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Introduction

Consider an organism that uses vision to estimate the
speeds of moving objects. With unlimited resources, it
could estimate the speeds by having a separate mechanism
to measure each speed, resulting in excellent precision.
With minimal resources, it might have to make do with a
single mechanism to measure all speeds, resulting in poor
precision. How can the visual system find the right
balance between frugality and precision?
In this article, we find the balance using tools developed

in the neoclassical economic theory. Our approach rests
on the notion of equilibrium, introduced into the economic
theory from mechanics (Pareto, 1906). In economics, this
method allows one to find an optimal balance in
consumption of incommensurable goods (“apples and
oranges”) for a customer or a market with a limited
budget. The allocation of resources to bundles of goods is
optimal when two conditions are met: (1) Satisfaction
from one component of the bundle cannot improve
without reducing satisfaction from some other component,
and (2) satisfaction from all the goods is the highest
possible. Our analysis of motion perception using this

approach leads to equations of equilibrium very similar to
the equations in economics (Table 1). Now, “apples and
oranges” correspond to the parameters of optical stim-
ulation, and the “degree of dissatisfaction” corresponds to
the errorsVor the amount of uncertainty1Vin estimating
the parameters (Gepshtein & Tyukin, 2006; Gepshtein,
Tyukin, Kubovy, & van Leeuwen, 2006). Just as a
consumer with limited financial resources seeks to
minimize his or her dissatisfaction from a basket of fruit,
we assume that vision, with a limited pool of speed-tuned
neurons, seeks to minimize measurement errors.
The well-known fact that visual sensitivity to the

parameters of stimulation varies across the parameters is
a manifestation of the differential allocation of visual
resources. A comprehensive summary of the visual
sensitivity is the spatiotemporal contrast sensitivity func-
tion (Kelly, 1979, 1994). We plot this function in the
logarithmic space–time distance coordinates in Figure 1A.
(See Appendix A for details of its construction.) In this
format, the different speeds are represented by the parallel
lines, called speed lines. In Figure 1A, we show two
characteristics of visual sensitivity: the maximal sensitiv-
ity set and the isosensitivity sets. The maximal sensitivity
set is represented by the grey hyperbolic curve that runs
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across the speeds. The isosensitivity sets are represented
by contours in different colors. Each contour connects the
parameters of spatiotemporal stimuli that reach the thresh-
old of visibility at the same contrast. Although these data
were obtained with drifting sinusoidal gratings at the
threshold of visibility, the estimates of maximal sensitivity
are consistent with results produced by other methods
(Burr & Ross, 1982; Kelly, 1994; Newsome, Mikami, &
Wurtz, 1986; van de Grind, Koenderink, & van Doorn,
1986; van Doorn & Koenderink, 1982a, 1982b; reviewed
in Nakayama, 1985).
The visual system estimates speed using a pool of

neurons whose receptive fields can be tuned to different
speeds (Nover, Anderson, & DeAngelis, 2005; Perrone &
Thiele, 2001; Priebe, Cassanello, & Lisberger, 2003;
Simoncelli & Heeger, 1998) at different locations in the
distance plot (Figure 1). The uncertainty associated with

this estimation varies across the locations. A system with
limited resources should maximize the quality of its
measurements per unit of resources and thus allocate
more resources where the expected uncertainty is low. In
other words, the amount of resources allocated to different
conditions (S, T) should be inversely related to the amount
of errors expected at these conditions. In agreement with
the neural network theory (Barron, 1993; Park & Sandberg,
1993), we expect that a larger number of neurons tuned to
a particular value of a parameter leads to a better ability to
discriminate signals around that value and, consequently,
to a higher sensitivity in its vicinity. Thus, if we knew
how the uncertainties, U(S, T), were distributed across
space and time, we could predict how vision should
distribute its sensitivity.
In this work, we pursue this normative approach. First,

we estimate the uncertainty intrinsic to the measurement

Framework Role Form of equilibrium Equation

Local Spendthrift extreme ¯USH + ¯UT = 0 9
Total integration Frugal extreme ¯USHe + ¯UT = 0 12
Weighted Plausible compromise ¯USg(H) + ¯UT = 0 18

Figure 1. Human spatiotemporal sensitivity. (A) Human spatiotemporal contrast sensitivity as a function of spatial and temporal distance
(space–time distance plot). The colored contours represent constant levels of contrast sensitivity; their colors represent normalized
sensitivity. The grey hyperbolic curve represents the conditions of maximal sensitivity. The parallel speeds lines represent different speeds
of motion. We plot sensitivity in space–time (and not in the frequency domain, as it is often done) because we relate sensitivity to
perception of apparent motion, which is easier to understand in space–time. The data are from Kelly (1979). The prediction for allocation
of sensitivities by our normative theory is plotted in Figure 6. (B) A conceptual scheme of motion detector (Reichardt, 1961, 1969) tuned to
spatial and temporal parameters S and T. Each point in Panel A corresponds to a pair of these parameters. The detector is stimulated the
strongest when a signal travels spatial distance S (from left to right in the illustration) over temporal interval T. Assuming a slightly more
sophisticated version of the detectorVthe standard model (Adelson & Bergen, 1985; van Santen & Sperling, 1984)Vthe detector’s tuning
characteristics and the results of Kelly in Panel A are converted between the space–time and frequency domains (Nakayama, 1985;
Appendix A).

Table 1. Equilibrium in the three optimization frameworks.
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of spatiotemporal signals (measurement uncertainty;
Gabor, 1946). Second, we predict at which locations in
the space–time distance plot the conditions are most
favorable for estimating speed, taking into account
estimates of uncertainty about the speed of stimulation
(stimulus uncertainty; Dong & Atick, 1995). We start
from constraints that apply to any measurement what-
soever and deduce how the visual system might achieve
the compromise between frugality and precision in face
of the uncertainties. We find that the invariant properties
of the optimal and uniformly suboptimal conditions for
motion measurement predicted by the theory are similar
to the maximal-sensitivity and isosensitivity conditions
found in biological vision.

Measurement uncertainty

Uncertainty principle of measurement

Consider receptive fields sensitive to a range of spatial
and temporal frequencies, $f 9 0, and a range of locations
in space and time, $x 9 0. These ranges produce
uncertainty with respect to the content2 and location of a
stimulus. By the uncertainty principle of measurement
(Gabor, 1946; Resnikoff, 1989), the product of these
uncertainties (spatial or temporal) cannot exceed a
positive constant, C1:

$f � $x Q C1: ð1Þ

In a system that is performing at its best (i.e., where $f �
$x = C1) one uncertainty cannot decrease without the
other increasing. Henceforth, we will express the changes
of uncertainty as equations and not as inequalities because
our goal is to predict the best performance of the system.
Suppose $f obeys the invariance of relative uncertainties:

$f=f ¼ C2; ð2Þ

where C2 9 0 is a constant, as it was shown for visual
receptive fields (e.g., Kulikowski, Marcelja, & Bishop,
1982). This property represents a scale invariance of
measurement error, similar to Weber’s law. In contrast to
the generally valid uncertainty principle, Equation 2
summarizes empirical observations, whose generality is
not confirmed. Thus, Equation 2 might serve as a
postulateVor an assumptionVfrom which we derive the
function describing how measurement uncertainties change
across the conditions of stimulation. (We relax this
assumption below.) From Equations 1 and 2, it follows:

$x ¼ C1=ðC2 � f Þ;
$f ¼ C2 � f :

ð3Þ

Assuming additivity of uncertainties, from Equation 3 we
can estimate how uncertainty changes across the entire
range of spatial or temporal parameters:

U ¼ k1$x þ k2$f ¼ k1
C1

C2 � f

� �
þ k2 C2 � fð Þ; ð4Þ

where $x is an interval of spatial or temporal locations
($S or $T), $f is an interval of spatial or temporal
frequencies ($fS or $fT), and ki are unit coefficients that
bring the terms to the same units. Equation 4 indicates that
the measurement uncertainty varies as a composition of
decaying and growing functions of frequency (Figure 1A).
For a visual system that samples signals using Gabor

filters (i.e., filters obtained by multiplication of Gaussian
and harmonic functions; e.g., Daugman, 1985; Jones &
Palmer, 1987; MacKay, 1981), we can estimate the shape
of uncertainty function without the assumption of invar-
iance of relative uncertainties (Equation 2). Gabor (1946)
showed that in such a system, there exists a simple
relationship between the uncertainty in space–time and in
frequency domain (his Equation 1.27). We formulate that
relationship in our terms as

$x ¼ 1x=!; $f ¼ 1f!; ð5Þ
where ! corresponds to distance (spatial or temporal,
against which we plotted sensitivity in Figure 1A) and 1i
are the weights (as in Equation 7 below). By adding
uncertainties as we did in Equation 4, we again find that
the composite uncertainty decays or grows as a function of
frequency over different intervals of frequency (which is
inversely related to !). Thus, these features of the
composite uncertainty function do not depend on the
assumption of invariance of relative uncertainties.

Spatiotemporal uncertainty function

By applying Equation 4 separately to spatial and
temporal uncertainties, we derive the spatial and temporal
uncertainty functions:

US ¼ k1;S � $S þ k2;S � $fS

¼ k1;S
C1;S

C2;S � fS

� �
þ k2;S C2;S � fS

� �
;

UT ¼ k1;T � $T þ k2;T � $fT

¼ k1;T
C1;T

C2;T � fT

� �
þ k2;T C2;T � fT

� �
: ð6Þ

By the assumption of additivity, from Equation 6, we
obtain the generalized spatiotemporal uncertainty function:

UST S;Tð Þ ¼ US þ UT; US ¼ 11
S
þ 13S;

UT ¼ 12
T
þ 14T; ð7Þ
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where we converted fS and fT into S and T (Appendix A)
and replaced the constants of Equation 6 and the
constants of the frequency–distance conversion by con-
stants 1i. It is convenient to think of these constants as the
weights expressing how much each term of Equation 7
affects system goals.
We found that the shapes of predicted isosensitivity

contours, which we derive in Figure 5, are similar to the
shape of human isosensitivity contours in Figure 6 when
13 and 14 were roughly two orders of magnitude greater
than 11 and 12. The fact that the weights of terms
concerning localization in space–time (13, 14) are large
in comparison with the weights of terms concerning
frequency identification (11, 12) suggests that the spatio-
temporal sensitivity function in Figure 6 reflects visual
behavior whose implicit goal has to do more with signal
localization than signal identification.
In Figure 2B, we plot the spatial and temporal

uncertainty functions US and UT and the joint spatiotem-
poral uncertainty function UST. Each one-dimensional

uncertainty function on the side panels of Figure 2B
shows that uncertainties grow toward the high and low
ends of each dimension. The composition of uncertainty
functions is illustrated in Figure 2A:

0 At the low end of each dimension, small receptive
fields allow precise estimation of signal location in
space or time (low values of Function A), but not in
the spatial or temporal frequency domains (high
values of Function B).

0 In contrast, at the high end of each dimension, the
receptive fields allow the precise estimation of signal
location in the spatial or temporal frequency domains
(low values of Function A), but not in space or time
(high values of Function B).

Consequences of the additivity assumptions

In Equation 4, we assumed additivity of uncertainties
because for a system at the optimal limit of its performance,

Figure 2. Uncertainty functions. (A) Functions A and B represent uncertainties associated with measuring the frequency content of signals
and localizing signals, respectively. Measurements of large spatial or temporal distances, using large receptive fields, suffer from
uncertainty about the location of signals in space or time (large values of function B at large distances). Measurements of small spatial or
temporal distances, using small receptive fields, suffer from uncertainty about the location of signals in the frequency domain, spatial
or temporal (large values of Function A at small distances). We describe the growth of uncertainty toward the extremes of spatial and
temporal dimensions of stimulation by assuming additivity of the small- and large-scale uncertainties (Function A + Function B).
(B) Adding the spatial and temporal uncertainties (US and UT) in space–time yields a spatiotemporal uncertainty function, UST. (US and UT

are shown on the side panels; each is a replica of Function A + B in Panel A.) The minimum of USTVglobal optimum OVand the level
curves of UST are shown in a space–time plot in the upper horizontal plane. Shown in a space–time plot in the lower horizontal plane are
speed lines, which are parallel to each other in logarithmic coordinates. The global optimum projects on one of the speed lines. At that
point, the estimates of speed are least affected by the uncertainties. There are similarly optimal points on other speed lines; these are the
points where spatial and temporal uncertainties are in equilibrium (Figure 3, Table 1).
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multiplication of uncertainties within a dimension (spatial or
temporal) amounts to adding a constant (Equation 1). The
role of additivity in Equation 7 is different. Multiplication of
spatial and temporal uncertainties in Equation 7 yields a new
inseparable space–time term in the uncertainty function;
this term does not change qualitatively significant
predictions of the theory (page 8).

Optimal conditions for speed
estimation

The visual system would perform optimally if it used
small receptive fields to estimate location in space–time
and large receptive fields to estimate location in the fre-
quency domain, perhaps using specialized subsystems to
accomplish different tasks. But let us consider a frugal
systemwith scarce resources that cannot afford a separation
to subsystems. Such a system should compromise and use
the same receptive fields to measure several kinds of infor-
mation: minimizing the aforementioned uncertainties and
also trying to minimize the uncertainty of speed estimation.
The measurement uncertainties described by the spatio-

temporal uncertainty function constrain the visual sys-
tem’s ability to estimate speed. The effect of measurement
uncertainty on speed estimation is smallest at the mini-
mum of UST (red circle) in Figure 2. This global optimum
falls on one of the speed lines. Because speed can be
measured with least uncertainty at that point, the visual
system should allocate more resources for measuring
speed at that point than at any other point on this speed
line. But where are the similarly optimal conditions for
measuring other speeds?
Because a straightforward answer to this question is

biologically implausible (as we show next), we answer it
in two steps. First, we establish two extreme optimality
frameworks for speed estimation: One is overly spend-
thrift but estimates speed with infinite precision; the other
is overly frugal but is imprecise at almost any speed.
Second, we find a principled balance between these
extremes and thus predict biologically plausible optimal
conditions for the estimation of every speed.

Local optimization: A spendthrift extreme

We find an optimal condition on each speed line,
similar to the condition of global optimum, by noting that
at the global optimum, spatial and temporal uncertainties
are exactly in balance: A change in spatiotemporal
uncertainty (dUST; Equation 7) due to changes of US and
UT is the total derivative of UST:

dUST ¼ ¯US dSþ ¯UTdT; ð8Þ

where ¯US = ¯UST/¯S and ¯UT = ¯UST/¯T are the spatial
and temporal partial derivatives of UST, respectively.
Because the spatial and temporal uncertainties balance
each other where the total derivative is zero, the
equilibrium for every speed H = S/T (which we write as
dS = HdT for dT m 0) is

¯USH þ ¯UT ¼ 0: ð9Þ
By substituting US and UT from Equation 7 into
Equation 9, it follows that the conditions of equilibrium
are satisfied by a hyperbola in the space–time plot (gray
curve in Figure 4):

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11T2H

ð13H þ 14ÞT2 j 12

s
: ð10Þ

As we show in Figure 3, the hyperbola for every speed
passes through two special points: One is the global
optimum (the orange circle), common to all the hyper-
bolas; the other is the local optimum for the speed (circles
marked Oi in the insets). The latter point is unique for
most speeds. (Only for the speed whose speed line passes
through the global optimum do the global and local
optima coincide; Figure 3, inset A2.)
The optimal point on each speed line (local optimum) is

the intersection of the speed line and the hyperbola
representing the solution of the equation of balance of
uncertainties for that speed. We find such balance points
on each speed line and thus discover the local optimal set
for estimating all the speeds; it is shown as a thick black
curve in Figure 3.
Note that we find the local minima in Equation 8 by

varying uncertainty functions in space and time (i.e.,
balancing dS and dT) rather than in the frequency domain
(i.e., balancing dfS and dfT) because we are interested in
the optimal conditions for speed estimation rather than the
optimal conditions for measuring signals’ frequency
contents.
Local optimization is biologically implausible for two

reasons:

R1. Local optimization assumes that the visual system
can tune its processing units for each speed
independent of other speeds. This assumption must
be false: Any estimate of speed must involve some
spatial and temporal integration because biological
receptive fields are extended in space and time.

R2. Local optimization assumes that all speeds are
equally important for perception. This assumption
must be false for two reasons: (1) The distribution
of speeds in the perceptual ecology is not uniform
(Dong & Atick, 1995) and (2) some speeds are
more important to the organism than others.

Journal of Vision (2007) 7(8):8, 1–18 Gepshtein, Tyukin, & Kubovy 5

Downloaded From: https://jov.arvojournals.org/ on 07/22/2018



Optimization by “total integration”:
A frugal extreme

To understand how the integration across speeds in
biological vision affects the shape of the optimal set for
speed estimation, we first consider an extreme case:
integration across all speeds. This total-integration frame-
work represents an overly frugal system, whose resources
are extremely limited and whose speed resolution is poor.
The limiting case of such a system is the one with a single
speed-tuned mechanism sensitive to the entire range of
speeds.
To find the optimal set predicted for the overly frugal

total-integration framework, we integrate the contribution of
all speeds into the optimization process and use each speed’s
prevalence in the perceptual ecology as a weight in the
integration. The effect of weighting the contribution of each
speed by its prevalence in the perceptual ecology is

dUI ¼
Z V

0

pðHÞdUSTdH ¼ 0

Á
Z V

0

pðHÞð¯USH þ ¯UTÞdH ¼ 0;

ð11Þ

where p(H) is the distribution of speeds in the natural
stimulation (Dong & Atick, 1995). By rewriting the latter
expression as

Z V

0

pðHÞ HdH
� �

¯US þ
Z V

0

pðHÞdH
� �

¯UT ¼ 0; ð12Þ

taking into account the fact that X0
V
p(H)dH = 1, and

introducing expected speed

He ¼
Z V

0

pðHÞ HdH; ð13Þ

we obtain

¯USHe þ ¯UT ¼ 0: ð14Þ

Thus, the integration yields an optimal set whose
mathematical form is that of equilibrium (Table 1).
The total-integration framework is not vulnerable to the

objections we raised about local optimization because
many speeds contribute to the optimization process

Figure 3. Local optimization. The local optimum for estimating speed Hi is intersection Oi of a hyperbola (which consists of points where
the spatial and temporal uncertainties are balanced) and the speed line of Hi. Insets A1–A3 show three such optima. The set of all the
intersections is the local optimal set, shown as a thick black curve. The orange circle is the point of global optimum of uncertainty from
Figure 2. The dashed line is the speed line that passes through global optimum.
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(response to R1) and because the contribution of each
speed is weighted by the distribution of speeds in the
perceptual ecology (response to R2; in spirit of the
Bayesian approach: Knill & Richards, 1996; Maloney,
2002; Weiss, Simoncelli, & Adelson, 2002). In the
ecological distribution, low speeds are more likely than
high ones (Dong & Atick, 1995).
The optimal set according to total integration is

invariantly a hyperbola in the distance plot: the grey
curve in Figure 4. Why a hyperbola? As we saw in
Figure 3, the conditions of equilibrium for each speed
form a hyperbola in the space–time distance plot
(Equations 9 and 10). The local optimization framework
can afford finding the condition of equilibrium for
each speed. Because multiple equilibriaVone per
speedVcontributed to the local optimal set, the form of
that set is generally different from hyperbolic. In contrast,
the total integration framework cannot access individual
speeds. It can only estimate the weighted mean of all the
speeds that contribute to the integration. The weighted
mean of speed is the most likely speed in the perceptual
ecology: the expected speed, He. Thus, a single speed
dominates optimization in this framework, because of
which the optimal set is a single hyperbola.
This result, that a single speed dominates optimization

in this framework, is remarkable. It means that the shape
of the distribution of speeds in the perceptual ecology
matters only inasmuch as it determines the mathematical
expectation of that distribution: the expected speed. As we

show below, a realistic compromise between the two
extreme optimization frameworks yields an optimal set
very similar to the set predicted by the total-integration
framework. It is therefore the expected speed, and not the
shape of the distribution of speeds, that controls the
properties of the optimal set predicted by our theory.
Notice that the two extreme frameworksVlocal opti-

mization and total integrationVare dominated by different
uncertainties: The spendthrift local-optimization frame-
work can afford to allocate as much resources as needed to
measure every speed, so its optimal set depends only on
U(S, T), that is, only on the measurement uncertainty. By
contrast, the frugal total-integration framework must
allocate its resources carefully. It must take into account
the statistics of stimulationVthe stimulus uncertaintyVso it
can measure speed with optimal precision only at the most
likely speed He. The frugal framework is more sophisti-
cated than the spendthrift one: its optimal set is determined
by both the measurement and stimulus uncertainties.

Weighted optimization: A realistic
compromise

A realistic optimal set must lie between the spendthrift
and the frugal. The more limited the resources of a
system, the more it should rely on stimulus uncertainty
and the more closely the optimal set should approach the
prescription by frugal total integration. On the other hand,
the more speed-tuned mechanisms a system can afford,
the more such mechanisms it can allocate to the more
common spatiotemporal parameters, where stimulus
uncertainty is relatively low. Thus, for speeds prevalent
in the stimulation, the optimal set should be closer to the
set prescribed by local optimization than for other speeds.
Therefore, the optimal strategy for resource allocation
across speeds depends on stimulus uncertainty: If a speed
is likely (low stimulus uncertainty), its optimal points
should be closer to the prediction of local optimization. If
a speed is unlikely (high stimulus uncertainty), its optimal
points should be closer to the prediction of total
integration.
We model this compromise by taking a linear combi-

nation of the conditions for optimization for the local
(dUST) and total-integration (dUI) frameworks:

wðHÞdUSTðHÞ þ ½1jwðHÞ�dUI ¼ 0: ð15Þ

Remarkably, this method of combination preserves the
equilibrium of spatial and temporal uncertainties (Table 1),
as we show next.
The effect of distribution of speeds p(H) on the

optimization of speed measurement depends on how
precisely visual mechanisms are tuned to speed. In our
formulation of the maximal-sensitivity set in Equation 15,
precision of tuning is represented by the interval of

Figure 4. Three optimal sets for speed estimation. The black curve
represents the local optimal set, as in Figure 3. The grey
hyperbola represents the total-integration optimal set. The red
curve represents the weighted optimal set, which is a realistic
compromise that falls between the two extreme sets. At low
speeds, the realistic optimal set is closer to the local optimal set
than to the total-integration optimal set because low speeds
prevail in the perceptual ecology.
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integration across speeds; the interval is denoted as W(H)
below. First, we derive the integration intervals from the
principle of uncertainty of measurement (as we did to
obtain Equation 3). We find that the boundaries of
integration should grow with speed. Then, we find the
weight w(H) by integrating the contributions of different
speeds over W(H):

wðHÞ ¼
Z
�ðHÞ

pðH1Þ dH1: ð16Þ

Boundaries of integration

We estimate the boundaries of integration intervals the
same way we have estimated the uncertainties associated
with the spatial and temporal dimensions of stimulation
(Equation 3). We rewrite Equation 2 in terms of spatial
and temporal distances:

$S=S ¼ CS;

$T=T ¼ CT;
ð17Þ

where CS and CT are constants. From this, we estimate the
interval of uncertainty of speed. Let ªuaª be the absolute
uncertainty (uncertainty pedestal), which does not depend
on speed. Then, we write the lower (Ha) and upper (Hb)
boundaries of the interval as

Ha ¼ jua þ ðSj$SÞ=ðT þ $TÞ;
Hb ¼ ua þ ðSþ $SÞ=ðTj$TÞ;

ð18Þ

where the first equation describes the minimal value of
measurement with an error in spatial and temporal
estimates, and the second equation describes the maximal
value of such measurement. We consider only the positive
values of the interval’s boundaries. Because speed H = S/T,

Ha ¼ jua þ Hð1jCSÞ=ð1þ CTÞ;
Hb ¼ ua þ Hð1þ CSÞ=ð1jCTÞ;

hence; HbjHa ¼ 2ua þ 2HðCS þ CTÞ=ð1jCT
2Þ:

ð19Þ

Thus, interval W(H) = [Ha, Hb] grows linearly with speed.

Integration

By the integration over the variable interval W(H), we
find weights w(H) for Equation 15 and thus determine the
realistic optimal set:

¯USgðHÞ þ ¯UT ¼ 0; ð20Þ

where g(H) = w(H) H + [1 j w(H)]He. This set has a form
similar to Equations 9 and 14; that is, it also preserves the
equilibrium of spatial and temporal uncertainties (Table 1).
But now, factor g(H) that modulates ¯US is a function of
speed.
The explicit form of this optimal set in the distance plot

is:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11T2gðHÞ
ð13gðHÞ þ 14ÞT2j 12

s
; ð21Þ

which we plot as a red curve in Figure 4.
The realistic optimal set resembles the maximal-

sensitivity set of biological vision (Burr & Ross, 1982;
Kelly, 1979; Nakayama, 1985; Newsome et al., 1986;
van de Grind et al., 1986; van Doorn & Koenderink,
1982a, 1982b) in three ways:

1. It is roughly a branch of a rectangular hyperbola in the
first quadrant, whose equation is of the form ST = const,
where S and T are spatial and temporal distances,
respectively. The hyperbolic shape implies a trading
relation between the spatial and temporal parameters.

2. It approaches a vertical asymptote for low values
of T.

3. It deviates from a horizontal asymptote for high
values of T, predicted by local optimization.

These similarities do not depend on the choice of
parameters of the spatiotemporal uncertainty function
(Equation 6) and on the assumption of additivity of spatial
and temporal uncertainties (Equation 7). Changing the
parameters in Equation 6 results in changing the location
of the optimal set in the distance plot. Abandoning the
assumption of additivity amounts to having an inseparable
space–time term in the spatiotemporal uncertainty func-
tion. The weight of that term affects the curvature of the
optimal set in the transition between its vertical and nearly
horizontal branches in the distance plot.

Equally suboptimal conditions
for speed estimation

We have characterized the visual system’s optimal
sensitivity to motion. To characterize its performance
when it is not at its best, we derive equivalence sets of
uncertainty for speed estimation. Just as the realistic
optimal set does, these equivalence sets balance measure-
ment uncertainty and stimulus uncertainty.
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Measurement uncertainty. Because the realistic optimal
set represents a perfect balance of measurement uncertain-
ties, any point outside of it represents a degree of imbalance
of these uncertainties. In Figure 5, we capture this
variation of uncertainties using a curvilinear parametric
grid (Struik, 1961). The curves for different degrees of
imbalance of measurement uncertainties form a family of
nonintersecting grid lines in the distance plot. Each curve
has the roughly hyperbolic shape of the realistic optimal
set. The heavier curve H is the curve of exact balance. The
farther a curve of this grid is from H, the greater imbalance
of measurement uncertainties it represents.
Stimulus uncertainty. Stimulus uncertainty is repre-

sented in Figure 5 by the linear part of the grey net
formed by the speed lines. The heavier line p is the speed
line for the most likely speed He. The farther a line of this
grid is from p, the less likely the corresponding speed is in
the perceptual ecology.
We find the conditions where the two kinds of

uncertainty are equally imbalanced by constructing circles
in the curvilinear system of the coordinates (Figure 5).
We set a logarithmic scale on the two parametric grids, in
agreement with the theoretical and physiological consid-
erations presented by Nover et al. (2005). The details are
described in Appendix B. We draw the family of
resulting equivalence sets in Figure 6A. Independent of
the choice of parameters, the equivalence sets form closed
contours in the distance plot. The shapes of contours

generally follow the invariantly hyperbolic shape of the
maximal sensitivity set. The theoretical equivalence sets
are very similar to the observed “bent loaf-of-bread”
shape of human isosensitivity contours (Kelly, 1994; our
Figure 1A).
To summarize, we have proposed that the visual system

should allocate its resources to the conditions of stimulation
according to the uncertainty of speed estimation. The
similarity between the theoretical optimal and equally
suboptimal sets to the empirical maximal sensitivity and
isosensitivity sets supports this view and suggests that human
vision allocates its resources by the prescription of balance
between uncertainties. In agreement with the theory, the visual
system seems to allocate (a) more resources to the conditions
of stimulation where the different uncertainties are balanced
exactly and (b) equal amount of resources to the conditions
with the same degree of imbalance of uncertainties.

Discussion

Summary

We have developed a normative theory of motion
perception. We assumed that the visual system attempts
to minimize errors in estimation of motion speed. But

Figure 5. Construction of an equivalence set. Finding equivalence sets in a space–time plot amounts to constructing a circle in the
curvilinear coordinate system, shown as a gray net. The coordinate system is the cartesian product of two parametric grids: (1) curvilinear
balance grid, which consists of curves of equal imbalance of spatial and temporal uncertainties, and (2) linear speed grid, which consists
of speed lines. The axes are the line of expected speed H = He (marked p) and the optimal set by weighted optimization (marked H). We
construct an equivalence set by transforming coordinates p and H < which results in a new coordinate system (p, v), shown in the inset <
and then drawing a circle in (p, v). The shape of the equivalence set is determined by mapping 8 of the circle: from (p, v) to the space–
time plot (Appendix B).
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biological vision with limited resources cannot optimize
for every speed. We showed that in such a system the best
conditions for the estimation of speed are obtained where
uncertainties from different sources are balanced (i.e., are
in equilibrium). These conditions form an optimal set for
speed estimation; the invariantly hyperbolic shape of this
set is similar to the shape of the maximal sensitivity set of
human vision. The equally suboptimal conditions for
speed estimation are obtained where uncertainties from
different sources are imbalanced to the same degree. The
conditions of equal imbalance form equivalence sets for
speed estimation; the shapes of these sets are similar to the
shapes of the isosensitivity sets of human vision.
We used equilibrium analysis of uncertainties to explore

the consequences of very basic properties of visual
measurement and considerations of biological parsimony
for perception of motion. Because our approach rests on
very basic considerations, the predictions of the equili-
brium theory are qualitative. For example, the theory does
not predict the exact shapes of the isosensitivity contours.
Instead, the theory allows one to see that the peculiar
bent-loaf-of-bread shape of human spatiotemporal sensi-
tivity function plausibly manifests an optimal allocation of
limited neural resources. In the following, we illustrate
several further consequences of our analysis. We start
from the theoretical equivalence sets and show that the
invariant shape of these sets helps to reconcile seemingly

inconsistent data on apparent motion. Then, we turn to the
theoretical optimal set and examine how its properties
change in response to changes in the statistics of
stimulation and changes in system goals, as well as what
testable predictions these changes entail.

Apparent motion

From the shape of theoretical equivalence sets (Figure 6),
it follows that spatial and temporal distances must interact
differently under different conditions of stimulation to
produce equivalent condition for motion measurement.
We illustrate this in Figure 6 using two pairs of conditions
shown as two pairs of connected circles: ma – mb and
maV– mbV.3 Conditions within a pair correspond to the same
degree of imbalance between uncertainties because they
belong to the same equivalence set. In thema – mb pair, mb

is longer than ma in both space and time (coupling regime),
whereas in themaV –mbV pair,mbV is longer thanmaV in time
but shorter in space (tradeoff regime). Coupling obtains
where the equivalence contours have positive slopes, and
tradeoff obtains where they have negative slopes.
In fact, both regimes of tradeoff and coupling were

observed in studies of apparent motion using supra-
threshold stimuli. But the difference between the two
was interpreted as a discrepancy between empirical

Figure 6. Equivalence contours. (A) Theoretical equivalence sets (derived as explained in Figure 5 and Appendix B). We refer to the
graphic representation of the equivalence sets as equivalence contours. The equivalence contours reproduce the “bent-loaf-of-bread”
shape of human isosensitivity contours (Panel B). The two pairs of connected circles (ma – mb and maV – mbV) demonstrate that different
regimes of space–time combination are expected under different conditions of stimulation. In the ma – mb pair, equivalent conditions are
obtained by increasing both spatial and temporal distances, from ma to mb (space–time coupling, supporting Korte’s third law of motion).
In the maV – mbVpair, equivalent conditions are obtained by increasing temporal distance and decreasing spatial distance (space–time
tradeoff, contrary to Korte’s law). (B) Human isosensitivity contours from Figure 1A.
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findings rather than a manifestation of an optimal behavior
of the visual system.

0 Space–time coupling corresponds to Korte’s (1915)
venerable third law of motion (Koffka, 1935/1963;
Lakatos & Shepard, 1997; Neuhaus, 1930). Korte
presented his observers with two flashes separated by
variable spatial and temporal distances. He first found
the distances that gave rise to a compelling experi-
ence of motion (“good motion”). But he found that he
could not change just the spatial distance or just the
temporal distance without reducing the strength of
motion. To restore the experience of good motion, he
had to increase or decrease both.

0 Evidence of space–time tradeoff was found by Burt
and Sperling (1981), who used ambiguous apparent
motion displays, in which motion could be seen in
one of several directions (“paths”) in the same
stimulus. When the authors varied the spatial and
temporal distances in their display, they found that
they had to decrease one distance and increase the
other to maintain the equilibrium between the
perception of different paths.

Gepshtein and Kubovy (2007) reproduced both
resultsVcoupling and tradeoffVusing the same supra-
threshold stimulus. They showed that the qualitatively
different regimes of apparent motion are special cases of a

general pattern: a smooth transition between the tradeoff
and coupling as a function of speed (Figure 7); tradeoff
occurs at low speeds and coupling occurs at high speeds, in
agreement with predictions of the equilibrium theory.
According to the theory, the different regimes are observed
under different conditions of stimulation because the frugal
visual system balances the measurement and stimulus
uncertainties associated with speed estimation.

Motion adaptation

The equilibrium theory predicts changes in motion
perception in response to changes in the statistics of speed
in the stimulation, because the properties of the optimal set
for speed estimation depend on the statistics Equation 20.
When vision is excessively stimulated with a single speed
or a narrow band of speeds, as it is often the case in
motion adaptation studies, the equilibrium theory predicts
that sensitivity should change for the adapting speed(s)
and also for speeds very different from the adapting one.
Recall that the optimal set for speed estimation predicted
by the theory is represented by a nearly hyperbolic curve
in the distance plot (Figure 4). The position of this curve in
the distance plot depends on the most likely speed
(expected speed He) in the stimulation (Equation 14). If
changes in statistics of stimulation change the expected
speed, then the optimal set for speed estimation should
change its position in the distance plot. For example, in
Figure 8 we plot the pre<adaptation optimal set computed

Figure 7. Empirical equivalence sets of apparent motion. (A) The pairs of red connected circles represent the pairs of conditions of
apparent motion in perceptual equilibrium: They were experienced equally often (Gepshtein & Kubovy, 2007). The thin black lines on the
background are the empirical equivalence contours of apparent motion derived by Gepshtein and Kubovy (2007) from the pairwise
equilibria. The slopes of both the empirical equivalence sets and the lines connecting the equilibrium pairs gradually change across the
plot, indicating a gradual change from the regime of tradeoff to the regime of coupling, in qualitative agreement with measurements at the
threshold (Figure 1A, copied to Panel B) and with the predictions of the equilibrium theory (Figure 6A). (B) Human isosensitivity contours
from Figure 1A. The rectangle marks the region of conditions in which Gepshtein and Kubovy could measure the points of equilibrium of
apparent motion.
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for an expected speed He and the post<adaptation optimal
set computed for an adapting speed Ha. Because of the
change in the position of the optimal set, visual sensitivity
is expected to change across a wide range of speeds, more
so at high speeds, where speed-specific optimization
operates across wider range of speeds than at low speeds
(Equation 19).
Against the intuition, and contrary to what is commonly

expected in the motion adaptation literature (reviewed in
Clifford &Wenderoth, 1999, and Krekelberg, VanWezel, &
Albright, 2006), the equilibrium theory predicts that visual
performance will both improve and deteriorate at the
adapting speed, depending on where it is measured on the
speed line Ha. The point of optimal sensitivity will move
along the speed line, toward the prediction by local
optimization: Visual sensitivity is expected to improve on
the part of the speed line that is close to the local optimum
but deteriorate in the vicinity of its preadaptation optimum,
for most magnitudes of adapting speeds. For example, in
Figure 8, an improvement of sensitivity is expected at the
condition marked by the green circle, and a deterioration
is expected at the condition marked by the green square.
An exception from this pattern of changes is the region
of global optimum (the intersection of two curves in

Figure 8), where little change is expected independent of
the magnitude of adapting speed.
These predictions can be tested by measuring spatiotem-

poral sensitivity across a wide range of parameters to obtain
a comprehensive characteristic of sensitivity (Figure 1A)
before and after adaptation. Such measurements will show
whether changes in sensitivity occur globally (i.e., at
speeds different from the adapting speed) and whether the
global changes follow the pattern predicted by the
equilibrium theory. To our knowledge, no such compre-
hensive studies have been undertaken. But data from
previous motion adaptation studies suggest that changes
in spatiotemporal sensitivity following adaptation are
global. For example, Krekelberg et al. (2006) studied
changes in the responsiveness of speed-tuned cells in the
cortical area MT of behaving monkeys. It was found that
the susceptibility of a cell to short-term adaptation
depended on whether the adapting speed was at the cell’s
optimum speed. When the adapting speed was at the cell’s
optimum, the effect of adaptation was often smaller than
when the adapting speed was different from the cell’s
optimum. Krekelberg et al. also found that, when the
adapting speed was at the cell’s optimum, discrimination
performance sometimes improved and sometimes deter-
iorated, as we anticipated in Figure 8. To test whether
the pattern of changes in discrimination performance
follows the pattern predicted in Figure 8, the adapting
stimuli should be narrowly localized in the space of
parameters. (The adapting stimuli of Krekelberg et al. were
broadband.)

System goals

As we mentioned above, parameters 1i of spatiotempo-
ral uncertainty (Equation 7) can be thought of as weights
expressing how much each of the uncertainty terms affects
the precision of speed estimation. The visual system can
modulate the effect of uncertainties on system behavior by
redistributing its resources, which, in the present formu-
lation of the equilibrium theory, is equivalent to changing
the weights.
The terms of Equation 7 belong to two groups: One

mostly affects the ability to localize signals (13S and 14T),
and the other mostly affects the ability to identify signals
(11/S and 12/T). Suppose that one of the two tasksVsignal
localization versus signal identificationVbecomes more
important to the visual system than the other. For
example, consider an observer whose task is to discrim-
inate the location of moving targets in the laboratory on
one day and categorize moving targets by their spatial
features on another day. By the equilibrium theory, the
visual system will be able to improve its performance in
one task, at the expense of performance in the other task,
by redistributing its resources. Then, predictable global
changes in visual sensitivity are expected.

Figure 8. Predicted consequences of motion adaptation. The red
and green lines represent expected speeds: He of the natural
(pre<adaptation) environment (Equation 13) and Ha of the new
(adapting) environment, respectively. As a result of adaptation,
the optimal set for speed estimation changes from the one
represented by the red curve (from Figure 4) to the one
represented by the green curve. The arrows indicate the direction
of improvement of sensitivity along the two speed lines. The
circles and the squares on the speed lines mark examples of
conditions where sensitivity improves or deteriorates, respectively.
Visual sensitivity is expected to change across a wide range of
speeds. Thus, sensitivity is expected to improve for some
conditions on the red speed line, away from the adapting speed,
but here the improvement is expected at larger temporal
distances than on the adapting speed line.
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Thus, performance in the identification task will
improve when the visual system allocates less resources
for measuring stimulus location and more resources for
measuring its frequency content. This change corresponds
to decreasing weights 13 and 14 relative to weights 11 and
12 in Equation 7. The changes in weights imply a change
in the position of the optimal set in the distance plot
(Figure 4). For example, the emphasis on signal identi-
fication (decreasing 13 and 14 relative to 11 and 12) will
cause the optimal set defined by Equation 20 to move
away from the origin of the distance plot. But when the
emphasis is on signal identification, and 13 and 14
increase relative to 11 and 12, the optimal set will move
toward the origin. Changes in the position of the
theoretical optimal set imply large-scale changes in visual
sensitivity across the distance plot because the theoretical
equivalence sets (Figure 5 and Appendix B) will change
their positions as well.
Notice that the equilibrium theory predicts distinct

changes in the pattern of visual sensitivity in response to
changes in statistics of speed (as in motion adaptation)
and changes in system goals. When statistics of speed
change, the optimal set is expected to move along the
direction of maximal speed variation, that is, along the
negative diagonal of the distance plot: from the right
bottom corner to the left top corner (Figure 8). When
system goals change, the optimal set is expected to move
along the other diagonal: the imaginary line connecting
the left bottom and the right top corners of the distance
plot (not shown in Figure 8).
Notice also that by the equilibrium theory, one cannot

use different tasks and expect to obtain quantitatively
consistent evidence about the same sensitivity character-
istic of the visual system. Different tasks will induce
changes in the quantitative detail of the spatiotemporal
sensitivity function. The amount and time course of such
changes are interesting topics for future research.

Comparison to other normative models of
vision

Contemporary decision-theoretic models of perception
and behavior have features that appear similar to our
approach. We will now review the similarities and
differences between the approaches.

Weak fusion

The “weak fusion” theory of cue combination (Clark &
Yuille, 1990; Landy, Maloney, Johnsten, & Young, 1995;
Maloney & Landy, 1989; Yuille & Bülthoff, 1996)
predicts that the nervous system combines different
estimates of a parameter of interest using a linear
weighting rule, similar to the linear weighting in our
Equation 15. The linear weighting of the weak-fusion

framework is derived from the maximum likelihood
principle (Yuille & Bülthoff, 1996) and is used to
implement the assumption that a goal of cue combination
is to maximize the precision (minimize uncertainty) of the
combined estimate. In our theory, linear weighting
appears for other reasons; it allows us to find a principled
compromise between two extreme cases of optimal
resource allocation: one in a system with minimal
resources and the other in a system with infinite resources.
The optimal sets in both cases are characterized by the
equilibrium of spatial and temporal uncertainties. We use
the linear weighting scheme because it is the simplest one
we found that preserves the equilibrium of spatial and
temporal uncertainties in the compromise optimal set
(Table 1).

Bayesian inference

The weights that appear in Equation 15 depend on the
distribution of speeds in the perceptual ecology. Our use
of the statistics of speed resembles the use of expected
distributions of parameter values in inferential theories of
perception (Knill & Richards, 1996) derived from the
Bayesian decision theory (Berger, 1985; Maloney, 2002).
In such theories, the probabilities of sensory estimates
(“likelihood functions”) and the probabilities of corre-
sponding parameter values in the natural stimulation
(“prior distributions”) are combined by point-by-point
multiplication, following Bayes’ rule, making the preva-
lent values in the stimulation more likely to be perceived
than the less common values. Thus, the factors that
determine predictions are generally defined in the space
of estimated parameters. In contrast, our predictions are
derived in a space whose dimensions are different from
the space of estimated parameters: Our predictions depend
on measurement uncertainty in addition to stimulus
uncertainty, and the effects of the two kinds of uncertainty
are separable. Thus, in Figure 5, the “speed grid” depends
on stimulus uncertainty and the “balance grid” depends on
measurement uncertainty. The separation of these two
grids means that adaptive changes in system behavior are
not reducible to changes along the dimension of estimated
parameters alone.

Utility theories

Decision-theoretic models of perception and behavior
use the notion of utility (Bernoulli, 1954; Kahneman &
Tversky, 2000; Luce & Raiffa, 1957; Stigler, 1950) to
account for the fact that different errors in sensory
estimation or movement execution affect behavior differ-
ently. The “costs” of different errors are usually represented
by a utility function (Geisler & Kersten, 2002; Maloney,
Trommershäuser, & Landy, 2007; Trommershäuser,
Maloney, & Landy, 2003). The use of these functions
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resembles the use of prior probability functions in
Bayesian inferential models: The probabilities of possible
sensory estimates or movements are weighted by the
corresponding utilities. In our theory, concepts similar to
utility play a role at two places:

1. In our measurement uncertainty function (Equation 7),
coefficients 1i represent the weights of the compo-
nents of uncertainty function. One can think of the
coefficients as the costs of measurement errors, just as
the values of a utility function can be thought of as
costs of errors in sensory estimation. As we argued in
the System goals section, the visual system may
change the weights of the components of measure-
ment uncertainty to optimize itself for different tasks.
This will affect our predictions differently from how
changes in utilities affect predictions of decision-
theoretic models:

a. Changing weights in Equation 7 will affect the
measurement uncertainty and not the stimulus
uncertainty. The predicted changes will occur
along a dimension separate from the dimension of
stimulus uncertainty. (As we explained in the
Bayesian inference section, the effects of meas-
urement uncertainty and stimulus uncertainty in
our theory are separable.)

b. Changing weights in Equation 7 will affect the
visual sensitivity of the visual system, whereas
changing utility functions in the decision-theoretic
models will affect visually guided behavior at a
later stage. It is plausible that weighting of
errors in the nervous system happens both early
(as implied by our theory) and late (as implied
by the decision-theoretic models). But the two kinds
of weighting are expected to occur in different
parameter spaces: The effects of early weightingwill
occur along the dimension of measurement uncer-
tainty, whereas the effects of late weighting will
occur in the space of estimated parameters. These
differences will allow one to experimentally separate
the effects of early and late weighting of errors.

2. In our discussion of the limitations of the local-
optimization approach, we noted that both the speed
prevalence and the importance of speeds for the
organism should affect motion perception (claim R2
in the Local optimization: A spendthrift extreme
section). In the present work, we used only the
estimates of speed prevalence because, to our knowl-
edge, no estimates of a speed “importance function”
exist. The effect of speed importance on equilibrium
theory predictions can be studied by modifying the
expression for p(H) in Equations 13 and 16 and in the
derivation of the equivalence sets (Appendix B).

Conclusions

The equilibrium theory of speed estimation offers a
principled explanation of the distribution of human visual
sensitivity and explains why qualitatively different
regimes of apparent motion are observed at different
speeds. On this view, the shapes of the empirical maximal
sensitivity set and the isosensitivity sets (measured at the
threshold of visibility) and the different regimes of
apparent motion (measured above the threshold) are
manifestations of the optimal balance of uncertainties in a
visual system that seeks to maximize the precision of its
measurements with limited resources. Thus, the equilibrium
theory offers a normative framework for understanding
motion perception at the threshold of visibility and above the
threshold, and predicts how the visual system should adjust
its sensitivity in response to changes in the statistics of
stimulation and changes in system goals.

Appendix A

Construction of Figure 1

To display the isosensitivity contours in the space–time
distance plot, we use Equations 5–8 of Kelly (1979), with
which he fit the spatiotemporal thresholds for the
detection of drifting sinusoidal gratings. Following
Nakayama (1985, p. 637), we computed the spatial and
temporal distances between successive discrete stimuli
that correspond to Kelly’s spatial and temporal frequen-
cies. Nakayama assumed that motion is detected by pairs
of spatial-frequency filters (“quadrature pairs”; Adelson &
Bergen, 1985; Gabor, 1946), in agreement with physio-
logical (Marcelja, 1980; Pollen & Ronner, 1981) and
computational (Sakitt & Barlow, 1982) evidence. The two
parts of such a detector are tuned to the same spatial
frequency fs, but their spatial phases differ by :/2, a
quarter of the spatial period of the optimal stimulus (see
also van Santen & Sperling, 1984). When such a detector
is stimulated by a luminance grating with spatial fre-
quency fs, a spatial shift by S = 1 / (4fs) will activate the
detector optimally. Similarly, the optimal temporal inter-
val T of a detector is equal to the quarter period of its
optimal temporal modulation: T = 1 / (4fT). By this
argument, there exists a simple correspondence between
the frequency tuning of motion detectors and the spatial
and temporal distance between successive stimuli that
activate the detectors optimally. Using the above expres-
sions for S and T, we mapped Kelly’s spatiotemporal
threshold surface (his Figure 15) to the logarithmic space–
time distance plot in Figure 1A. In the distance plot, the
maximal sensitivity set is convex toward the origin. When
plotted in the coordinates of spatial and temporal
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frequencies, as in Kelly’s Figure 15, the maximal
sensitivity set is concave toward the origin.
We use the estimates of spatiotemporal sensitivity

obtained by Kelly (1979) from measurements using an
image stabilization technique that afforded precise control
over retinal motion. Those data had the same form as
the data obtained with no image stabilization (Kelly,
1969, 1972; Kulikowski, 1971; Robson, 1966; van Nes,
Koenderink, Nas, & Bouman, 1967), as Kelly and
Burbeck (1984) observed. This allows us to relate the
estimates of Kelly (1979) to results from studies that did
not use image stabilization.

Appendix B

Derivation of the equivalence sets
(Figures 5 and 6)

We derived equivalence sets for speed estimation using a
curvilinear system of coordinates (the grey net in Figure 5)
embedded in the distance plot. The system consists of two
parametric grids: a curvilinear grid p that parameterizes
measurement uncertainty and a linear grid H that parameter-
izes stimulus uncertainty. An equivalence set consists of
the loci in coordinate system (p, H) that are equidistant from
the origin of (p, H). That is, an equivalence set is a circle
in the curvilinear coordinates. We illustrated that in the
inset of Figure 5, by transforming (p, H) into a rectilinear
coordinate system (p, v).
We constructed circles in (p, H) in two steps:

1. Parameterization.We parameterized (p, H) as follows:

H: For H, we set the origin to He because by Equation
14, the a priori uncertainty about speed is minimal
when H = He. We used a logarithmic scale, as
suggested by Nover et al. (2005). The logarithmic
scale leads to Weber’s law for speed discrimination
thresholds (McKee&Watamaniuk, 1994; Nover et al.,
2005). Also, the logarithmic scale allowed us to
parameterize speeds from the interval [0, V] to
interval [jV, V]. Thus, we defined the scaling
function:

vðHÞ ¼ lnðH=HeÞ1=kH ; ðB1Þ

where kH is a constant.

p: If the optimal set represents perfect balance, an
equivalence set shares a degree of imbalance. Hence,
to construct grid p, we generalized Equation 20:

¯USgðHÞ þ ¯UT ¼ p; ðB2Þ

where p is the degree of imbalance. We set the origin
of grid of p to zero because at p = 0, the solution of
Equation B2 is the optimal set. The optimal
solutions of Equation B2 are feasible only below a
boundary value of p that depends on speed: pmax(H) =
13 g(H) + 14. Because we had no a natural scale for
p (in contrast to the scale for H), we assumed a
logarithmic scaling function, as we did for H:

pðpÞ ¼ lnð1jp=BÞj1=kp ; ðB3Þ

where kp is a constant, B = 1 for p Z [jV, 0], and
B = pmax(H) for p 9 0. The choice of the logarithmic
function did not affect the invariant properties of the
equivalence sets (Figure 6)Vtheir closedness and
hyperbolic shapeVand their similarity to human
isosensitivity contours (Figure 1A).

This parametrization results in a rectangular coordinate
system (p, v) shown in the inset of Figure 5.

2. Mapping. An equivalence set is a circle in (p, v)
centered on (p(0) = 0, v(He) = 0). We illustrate this
in Figure 5 for one point, as mapping 8 of a point
from (p, v) (in the inset) to a point in the space–time
plot (in the main panel). From Equations 7 and 20, it
follows that the coordinates of a point (p = pV, H = HV)
in (S, T) are

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11T
2gðHVÞ

ðpmaxðHVÞjpVÞT2 j 12

s

T ¼ S=HV:

8><
>: ðB4Þ

(Note that the first equation is a generalization of
Equation 10.) For a point (pV, HV), we used Equation B4
to find the coordinates of (pW, HW) in (S, T) for all
points whose distance from (p = 0, v = 0) was
constant, such that ªªp(pV), v(HV)ªª=ªªp(pW), v(HW)ªª.
Thus, the solution of Equation B4 constitutes the
mapping 8: (p, v) Y (S, T).
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Footnotes

1

Clarification of terms: In measuring parameters of
stimulation (such as speed), a measurement error is the
difference between an estimate and the true value of the
parameter of interest. Measurement errors characterize
uncertainty about the parameter value. Multiple measure-
ments generally yield estimates that differ from one
another and from the true value of the parameter. The
more dispersed the distribution of these errors, the
greater the uncertainty and the lower the precision of
estimation. In sensory estimation, different parameter
values correspond to different conditions of stimulation.
We describe this by saying that the uncertainty and
precision of estimation vary across the conditions of
stimulation.

2

Analysis of the spatial-frequency content of stimuli is
important for perception of motion for two reasons. First,
the visual system needs to identify moving objects.
Performance in the identification task depends on an
analysis of spatial-frequency content of stimulation (De
Valois & De Valois, 1990). Second, the visual system
needs to solve the motion matching problem (Hildreth,
1984; Ullman, 1979), and the ability to solve it depends
on the ability to measure the spatial-frequency content of
stimulation. Motion matching problem is particularly
difficult when (spatially) small receptive fields are used,
because small regions of retinal image are not unique:
They are similar to many other regions of the image, and
the matching process produces many spurious matches. A
similar argument was proposed by Banks, Gepshtein, and
Landy (2004) with respect to the binocular matching
problem.

3

Each point in the distance plot (Figure 1) can represent
a narrow-band visual stimulus. In broad-band stimuli,
such as the apparent motion displays used by Burt and
Sperling (1981) or Gepshtein and Kubovy (2007), a point
in the distance plot corresponds to the fundamental spatial
and temporal frequencies contained in the stimulus or
simply to the spatial and temporal distances between
successive dots.
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