a neutron
beam. Radiography is a direct imaging technique, where the visual
representation of an object is obtained non-destructively by
detecting the modification of an incident beam as it passes through
the matter (Banhart, 2008; Anderson et al., 2009). The interactions
between the radiation and the object determine the contrast,
revealing the internal structure of the sample.

A setup called NORMA was recently installed at the Budapest
Neutron Centre as a part of the NIPS experimental station
(Szentmiklési et al., 2013), where the thermal equivalent flux of the
guided cold neutron beam is about 2 x 107 cm~2 s~ and the cross-
sectional area of the neutron beam is 40 x 40 mm?.

The sample was positioned on an xyz sample stage downstream
of the neutron collimators, and the transmitted neutrons created
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signals in a two-dimensional position sensitive detector (a °Li-
doped ZnS scintillator coupled to a Peltier-cooled Andor CCD
camera) located behind the sample. The spatial resolution (about
330 um) of the imaging system was limited by the divergence of the
neutron beam (L/D = 233). The raw two-dimensional digital image
was corrected with the open beam profile recorded in the absence
of the sample (to compensate for the spatial inhomogeneity of the
beam) and also with the dark image recorded with closed neutron
beam.

2.3. ToF-ND

The ToF-ND at the Budapest Neutron Centre is a high-resolution
time-of-flight powder diffractometer. The fast double choppers can
produce as short as 10 ps neutron pulses; the total flight path of
neutrons to the detectors is 25 m. In the highest resolution mode
and back scattering geometry diffraction spectra with peak widths
of 1.5 x 1073A can be collected. The data acquisition is solved by an
event recorder: all the event (neutron capture, chopper signs and
any external signal) is registered together with a time stamp to a
file. In the present experiment the beads were individually placed
in cylindrical capsules made of thin Teflon foil and rotated
continuously around their longitudinal axis (due to curatorial
concerns three-dimensional rotation was avoided); signals of the
incremental rotary encoder were registered as well. This method
would have allowed to record Bragg-diffraction peaks, i.e. the
angular distributions of grains’ orientations, thus separating larger
crystallites from powder-like phases. However, no such crystal
grains could be observed. The instrument is generally used to
investigate much larger samples; to increase sensitivity in this case
we applied very long measuring times, so that the detectable ab-
solute mass of iron in its metallic form was as low as about 10 mg,
i.e. less than 0.1% of the measured sample mass.

2.4. PIXE

External milli-beam particle induced X-ray emission spectros-
copy (PIXE) is one of the most powerful and popular methods for
non-destructive elemental analysis of precious art and archaeo-
logical objects (Gyddi et al., 1999). In this technique selected spots
on an object of practically any size and shape are bombarded by
energetic protons, and the characteristic X-rays produced are used
for quantitative analysis of the irradiated volume. Taking into ac-
count both the slowing down of the bombarding protons in the
sample and the attenuation of the out-coming X-rays the method is
inherently sensitive only for the surface region of depths up to
some tens of micrometres, depending on the composition of the
sample, the proton energy and the energy of the characteristic X-
rays. In standard detection arrangement elements from Al to U can
be detected simultaneously, in favourable conditions down to pug/g
sensitivities (Johansson et al., 1995). Our PIXE measurements were
performed at the 5 MV Van de Graaff accelerator of the Wigner
Research Centre of the Hungarian Academy of Sciences, Institute of
Particle and Nuclear Physics. The properly collimated proton beam
of 2.5 MeV energy was extracted from the evacuated beam pipe to
air through a 7.5 um thick Kapton foil. Target-window distance of
10 mm was chosen for the measurements at which point the beam
diameter was found to be about 1.5 mm. The objects to be analysed
were fixed to a micro-manipulator to facilitate accurate three-
dimensional positioning. External beam currents in the range of
1—10 nA were generally used. The characteristic X-ray spectra were
recorded by a computer controlled Amptek X-123 spectrometer
with an SDD type detector of 25 mm? x 500 pm active volume
positioned at 135° with respect to the beam direction. The energy
resolution was 130 eV for the Mn Ka line. The net X-ray peak

intensities and the concentration calculations were made by the
off-line GUPIX program package (Campbell et al., 2000).

3. Results

The ToF-ND testing for grain size and crystal lattice structure of
any metallic phases present in the beads found no metallic form of
iron in any of the three beads. No definite Bragg peaks were
observed, consequently they should consist of a larger number of
low symmetry crystalline phases (probably with non-uniform
chemical compositions), imperfectly crystallised or amorphous
compounds (such as iron hydroxides) and/or hydrogen in any other
form. This is considered typical for the corrosion products of iron,
and the absence of metallic iron above the detectable minimum
mass of about 10 mg indicates that the samples are to more than
99.9% corroded, with virtually no metallic form of iron remaining.
The noticeable magnetism of the beads is probably due to the
presence of magnetite (Fe304), a common corrosion product of
metallic iron.

Neutron radiography revealed the original shapes and bulk
morphology of the artefacts and details of their manufacture. All
three artefacts are tubular beads with a central hole along their
long axis to facilitate stringing. These holes were not visible during
visual inspection due to the corrosion of the beads filling the holes
with corrosion products. The NR images demonstrate that the
beads were made from rolled-up iron sheet, with areas of over-
lapping metal visible at the centre of the seam and V-shaped
tapering at one end of bead UC10740 (Fig. 4, top). The irregular
cross section of the central holes, with several kinks visible also in
the inner circumference of UC10738 (Fig. 4, bottom), rule out that
the perforation was made by drilling.

PGAA showed that the beads consist predominantly of iron and
oxygen in broadly similar amounts, which is consistent with their
fully corroded state as indicated by visual inspection and Neutron
Diffraction. Of more interest, the beads contain between 2.8 and
4.1 wt% nickel in the corroded material. We assume that about 45%
by weight of the current material is hydrogen, oxygen and other
light elements such as silicon and calcium that were incorporated
during the corrosion process. If we re-calculate the pure transition
metal content back to 100%, then these values are equivalent to
about 6—9 wt% Ni in solid metal. This assumes that the corrosion

a=

Fig. 4. Neutron images of the three iron beads, in side view (left) and perpendicular
(right). UC10740, UC10739 and UC10738 (from top).
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does not selectively enrich or deplete one metal over the others,
which is a crude assumption; thus, the calculated original con-
centrations can only be seen as best estimates. In addition, the
beads contain 0.6—1.0 wt% phosphorus and 1700—2400 ng/g cobalt,
equivalent to ¢ 3600—5100 pg/g Co in the un-corroded metal. Small
amounts of light elements (hydrogen to manganese) are thought to
represent corrosion and soil particles incorporated from the burial
environment (Table 1). We could not determine bulk germanium
levels by PGAA due to the germanium content of the detector,
resulting in a detection limit as high as 1000 pg/g.

PIXE analysis of the beads’ surfaces confirmed the presence of
iron as the main element, followed by nickel at an estimated 5 wt%,
and the light elements from the soil. Individual spots have different
concentrations of copper, lead, arsenic, zinc and manganese,
reaching several hundreds of ug/g. Two of the three beads showed
spots with germanium above the detection limit (Fig. 5), estimated
to be at ¢ 30 pg/g, and reaching up to ¢ 100 pg/g in individual spots.

4. Discussion

The bulk contents of the beads in iron, nickel and cobalt are
consistent with the assumption that the beads were made from
meteoritic iron (Rehren et al., 2012), even though the possible shift
in nickel/iron and cobalt/iron ratios during corrosion makes it
impossible to determine the original nickel and cobalt content of
the metal. The recalculated values for the un-corroded iron beads,
given above as 6 to 9 wt% Ni and 0.4 to 0.5 wt% Co, match the typical
values of hexahedrite (5—6 wt% Ni) and octahedrite (5—10 wt% Ni)
meteorites, the two most common types of iron meteorites.

The most surprising findings of our study are the neutron
radiography images showing the delicate rolled sheet-like internal
structure of the beads, which was preserved in spite of their
complete corrosion (see Fig. 2). Beads UC10739 and UC10740 were
made from sheets of approximately 1.7 cm by 2.2 cm and 1.7 cm by
1 cm respectively, with an estimated thickness of probably less than
2 and 1 mm, respectively. The occurrence of these beads as part of a
stringed necklace of various materials had quite sensibly been al-
ways taken as evidence for their tubular nature, but the complete
corrosion state had made it impossible to demonstrate whether
they were made by drilling, as with the accompanying stone beads,
or from sheet metal, as with the gold beads. Rolling thin metal
sheet into tubular beads, including intermittent annealing, is a

Table 1
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Fig. 5. PIXE spectrum of bead UC10740, showing Ko and K@ lines for main elements,
including iron (Fe), nickel (Ni), and germanium (Ge).

well-established practice for the early prehistoric production of
native metal beads, going back to the ninth millennium BC in
Neolithic Anatolia (Maddin et al., 1999; Yalcin and Pernicka, 1999;
Birch et al.,, 2013). However, forming such rolled sheet beads out
of coarse-grained and rather hard and brittle meteoritic iron would
have required very careful hammering of the metal, most likely
with intermittent annealing to first create and then roll the sheet
without cracking it. The successful prehistoric use of this
manufacturing method for meteoritic iron has recently been
documented and experimentally re-created for pre-Columbian
Hopewellian beads (McCoy et al., 2008), using machined meteor-
itic iron sheet that was then reduced by hammering from 5 mm to
4 mm thickness (McCoy pers. comm. 2012). In the Gerzeh samples,
this hammering and rolling of iron was done at a much finer scale
producing iron sheet as thin as one millimetre or less for bead
UC10740, producing long thin tubes with the metal sheet over-
lapping at the seams. This not only demonstrates a very high level
of skill of the pre-dynastic smiths creating these beads, but also
suggests that repeated cycles of annealing and hammering were
necessary to achieve such thin metal sheet.

Composition of three iron beads from Gerzeh (UC10738-40), one partly corroded piece of meteoritic iron from Argentina (CdC3C), and two completely corroded medieval non-
meteoritic iron samples (28848/12 and/1) for comparison. All data in weight percent, determined by PGAA. D.L. stands for detection limit.

Sample code DL/ uc10738 ucC10739 UC10740 CdC3C 28848/12 28848/1

element wtx Conc./ Abs. Conc./ Abs. Conc./ Abs. Conc./ Abs. Conc./ Abs. Conc./ Abs.
wt% unc. + wt% unc. + wt% unc. + wt% unc. + wt% unc. + wt% unc. +

H 0.0006 1.65 0.03 1.58 0.03 2.03 0.03 0.114 0.003 1.16 0.03 1.36 0.03

B 0.00005 0.0473 0.0009 0.0575 0.0010 0.0810 0.0012 <D.L 0.00172 0.00004 0.00465 0.00010

Na 0.09 0.13 0.01 0.23 0.02 0.20 0.01 <D.L. 0.059 0.004 0.090 0.012

Mg 0.2 0.66 0.09 <D.L. 0.46 0.04 <D.L. 0.37 0.06 0.47 0.06

Al 0.05 0.18 0.07 0.31 0.02 0.10 0.03 <D.L. 0.12 0.02 0.06 0.02

Si 0.1 1.5 0.1 3.0 0.1 13 0.05 <D.L 0.6 0.04 0.2 0.06

P 0.2 0.8 0.2 0.6 0.1 1.0 0.1 0.24 0.05 <D.L. <D.L.

S 0.05 0.2 0.02 0.2 0.01 0.2 0.01 0.11 0.01 0.063 0.007 <D.L.

Cl 0.005 0.709 0.017 0.625 0.011 0.806 0.015 0.0050 0.0001 0.118 0.003 0.167 0.004

K 0.01 0.028 0.002 0.077 0.003 0.080 0.005 <D.L. 0.023 0.003 0.021 0.004

Ca 0.1 0.48 0.03 0.55 0.02 0.67 0.03 <D.L. 0.80 0.03 0.28 0.02

Ti 0.003 0.016 0.002 0.047 0.002 0.009 0.001 <D.L. <D.L. <D.L.

Mn 0.008 0.023 0.003 0.0160 0.0004 0.050 0.001 <D.L. 0.008 0.0005 0.027 0.0007

Fe 0.2 50.2 0.4 48.7 04 48.5 0.3 64.1 0.2 60.2 0.2 60.0 0.2

Co 0.005 0.203 0.006 0.237 0.008 0.170 0.006 0.284 0.010 <D.L. <D.L.

Ni 0.2 3.55 0.10 4.10 0.10 2.75 0.06 4.88 0.15 <D.L. <D.L

O (calculated) 39.6 0.1 39.7 0.1 41.6 0.1 303 0.1 36.5 0.1 373 0.1
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The presence of iron phosphide crystals, either as coarse
rounded grains of schreibersite or as prismatic rhabdite, is one of
the characteristic features of meteoritic iron, resulting from a
typical phosphorus content of around 0.3 wt%. We therefore paid
particular attention to the possible presence of iron phosphide
phases and the total phosphorus content of the beads. First, we
studied a small piece of corroded meteoritic iron to gain an
impression about the long-term corrosion behaviour of meteoritic
iron and to see whether the phosphide crystals can survive corro-
sion better than the metal matrix. For this, we selected material
from the Campo del Cielo meteorite field in Argentina that is
thought to have fallen about 4000—5000 years ago, i.e. broadly
contemporary to the deposition of the iron beads from Gerzeh.
Fig. 6 shows that the corrosion penetrates deeply into the metal,
with a preferential corrosion of the bulk iron-nickel matrix and at
least partial survival of prismatic rhabdite (Fe,Ni)sP crystals. How-
ever, our analyses of the beads from Gerzeh showed no presence of
metallic phases above the estimated detection limit of about 10 mg
in any of the beads, but bulk phosphorus content several times
higher than expected for meteoritic iron. This discrepancy can be
explained by the manufacturing method revealed by neutron im-
aging, and post-depositional processes during corrosion. Repeated
heating and hammering of meteoritic iron probably would have
destroyed the iron phosphide crystals, partly homogenising the
phosphorus content across the worked metal (McCoy et al., 2008);

Fig. 6. Micrographs of the corroded meteoritic iron from the Campo del Cielo fall,
Argentina. Note the preferential preservation of the prismatic rhabdite crystals (white
small angular particles) in the matrix of corroded iron-nickel (grey). Large white areas
are un-corroded iron-nickel matrix. Width of image ¢ 1 mm (top) and 0.2 mm
(bottom).

this may well explain why neutron diffraction did not find evidence
for the presence of these more corrosion-resistant phases. The
higher than expected levels of phosphorus are probably due to the
position of the beads in a tomb containing a large amount of
decaying organic matter (the grey matter of the brain is particularly
rich in phosphorus), and the easy precipitation and enrichment of
phosphorus on corroding iron artefacts as iron phosphate.

So far, the analyses have found no evidence against a possible
meteoritic origin of the iron beads from Gerzeh, and good indica-
tion for such an origin. Conclusive proof in our view comes from the
germanium levels as found by PIXE in selected areas on the surface
of two of the three beads. These reach up to ¢ 100 pg/g of corroded
material in selected spots on two of the three beads, about half the
level common for meteorites and much higher than those detected
in smelted iron. We were unable to find literature on the long-term
corrosion behaviour of germanium in iron artefacts. However, from
theoretical considerations it is very unlikely that germanium would
be present in the burial environment in sufficient concentrations to
lead to such high levels in the analysed beads. In contrast, we
explain the relatively lower level of germanium compared to fresh
meteoritic iron with the selective oxidation and subsequent loss of
germanium during smithing. It is hoped that experimental work
with meteoritic iron and traditional manufacturing methods will in
the future produce some information on this issue; until then, we
interpret the analysed germanium concentrations as strong proof
for a meteoritic origin of the beads, despite the discrepancies in
absolute concentrations.

Several other trace elements were detected in the beads, such as
copper, zing, arsenic and lead at levels not present in meteoritic
iron similar to those found on the surface of the archaeological
beads. PIXE found significant amounts of these elements whereas
PGAA did not detect them; this can be due to either the higher
detection limits of PGAA for these elements, and/or their presence
mostly at the surface. We assume that the presence of copper,
arsenic and possibly lead is a consequence of environmental
contamination and electrochemical precipitation onto the
corroding iron beads, probably from the large copper harpoon
found in the same tomb; such precipitation has been shown for
early iron objects found in a tomb rich in copper artefacts (Merkel
and Barrett, 2000). Alternatively, they could originate from
contamination by copper tools used in the manufacture of the
beads, as tongs to manipulate the metal during hot hammering or
as a temporary core material around which the metal was rolled to
shape the tubes. An environmental origin is assumed for boron and
chlorine, both common in the saline soils of Egypt’s desert into
which the tombs were dug. The zinc content is inconclusive; it can
either be due to environmental contamination or stem from zinc
sulphide inclusions present in the original meteoritic metal.

5. Conclusion

The composition of the beads is consistent with a meteoritic
origin of the metal. The germanium content is the strongest indi-
cation for this, despite the irregular and relatively low concentra-
tions found. The content in nickel and cobalt, estimated to have been
around 6—9 wt% Ni and between 0.4 and 0.5 wt% Co in the original
metal, is also strong indication of a meteoritic origin. We explain the
presence of elements not consistent with a meteoritic origin, such as
copper, arsenic and lead, by environmental contamination, partic-
ularly from the corrosion of a large copper artefact near-by. The
shape of the beads was obtained by smithing and rolling, most likely
involving multiple cycles of hammering and annealing, and not by
the traditional stone-working techniques such as carving or drilling
used for the other tubular beads from this tomb. Beads UC10739 and
UC10740 were made from sheets a few cm square in size with an
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estimated thickness of around 1 or 2 mm. No metal structure was
identified by the non-invasive methods used, indicating complete
corrosion of the beads. It is assumed that re-crystallisation and
homogenisation during hammering and annealing of the meteoritic
iron into sheet metal would have removed much of the original
structure already prior to corrosion. Cycles of hammering and
annealing were used previously for producing similar beads during
the Neolithic and Early Bronze Age using soft metals such as pure
copper and native gold; however, these beads are to our knowledge
the earliest smithed iron artefacts known that were made from
nickel-rich coarse-grained iron metal, a material much more diffi-
cult to work. Composition and manufacturing technique are not
compatible with a sub-recent origin of the beads, confirming the
archaeological observation by the excavators that they are not later
intrusions into the Gerzeh tombs, but indeed humankind’s oldest
known iron artefacts. Significantly, this is the first multi-analytical
study to show that already the earliest known iron artefacts were
manufactured with a set of techniques that were to become essen-
tial for the processing of bloomery iron, produced in the solid state
and hence similar to the meteoritic iron that underpinned the first
two millennia of iron metallurgy.
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