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Variations on Variants

J. Garrett Morris
The University of Edinburgh
Garrett.Morris@ed.ac.uk

Abstract
Extensible variants improve the modularity and expressiveness of
programming languages: they allow program functionality to be
decomposed into independent blocks, and allow seamless extension
of existing code with both new cases of existing data types and new
operations over those data types.

This paper considers three approaches to providing extensible
variants in Haskell. Row typing is a long understood mechanism for
typing extensible records and variants, but its adoption would require
extension of Haskell’s core type system. Alternatively, we might
hope to encode extensible variants in terms of existing mechanisms,
such as type classes. We describe an encoding of extensible variants
using instance chains, a proposed extension of the class system.
Unlike many previous encodings of extensible variants, ours does
not require the definition of a new type class for each function that
consumes variants. Finally, we translate our encoding to use closed
type families, an existing feature of GHC. Doing so demonstrates
the interpretation of instances chains and functional dependencies
in closed type families.

One concern with encodings like ours is how completely they
match the encoded system. We compare the expressiveness of our
encodings with each other and with systems based on row types. We
find that, while equivalent terms are typable in each system, both
encodings require explicit type annotations to resolve ambiguities
in typing not present in row type systems, and the type family
implementation retains more constraints in principal types than does
the instance chain implementation. We propose a general mechanism
to guide the instantiation of ambiguous type variables, show that
it eliminates the need for type annotations in our encodings, and
discuss conditions under which it preserves coherence.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Abstract data types

Keywords extensible variants; row types; expression problem

1. Introduction
Modularity is a central problem in programming language design,
and good modularity support has many benefits. Good modularity
support improves extensibility and code reuse, saving programmer
effort and reducing the likelihood of bugs or infelicities in reimple-
mented functionality. It also provides for separation of concerns,

assuring that conceptually independent features are implemented
independently, and simplifying refactoring of larger programs.

This paper studies extensible variants, a language mechanism
that supports modular programming. Extensible variants permit
piecewise extension of algebraic data types with new cases, and
support code reuse in constructing and deconstructing values of ex-
tended data types. We present two encodings of extensible variants,
providing the same interface but using different extensions of the
Haskell class system (instance chains and closed type families). Our
goals in doing so are twofold. First, we evaluate their expressiveness,
by comparing them with row typing, a canonical approach to exten-
sible variants in functional languages. Second, we use them as test
cases to compare the language mechanisms used in their definition.
We find that we can implement the same functions in each encoding,
and these functions are sufficient to express anything expressible
with row types. However, our encodings introduce a need for explicit
type annotations (or type signatures) in encoded terms where such
annotations would not be necessary with row types. We sketch a
mechanism that would eliminate the need for these type annotations.
Finally, while our encoding using closed type families is as expres-
sive as that using instance chains, a straightforward improvement of
the latter escapes easy translation to the former.

The expression problem. Wadler [18] proposed the expression
problem as a benchmark for language expressiveness and modularity.
The starting point is the definition by cases of a data type for
arithmetic expressions, and an operation over that data type. For
example, the data type might contain simple arithmetic expression,
and the operation might be evaluation. The challenge is to extend the
data type with new cases and new operations, reusing the original
code (without modification), and preserving static type safety.

This framing of the expression problem may seem artificial.
However, similar problems arise regularly in domains such as
compilation. For example, in implementing a Haskell compiler, we
might want to desugar surface language constructs, like special
syntax for tuples, into a core syntax with uniform notation for
constructors. The type of such a pass much capture the effect of the
pass (removing tuple syntax) and its requirements (the core syntax),
but should not otherwise fix the AST. The encodings we present
allow such typing; concretely, the pass would have the type

(Core < (e	 Tuple))⇒ Fix e→ Fix (e	 Tuple)

where the < constraint requires that the result type include the Core
cases, and the type operator 	 denotes removing cases from a type.

Implementing variants. Though definition of types by cases is
standard in both functional and object-oriented languages, the
expression problem is challenging in either paradigm. In many
functional languages, adding new cases to an existing data type
requires changing the definition of the data type, and thus the
functions that use it. In many object-oriented languages, adding
new operations requires changing the definition of the base class,
and thus its subclasses.



There are at least two approaches to solving the expression
problem in functional languages. The first approach, row typ-
ing [5, 14, 15, 19], relies on an extension to the type system specific
to representing extensible records and variants. The second approach
represents variants using generic binary coproduct and fixed point
type constructors, and relies on overloading to generalize injection
and branching operations from the binary to the general case [1, 17].
This paper develops a new encoding of extensible variants, based on
the latter approach. Our approach differs from previous encodings in
several ways. We permit the use of arbitrarily structured coproducts
in both introduction and elimination of extensible variants, lifting
technical restrictions present in many previous encodings. More sig-
nificantly, we introduce a overloaded branching combinator, which
can be seen as generalizing the categorical notion of the unique
arrow from a coproduct. Unlike previous encodings, our approach
does not require that elimination of an extensible variants be de-
fined using top-level constructs (like type classes), and assures that
elimination expressions cover all cases (unlike projection-based
approaches to variant elimination). We give two implementations
of our approach: one using instance chains [12], a proposed exten-
sion of the Haskell class system, and a somewhat more verbose
implementation using closed type families [3], an existing feature
of GHC.

Evaluating encodings. There is, of course, a cottage industry in
encoding language features via increasingly cunning use of type
classes. A critical question when evaluating any such encoding is
how closely the encoding matches the original language feature.
We examine how closely our encodings match approaches based
on row types. While our system is sufficient to encoding arbitrary
introduction and elimination of extensible variants, losing no expres-
siveness compared to row-based systems, the same is not true of the
composition of introductions and eliminations. We identify a typing
ambiguity that appears in all the encodings we know of, not just in
ours, requiring the programmer to provide explicit type annotations
not required by row type systems. Resolving this ambiguity requires
the compiler to make seemingly arbitrary choices of type instantia-
tion during type checking; we propose a new mechanism to guide
this choice, and discuss the conditions under which the use of this
mechanism does not cause incoherence in the resulting programs.

Contributions. In summary, this paper contributes:

• A new approach to encoding extensible variants in Haskell,
based on overloaded injection and branching combinators;

• Implementations of this approach using instance chains and
closed type families; and,

• A comparison of these systems with each other and with row
type systems, and a proposed language mechanism to address
the expressiveness gap between them.

To that end, we begin by describing existing approaches to providing
extensible variants in functional languages, based on row types or
overloaded injection functions (§2). We then describe our approach,
and implement it using instance chains (§3). We show how our
approach can be used to solve the expression problem, and show
how it can give precise types to desugaring steps in programming
language implementations. We compare our approach to systems
built on row types (§4). We conclude that all the existing approaches
to encoding extensible variants in Haskell suffer from typing ambi-
guities, requiring programmers to add type annotations not required
by row type systems, and propose a simple mechanism to eliminate
the need for such annotations. We then translate our implementa-
tion of extensible variants to use closed type families instead of
instances chains (§5). This translation illustrates the similarities and
differences between the two language mechanisms. We conclude by
discussing related (§6) and future (§7) work.

2. Rows and Variants
2.1 Row Typing and Qualified Types
Wand [19] introduced row types as a mechanism to type objects
with inheritance. In his approach, the language of types is extended
with rows, or sequences of labeled types `1 : τ1, . . . , `n : τn.
Records and variants are constructed from rows; a record of type
Π(`1 : τ1, . . . , `n : τn) has fields `1 through `n with corresponding
types, while a variant of type Σ(`1 : τ1, . . . , `n : τn) is given by
one of the labels `i and a value of type τi. Wand introduced row
variables ρ to permit polymorphism in row-typed operations. For
example, the injection operator for a label ` would have the type
α→ Σ(ρ[`← α]), where α ranges over types, ρ ranges over rows,
and ρ[` ← α] denotes the result of adding (or replacing) label `
with type α to ρ. Wand provides a branching combinator of type
(α→ β)→ β → Σ(ρ[`← α])→ β, where the second argument
is a default (or else) branch.

Wand’s types do not track those labels not present in rows; thus,
the type ρ[` ← τ ] may either add a new pair ` : τ to ρ or replace
an existing pair ` : τ ′. As a consequence, some programs in his
calculus do not have principal types. Rémy [14, 15] proposed a
variant of Wand’s system that associates labels with flags rather than
with types directly; each flag φ is either pre(τ), indicating that the
label is present with type τ , or abs, indicating that the label is absent.
For example, in Rémy’s calculus the injection function for label
` has type α → Σ(` : pre(α); ρ), indicating that label ` must be
present in the result type, and the branching combinator for label `,
case`, is given the type

(α→ γ)→ (Σ(` : abs; ρ)→ γ)→ Σ(` : pre(α); ρ)→ γ,

where in each case ` : φ; ρ denotes the extension of row ρ with the
pair ` : φ, and is defined only if ρ does not already contain some
type labeled by `. Note the refinement compared to how branching
is typed in Wand’s calculus: in the expression case` M N P we can
assume that option ` is not present in the argument to N.

Gaster and Jones [5] propose a variant of row typing that
represents negative information using predicates on (row) types. As
a consequence, their system captures the expressiveness of Rémy’s
system but can use a simpler form of row types. For example, the
injection operator in their system has type

(ρ \ `)⇒ α→ Σ(` : α; ρ)

and their branching operator has type

(ρ \ `)⇒ (α→ γ)→ (Σ(ρ)→ γ)→ Σ(` : α; ρ)→ γ,

where in each case the constraint ρ \ ` is satisfiable only if ρ
does not contain a label `. Unlike Rémy’s approach, the system
of Gaster and Jones does not need flags, and does not impose non-
duplication constraints on the formation of rows. As it builds on
Jones’s system of qualified types [6], Gaster and Jones’s system
enjoys principal types, type inference, and easy integration with
type classes and other features expressible with qualified types.
Two properties of their type system are central to their principality
and type inference results. First, like other row type systems, they
consider types equivalent up to rearrangement of rows. Second, they
show that, in addition to most general unifiers, they can compute
most general inserters, or the most general substitutions for row
variables than guarantee the inclusion of particular labeled types.

2.2 Modular Interpreters and Data Types à la Carte
Wand originally introduced row types as a generalization of binary
products and coproducts. An alternative approach to extensible
variants is to use binary coproducts directly, but to generalize the
injection and branching operators. Systems based on this approach
differ from row-typing approaches in two ways. First, they tend



not to rely on labeling types. With the addition of suitable type-
level machinery for labels, however, they can be straightforwardly
adapted to work on labeled types. Second, binary coproducts are
not identified up to associativity and commutativity. Thus, a central
concern for these systems is not introducing distinctions among
equivalent (but rearranged) coproduct types.

Liang et al. [10] gave an early example of this approach, as
part of describing a modular approach to building language inter-
preters. They represent larger types as (right-nested) coproducts
of smaller types; for example, a term language including arith-
metic (TermA) and functional (TermF) terms would be described
by OR TermA (OR TermF ()) (where OR is their coproduct type
constructor). They define a type class SubType to simplify working
with coproducts; SubType τ υ holds if υ is a right-nested coproduct
and τ is one of its left-hand sides; it provides methods inj :: τ → υ
to inject values of component types into the coproduct type and
prj :: υ → Maybe τ to project values of component types from val-
ues of the coproduct type. For example, their system would provide
functions

inj :: TermA → OR TermA (OR TermF ())
prj :: OR TermA (OR TermF ()) → Maybe TermF

Liang et al. define type classes for operations on variant types, such
as interpretation, with instances for each term type and a generic
instance for coproducts, wrapping the use of prj. Their approach
does not directly address extensible variants: recursion is hard-wired
into the term types.

Swierstra [17] proposed another approach to extensible variants
in Haskell, which he called “Data Types à la Carte”. He defines vari-
ants by combining binary coproducts with Sheard and Pasalic’s [16]
approach to open recursion (or “two-level types”). Consequently,
individual cases in his approach are functors, rather than ground
types, in which the functor’s argument is used for recursive cases.
Similarly, rather than defining coproducts of ground types, he de-
fines coproducts of functors (written f ⊕ g). Finally, he uses a fixed
point constructor Fix to construct types from functors. For example,
in his system the types TermA (for arithmetic expressions) and TermF
(for functional expressions) would be functors, and the combined
expression type would be written Fix (TermA ⊕ TermF).

Like Liang et al., Swierstra defines a class, called (:≺:), to
generalize injection into (right-nested) coproducts. His (:≺:) class
defines an injection function but not a projection function; he relies
on type classes to implement functions that consume variants. Thus,
his system provides functions like

inj :: TermF e → (TermA ⊕ TermF) e

Unlike the SubType class, (:≺:) is reflexive, and so can have
inj :: TermF e → TermF e

This avoids the need for “terminator” like () in the types of Liang et
al. As a consequence, however, Swierstra’s instances are ambiguous
for predicates of the form (f ⊕ g) :≺: h.

Bahr [1] gives an extension of Swierstra’s approach and an
implementation using closed type families. He follows Liang et al.
in giving a version of the subtype class that provides both injection
and projection operators; thus, his encoding does not require each
elimination of extensible variants to be defined by a new type class.
However, the projection-based approach does not guarantee that
pattern matches are complete. Bahr finds an interesting solution
to this problem. He defines his injection function with sufficient
generality that he can use it to permute the structure of coproducts,
and defines a split operator that rearranges its argument to surface
desired cases. By then using the standard Haskell case construct
on the results of split, Bahr can define extensible but complete
branching. His approach to defining split introduces ambiguity,
however, requiring the programmer to add explicit type signatures
or proxy arguments.

1 data Fix e = In (e (Fix e))
2 data (f ⊕ g) e = Inl (f e) | Inr (g e)
3

4 (O) :: (f e → a) → (g e → a) → (f ⊕ g) e → a
5 (f O g) (Inl x) = f x
6 (f O g) (Inr x) = g x

Figure 1: Data types for variants and recursion.

1 data Const e = Const Int
2 data Sum e = Plus e e
3 data Product e = Times e e
4

5 type E1 = Fix (Const ⊕ Sum)
6 type E1' = Fix (Sum ⊕ Const)
7 type E2 = Fix ((Const ⊕ Sum) ⊕ Product)

Figure 2: Expression constructors and expression types

3. Extensible Variants with Instance Chains
In this section, we describe another approach to encoding extensible
variants. We begin from the same coproduct and fixed point con-
structors used by Swierstra [17]. However, our approach differs from
his in two important ways. First, we define a more expressive inclu-
sion class (<). Our class is reflexive, permits both left-nesting and
right-nesting in coproduct construction, and excludes coproducts
with repeated types (as an overloaded injection function into such a
coproduct must depend on an essentially arbitrary choice of which
instance of the source type to prefer). Second, we define a generic
expression-level branching combinator (?) instead of defining new
type classes for each deconstruction of an extensible variant type.

The implementations in this section rely on functional depen-
dencies (introduced by Jones [7]) and instance chains (introduced
by Morris and Jones [12]). Functional dependencies capture de-
pendency relationships among class parameters, directing the in-
stantiation of type variables appearing in class predicates. Instance
chains extend the Haskell class systems with negated predicates and
alternative instances, and base instance selection on the provability
of an instance’s hypotheses rather than just the form of its conclu-
sion. We will discuss the syntax, interpretation and motivation of
these constructs as they are encountered in the implementations;
formal descriptions of instances chains are available in our previous
work [11, 12]. Later (§5), we will demonstrate how these implemen-
tations can be translated to use closed type families [3], a related
feature of the GHC type system. This translation introduces not-
insignificant complication, however, motivating us to present both
versions.

3.1 Sums and Open Recursion
Our first problem is to define the form of extensible variants. We
broadly follow the approach used by Liang et al. [10] and Swierstra,
using a generic coproduct constructor to combine individual type
constructors and a fixed point combinator to implement recursive
types. The definitions are given in Figure 1. For functors τ and τ ′,
the coproduct type (τ⊕τ ′)υ has injectors Inl for τυ values and Inr
for τ ′υ values. We also define a branching combinator (O) which,
given two functions of type τυ → υ′ and τ ′υ → υ′ respectively,
produces a function of type (τ ⊕ τ ′)υ → υ′.

We will use a simple instance of the expression problem as a
motivating example throughout this section. For this example, we
will start with an expression language that contains only integer
constants and addition; we will demonstrate how we can add
support for multiplication to this language. Figure 2 gives the AST
constructors for our language; note that the constant case must be



1 class In f g
2

3 instance f `In` f
4 else f `In` (g ⊕ h) if f `In` g
5 else f `In` (g ⊕ h) if f `In` h
6 else f `In` g fails

Figure 3: Membership test for sums.

expressed as a functor, even though it contains no recursive instances
of the expression type. We also give two types for terms in the initial
form of the language (E1 and E1') and one type for terms in the
extended form (E2)

This example makes apparent the difficulties with using binary
coproducts directly. For example, the form of a constant term differs
in each version of the language, depending on the order of summands
in the coproduct used to define the term type:

In (Inl (Const 1)) :: E1
In (Inr (Const 1)) :: E1'
In (Inl (Inl (Const 1))) :: E2

Clearly, code written for E1 or E1' cannot be reused at type E2;
similar problems would arise in code that uses (O) to consume
values of coproduct type. In the remainder of the section, we
will implement type-directed versions of injection and branching
combinators, allowing uniform expression of terms of the various
expression languages.

3.2 Injection
We begin by describing our polymorphic injection function, which
can be seen as a generalization of the primitive injectors Inl
and Inr. Our goal is to implement something that looks like
Swiestra’s injection function, but whose semantics are closer to the
primitives of Gaster and Jones [5]; that is, it should not impose
particular structural requirements on coproducts, and it should
exclude coproducts with duplicate types, as its behavior in such
cases is essentially arbitrary.

Central to Gaster and Jones’s approach are lacks constraints
ρ \ `, denoting that row ρ does not contain a type labeled by `. We
must define a similar constraint; in our setting, we find it easier to
define a constraint that holds when a type is a component of a given
coproduct, and then use its negation to express the lacks constraint.

Our positive constraint is defined in Figure 3. We begin by
introducing a two-parameter class In (line 1); as we are capturing
type-level structure, this class has no methods. We populate the
class using an instance chain.1 The first instance (line 3) specifies
that In is reflexive. The remaining instances in the chain will be
used only when the first does not apply; that is, only when the two
arguments to In do not unify. The second and third instances (lines
4-5) define when a type is a contained by a coproduct: either because
it is a component of the left-hand or right-hand summand. The final
instance (line 6) specifies that if none of the previous cases apply,
the type f is not in g.2 As defined, this class seems very close to the
one we wanted. Unfortunately, it does not exclude coproducts with

1 An instance chain is an ordered sequences of alternative instances, separated
by else; later instances in the chain are used only if earlier instances do not
apply. Note that, in the syntax of instance chains, we write the conclusion
before the hypotheses (p if P) rather than after (P ⇒ p); we find this
makes instances easier to read as the list of hypotheses grows.
2 The latter three instances illustrate the other two aspects of instance chains.

• First, we introduce negated predicates to the class system: the last
instance asserts the negation of In f g. Note that Haskell’s module
system necessitates an intuitionistic treatment of negation: simply
because, for example, Eq τ is not provable where a term is typed does not
mean that term will not be used in a context where Eq τ is provable. The

1 class f < g where
2 inj :: f e → g e
3

4 instance f < f where
5 inj = id
6 else f < (g ⊕ h) if f < g, f `In` h fails where
7 inj = Inl ◦ inj
8 else f < (g ⊕ h) if f < h, f `In` g fails where
9 inj = Inr ◦ inj

10 else f < g fails

Figure 4: Overloaded injection function

repeated types (we can prove In f (f ⊕ f)) and we do not know
of any straightforward modification of it that does. For example, one
might hope to add an instance

else f `In` (g ⊕ h) fails if f `In` g, f `In` h

between lines 3 and 4; however, while this excludes In f (f ⊕ f),
it does not exclude In f (f ⊕ (f ⊕ f)). Note that, because
of the ordering of lines 4 and 5, constraints may not be dis-
charged as soon as one might hope. For example, the constraint
A `In` (f ⊕ A), where type variable f is otherwise unconstrained,
cannot be discharged. This is because the instance at line 4 matches,
but its hypotheses can neither be proved or disproved. However, the
predicate will be discharged as soon as f is instantiated.

We can now define our inclusion class (<) and injection function
inj, as shown in Figure 4. We begin by declaring the (<) class
(lines 1–2); we include only an injection method, as we will define
branching separately. We populate the class with another instance
chain. The first instance in the chain (lines 4-5) makes (<) reflexive;
the injection function in this case is trivial. The next two instances
handle (non-reflexive) injection into coproducts. The first case (lines
6–7) handles injection on the left-hand side of the coproduct (i.e.,
into g); we insist that type f not also appear on the right-hand side
(i.e., in h), internalizing the lacks constraint present in the typing
of Gaster and Jones’s primitives. The injection function from f e
into (g ⊕ h) e is the injection from f e into g e followed by Inl,
where we rely on a recursive call to inj to determine the initial
injection. The second case (lines 7–8) is parallel but for the right-
hand side. The final case rules out any other injections. Note that
this final case is not strictly necessary—we never rely on proving
f < g fails. However, it assures that the definitions of In and <
remain synchronized.

We demonstrate the injection function by defining several terms
in our simple expression languages. We begin by defining a short-
hand for injection into fixed points of functors:

inj' = In ◦ inj

We define a term that makes use of only constants and addition:
x = inj' (inj' (Const 1) `Plus` inj' (Const 2))

Because of the overloading of inj, we can use x at any type that
contains both Const and Plus; that is, the principal type of x is

predicate In f g fails does not simply assert that In f g cannot
be proven now, but that it will not become provable in any module that
imports this one.

• Second, we stated that later instances in a chain are tried only if earlier
instances do not apply. With instance chains, we consider that an instance
does not apply to a predicate either if its conclusion does not match
the predicate or if (at least) one of its hypotheses can be disproven.
For example, in attempting to prove the predicate In B (A ⊕ B), we
would begin by trying the second instance; this would require proving
that In B A. However, we can disprove this, using the fourth instance.
We would then apply the third instance to the original predicate, which
shows that the predicate holds.



1 class f 	 g = h where
2 (?) :: (g e → a) → (h e → a) → f e → a
3

4 instance (f ⊕ g) 	 f = g where
5 m ? n = m O n
6 else (f ⊕ g) 	 g = f where
7 m ? n = n O m
8 else (f ⊕ g) 	 h = (f 	 h) ⊕ g if h `In` g fails where
9 m ? n = (m ? (n ◦ Inl)) O (n ◦ Inr)

10 else (f ⊕ g) 	 h = f ⊕ (g 	 h) if h `In` f fails where
11 m ? n = (n ◦ Inl) O (m ? (n ◦ Inr))

Figure 5: Overloaded branching combinator.

(Const < f, Sum < f) ⇒ Fix f

Note that all the languages we defined (E1, E1', and E2) satisfy these
constraints. Thus, we can use x as a term in any of those languages,
without having to change the definition of x. For example, we can
define a term using products, but including x as a subterm:

y = inj' (inj' (Const 3) `Times` x)

The principal type of y includes the constraints required by x, but
also requires Product; thus, we can use y at type E2 but not E1 or
E1'. We could, however, use y at any permutation of the constructors
of E2 or any larger type.

3.3 Branching
The second part of the expression problem is to define extensible
functions over the already-defined (extensible) types. While it is pos-
sible to do so using only existing features of Haskell, as Swierstra
does, this relies on implementing each operation that consumes vari-
ants as a type class itself. Instead, we define an overloaded branching
combinator, generalizing the primitive branching combinator (O).
Our goal is the branching combinator of Gaster and Jones: m ? n
defines a function on coproducts type where m describes its behavior
on one summand of the coproduct and n describes its behavior on
the remainder of the coproduct. This definition will have both type
and value level components. At the type level, we must define what
it means to remove one component of a coproduct. At the value
level, we must define how the branching combinator combines m
and n, given that the case handled by m may be nested among those
handled by n.

Figure 5 gives our definition of the branching operator. We begin
by declaring class (	) (lines 1–3).3 The predicate τ 	 τ ′ = υ
holds if τ is a coproduct containing summand τ ′ and υ describes
the remaining summands of τ after removing τ ′. For example, we
would expect that:

(Int ⊕ Bool) 	 Bool = Int
((Int ⊕ Char) ⊕ Bool) 	 Char = Int ⊕ Bool

The branching operator (?) combines m, an operation on one sum-
mand g e, with n, an operation on the remainder of the coproduct
h e, to give an operation on the entire coproduct f e. We begin by
considering the base cases. Subtracting f from f ⊕ g leaves g (lines
4–5); in this case, the overloaded branching operator is equivalent to
the primitive branching operator. Alternatively, subtracting g from
f ⊕ g leaves f (lines 6–7); in this case, the branching operator is
the flip of the primitive branching operator. The recursive cases are
more interesting. The left-recursive case (lines 8–9) describes the

3 We adopt several syntactic conventions for functional dependencies sug-
gested by Jones and Diatchki [8]. First, we write f 	 g = h in the class
declaration to denote that 	 is a three-parameter class in which the first
and second parameters determine the third (that is, there is a functional
dependency f g → h). Second, we will regularly write τ 	 τ ′ as a type;
this denotes a new type variable v such that the constraint (	) τ τ ′ v holds.

case when h is a component of the left-hand summand f; in this case,
the result of removing h from f ⊕ g is given by (f 	 h) ⊕ g.
To avoid ambiguity, we insist that h not also appear in g; this also
simplifies the definitions of these cases. To define the branching
operator for this case, we consider the possible input values (of type
f ⊕ g). One the one hand, the input value may be of type f; in this
case, it is either of type h, and is thus handled by m, or is of type
f 	 h, and is handled by the left branch of n (i.e., by n ◦ Inl).
Thus, the behavior of m ? n for arguments of type f is given by
m ? (n ◦ Inl). Alternatively, the input may be of type g; in this
case, it is handled by the right branch of n (i.e., by n ◦ Inr). These
two cases are combined using the primitive branching operator (O).
The right-recursive case (lines 10–11) is parallel.

To demonstrate the (?) operator, we define several operations on
our simple expression languages. First, we consider evaluation. We
begin by defining evaluation functions for each case; in addition to
the term being evaluated, each function takes an additional argument
r to handle recursive expressions.

evalConst (Const x) r = x
evalSum (Plus x y) r = r x + r y
evalProduct (Times x y) r = r x ∗ r y

We define a helper function that unrolls the Fix data type:
cases cs = f where f (In e) = cs e f

Finally, we can combine the functions for individual cases above to
define evaluators. For example, the following function can be used
to evaluate terms of either type E1 or type E1':

eval1 = cases (evalConst ? evalSum)

The inferred type for eval1 is
(f 	 Const = Sum) ⇒ Fix f → Int

Note that the order of cases is irrelevant; we could equally well
have used evalSum ? evalConst. To handle terms of type E2, we
include the case to handle products:

eval2 = cases (evalProduct ?
(evalSum ? evalConst))

As we would hope, we are able to use the same code for each case,
regardless of the order of cases or the other cases appearing in the
data type.

Instead of defining the entire evaluator at once, we might prefer
to begin by desugaring complex language constructs into simpler
ones. Suppose we had an additional term type for squares:

data Square e = Square e

We can define a function that desugars Square e into Times e e:
desugarSqr = cases (sqr ? def) where

sqr (Square e) r = inj' (Times (r e) (r e))
def e r = In (fmap desugarSqr e)

The default case rewraps its argument after recursively applying
desugarSqr. The inferred type for desugarSqr is as follows

(f 	 Square = g, Product < g, Functor g) ⇒
Fix f → Fix g

Note that this captures both the action of the desugaring step (the
removal of the Square case) and its requirement (the presence of the
Product case) without otherwise constraining the input or output
types.

3.4 Further Generalization
We conclude this section by discussing a possible further gener-
alization of our injection and branching operators. As defined,
our inclusion relation f < g holds only if f appears some-
where in g. However, if f is itself a coproduct, this definition
may be less expressive than we would want. For example, we
cannot show that (A ⊕ C) < (A ⊕ (B ⊕ C)), or even that



(A ⊕ B) < (B ⊕ A). The subtraction relation is similarly con-
strained; for example, there is no type τ such that

((A⊕ B)⊕ C)	 (A⊕ C) = τ.

We will show how we can extend our existing definitions to account
for these cases as well.

We begin with the injection function. In this case, the intended
behavior is straightforward: when injecting a value of (f ⊕ g) e,
rather than injecting the value directly, we attempt to inject each
case separately. That is, we would add the following clause to our
existing definition (Figure 4), after line 9:

else (f ⊕ g) < h if f < h, g < h where
inj = inj O inj

We use the primitive branching operator to define the separate
behavior for values of type f e and g e; in each case, we rely
on a recursive invocation of the injection function.

We next consider the branching combinator. From a typ-
ing perspective, this case is appealingly direct: we implement
f 	 (g ⊕ h) as (f 	 g) 	 h, which looks very much like a
distributive law. To implement this case, we would add the following
clause to our existing definition (Figure 5) after line 7:

else f 	 (g ⊕ h) = (f 	 g) 	 h where
m ? n = (m ◦ Inl) ? ((m ◦ Inr) ? n)

In implementing the branching combinator, we have three possibili-
ties: the argument is of type g (the left case handled by m), or it is of
type h (the right case handled by m) or it is of type (f 	 g) 	 h
(the case handled by n). We implement the branching combinator
by combining these three options.

Unfortunately, while these extensions are relatively easy to
implement, they are less useful in practice. In particular, as we
will discuss further in the following section, using the extension to
(	) always requires the introduction of explicit type signatures to
avoid ambiguity in the resulting types.

4. The Coherence Problem
In the previous section, we showed terms that constructed exten-
sible variants (such as the terms x and y of our simple arithmetic
languages), terms that consumed extensible variants (such as the
evaluation functions eval1 and eval2), and even terms that did
both (such as the desugaring function desugarSqr). We have shown
that the inferred types for each of these terms are suitably general,
neither constraining the order of types in coproducts nor preventing
their use at larger types. One might be tempted to conclude that we
had a complete encoding of extensible variants.

However, when we attempt to use these terms in composition,
we discover an insidious problem. Consider the innocuous term

x' = eval1 x

We might hope that x' would have type Int and value 3. Trying this
example, however, leads to quite a different conclusion: that typing
leaves an ambiguous type variable (say f), subject to the constraints
that Sum < f, Const < f, and f 	 Const = Sum. In fact, we
have already observed that there are two such types (Const ⊕ Sum
and Sum ⊕ Const), as these give the distinct types E1 and E1'.

This problem is pervasive. It arises at any composition of the
introduction and elimination forms for extensible variants, that is, at
any expression equivalent to (M?M′) (injN) for arbitrary subterms
M,M′,N. This difficulty also arises in the prior work on encoding
extensible variants. It is also not immediately resolvable without
losing significant expressiveness. For example, we might hope to
add an additional functional dependency to the 	 class fixing the
order of cases:

class f 	 g = h | g h → f where . . .

This would resolve the ambiguity, but at the cost of limiting the
expressiveness of the (?) combinator. For example, we would end
up with a system in which the terms M ? N and N ? M had distinct
and incomparable types. We are not aware of any systems of row
type (or indeed algebraic data types in general) where the order of
branches is a case expression restricts its typing.

A similar problem arises in attempts to use the extended branch-
ing operator (§3.4). For example, we might hope that it would allow
us to use the following definition

eval2' = cases ((evalConst ? evalSum) ?
evalProduct)

However, for the added instance to apply we must conclude that
the subterm evalConst ? evalSum has type (τ ⊕ τ ′)υ → Int
for some particular τ and τ ′, but that term can apply to arguments
of types constructed from Const ⊕ Sum or Sum ⊕ Const, leaving
the type of the entire term ambiguous.

We could observe that the choice of Const ⊕ Sum or Sum ⊕
Const is irrelevant to the result of the computation. That is, both the
terms eval1 (x :: E1) and eval1 (x :: E1') evaluate to the
same result (3). On this basis, we might hope to argue that the type
checker ought to be free to make either choice without restricting
the behavior of the resulting programs or introducing incoherence,
just as the type checker is free to choose the list element type in the
expression null []. Unfortunately, this is not true either. Consider
the following only-somewhat-contrived example:

lefty (In (Inl _)) = True
lefty (In (Inr _)) = False
x' = (λy → (eval1 y, lefty y)) x

As before, the type of y is ambiguous. Suppose we left the type
checker free to pick an instantiation (we defer, for now, the question
of how the type checker might make such a selection). If it picked
E1, y would be of the form In (Inr . . . ), and x' would be
(3, False); on the other hand, if it picked E1', y would be of
the form In (Inl . . . ), and x' would be (3, True). Thus, lefty
is sufficient to witness the incoherence introduced by the type
checker’s choice of type.

We might still hope to salvage a usable system. We can observe
that lefty is different from the other eliminators we have presented:
it branches on the structure of the coproduct directly, rather than
using the general branching combinator. Terms defined using the
general branching combinator, in contrast, cannot observe whether
the type checker chose E1 or E1'. Thus, by treating (⊕) as an
abstract type, accessible only through the inj and (?) functions, we
could allow the compiler to choose the instantiation of coproducts
without compromising coherence. Of course, the Haskell module
system is already sufficient to hide the constructors of (⊕). The only
remaining problems is how to tell the type checker which ambiguous
type variables it is free to instantiate, and how to instantiate them.

A similar problem arises in the use of Haskell numeric types.
Consider the definition

z = show 1

We might hope to conclude that z has type String and value "1".
However, a strict interpretation of qualified types would suggest that
this type was ambiguous: the constant 1 has type Num a ⇒ a, and
a is not fixed by Show. Haskell includes a defaulting mechanism,
allowing this expression to type despite the ambiguity. The default-
ing mechanism defined in the Haskell report [13] is restricted to
numeric classes. We propose generalizing it to apply to user-defined
classes as well. Consider the default defaulting declaration

default (Integer, Double)

To generalize such declarations, we must begin by adding infor-
mation about which constraints induce default instantiations. For
example, we could make the above declaration more explicit by
writing something like



1 data Yep; data Nope
2

3 type family IsIn f g where
4 IsIn f f = Yep
5 IsIn f (g ⊕ h) = Or (IsIn f g) (IsIn f h)
6 IsIn f g = Yep
7

8 type family Or b c where
9 Or Nope Nope = Nope

10 Or b c = Yep

Figure 6: Types not in variants.

default (Num Integer, Num Double)

This clarifies that constraints of the form Num t, where type vari-
ables t is ambiguous, should induce defaulting. Generalizing this
idea to the multi-parameter case, we can use a similar declaration to
resolve the ambiguity present in our examples:

default ((g ⊕ h) 	 g = h)

This declaration indicates that constraints of the form f 	 τ = υ,
where type variable f is ambiguous, should induce defaulting,
instantiating variable f to the type τ ⊕ υ. It is easy to verify that this
rule is sufficient to resolve the ambiguity present in our examples.

Implementing an extension like this one would require consid-
eration of a number of additional details; we list a few of them
here. First, the type checker must confirm that defaulting asser-
tions are sensible at all (that is, that the instantiations do not intro-
duce new type errors). Second, defaulting declarations are currently
limited to the module in which they occur; for our generalized
defaulting declarations to be useful, they must hold in importing
modules as well. Third, we may encounter conflicting default dec-
larations; these should presumably generate errors at compile time.
Most significantly, we would expect that programmers would only
introduce default declarations in cases where they did not intro-
duce incoherence. We cannot expect compilers to verify such a
condition automatically—but this is no different from the hope
that Eq instances leave (==) being an equivalence relation or
that Monad instances obey the monad laws. Of course, the exist-
ing defaulting mechanism is hopelessly incoherent; for example
show (1 :: Integer) and show (1 :: Double) produce differ-
ent output. We can, perhaps, hope to do better going forward.

5. Extensible Variants with Type Families
In the previous sections, we have developed a coproduct-based
implementation of extensible variants, including both overloaded
injection and branching operators, and have compared it to other
approaches to extensible variants. However, our implementations
rely on instance chains, an extension of the Haskell class system
only available in prototype implementations. In this section, we
translate our implementations to use closed type families [3], a
related extension of the GHC type system. Unlike instance chains,
closed type families operate purely at the type level—they do not
directly determine method implementations. Thus each instance
chain in the original implementations will correspond to (at least)
two components in the translation: first, a closed type family which
searches the possible solutions arising from the instance chain and
(if successful) produces a type-level witness that the predicate holds;
and, second, a (standard) Haskell type class which uses the type-
level witness constructed by the closed type family to determine
method implementations.

5.1 Injection
We begin by considering the In class (Figure 3). Unlike the other
classes we will consider, In does not provide any methods. This

1 data Refl; data L x; data R x
2

3 type family Into f g where
4 Into f f = Refl
5 Into f (g ⊕ h) = Ifi (Into f g) (IsIn f h)
6 (Into f h) (IsIn f g)
7 Into f g = Nope
8

9 type family Ifi lp inr rp inl where
10 Ifi Nope inr Nope inl = Nope
11 Ifi Nope inr rp Nope = R rp
12 Ifi lp Nope rp inl = L lp
13 Ifi lp inr rp inl = Nope

Figure 7: Finding types in sums.

simplifies the translation, as we can rely entirely on type families.
The translation of In is given in Figure 6. We originally defined In as
a relation on types, relying on negative predicates to describe types
not in the relation. We translate In as its characteristic function IsIn:
IsIn f g rewrites to Yep if f is a summand of g, and to Nope if it is
not. The second and third instances of In describe a disjunction; we
implement this with a new type family Or, which rewrites to Nope if
both of its arguments do, and to Yep otherwise.

The (<) class (Figure 4) defines the inj method. In translating
(<) to type families, we will need to define both a type family
(which implements instance chain proof search, computing a type-
level witness of an (<) proof) and a type class (which builds the
implementation of the inj method from the type-level witness).
Figure 7 gives the type family. We begin by introducing type-
level witnesses of (<) proofs. Refl denotes a proof of In f f;
it corresponds to the first clause in the (<) definition. L p denotes
a proof of In f (g ⊕ h) if f is found in g, where p is the witness
that f is a summand of h. This corresponds to the second clause
in the (<) definition. Note that in our translation, we only need
to track those constraints that contribute to the implementation of
inj, so we do not include the results of IsIn in our witnesses. R
is similar, but for the case where f is found in h. For example, we
expect that In B ((A ⊕ B) ⊕ C) would rewrite to L (R Refl).
Finally, we reuse Nope to denote the proof that In f g cannot hold;
for example, In D (A ⊕ B) should rewrite to Nope.

The type family Into f g implements f < g proof search. The
first and third equations (lines 4 and 7) are straightforward, han-
dling the reflexive case and the case where argument g is not a
sum. The second equation (lines 5–6) must handle all the cases
where g is a sum gl ⊕ gr; these correspond to the second, third,
and some uses of the fourth clause in the (<) definition. The
branching is delegated to an auxiliary class Ifi lp inr rp inl
where lp (respectively rp) witnesses a proof that f can be injected
into gl (respectively gr) while inr (respectively inl) witnesses
a proof that f appears (possibly more than once) in gr (respec-
tively gl). The second and third equations (lines 11–12) are the
successful cases, in which f appears on one side of the sum but
not the other. The first equation (line 10) handles the case where
f appears on neither side of the sum, while the last (line 14) han-
dles the case where it appears on both. For example, we can see
that In A (A ⊕ B) would rewrite to Ifi Refl Yep Nope Nope,
which would write to L Refl, while In A (A ⊕ A) rewrites to
Ifi Refl Yep Refl Yep, which rewrites to Nope.

We can use the results of Into to define the injector inj, as
shown in Figure 8. We begin by defining a class Inj f g p (lines 1–
2); p is the witness of the proof that f is a summand of g. This class
has a single method injp; in addition to an argument of type f e,
it takes an argument of type p. The are three instances of this class,
corresponding to the three constructors of inclusion proofs. The case



1 class Inj f g p where
2 injp :: p → f e → g e
3

4 instance Inj f f Refl where
5 injp _ = id
6

7 instance Inj f g p ⇒ Inj f (g ⊕ h) (L p) where
8 injp (_ :: L p) = Inl ◦ injp (undefined :: p)
9

10 instance Inj f h p ⇒ Inj f (g ⊕ h) (R p) where
11 injp (_ :: R p) = Inr ◦ injp (undefined :: p)
12

13 inj :: forall f g e.
14 (Inj f g (Into f g)) ⇒ f e → g e
15 inj = injp (undefined :: Into f g)

Figure 8: Overloaded injection function.

for Refl (lines 4–5) is straightforward. The cases for L p (lines 7–8)
and R p (lines 10–11) are similar; we will describe the first. If the
witness is of the form L p, then the injector should inject into the
left-hand component of the coproduct. The instance can thus assume
that the second argument is a coproduct g ⊕ h, and assumes that
Inj f g p holds (effectively assuming that p withesses that f is
a summand of g). We define injp as the composition of Inl and
the injector of f into g given by p. Referring to the latter requires
a value of type p; as these values are used solely for carrying
types, undefined will do. Finally, we can define a function inj
that hides the type-level witnesses (lines 13–15); again, we can
use undefined as a value of type Into f g. Note that we rely on
GHC’s scoped type variables extension to allow us to refer to p (in
the Inj instances) and f and g (in the definition of inj).

The definition of Into and Inj contain overlapping structure,
such as the assumption Inj f g p in the instance of Inj for wit-
nesses L p. Suppose that there were a bug in the implementation
of Into such that Into A (A ⊕ B) rewrote to L Refl instead of
R Refl. The definitions would still be accepted by GHC; how-
ever, in attempting to use inj at type A e → (A ⊕ B) e, the
typechecker would have to discharge an instance Inj A B Refl.
There is no instance to do so, leaving an (unsolvable) constraint
in the resulting type. This demonstrates that, even if the Into and
Inj classes do not align, type safety is not compromised. On the
other hand, Into also assures invariants that are not necessary
for type safety—for example, it rules out arbitrary injections like
In A (A ⊕ A). Bugs in these invariants would not introduce prob-
lems in the interplay between Into and Inj. For example, suppose
that Into A (A ⊕ A) rewrote to R Refl (instead of Nope). We
would then be able to use inj at type A e → (A ⊕ A) e; it would
correspond to Inr.

5.2 Branching
We next translate the (	) class, our implementation of branching
(Figure 5). This translation follows broadly the same pattern as the
translation of (<): we introduce a type family Minus that imple-
ments the search for (	) proofs, and a type class Without that
implements the branching combinator (?) based on the witnesses
produced by Minus. However, there is one significant new compli-
cation. The (	) class has a functional dependency: if the predicate
τ 	 τ ′ = υ holds, the combination of τ and τ ′ determine υ. Cor-
respondingly, our translation of (	) will compute not just a proof,
but also the determined type υ.

The type-level translation of (	) is given in Figure 9. As in
the last section, we begin with type-level witnesses of proofs of
τ 	 τ ′ = υ. Onl h and Onr h witness the base cases, where
h captures the remaining type. For example, we would expect
Minus (A ⊕ B) A to rewrite to Onl B; the evidence constructors

1 data Onl (h :: ∗ → ∗)
2 data Onr (h :: ∗ → ∗)
3 data Le (g :: ∗ → ∗) p
4 data Ri (f :: ∗ → ∗) p
5

6 type family Minus f g where
7 Minus f f = Nope
8 Minus (f ⊕ g) f = Onl g
9 Minus (f ⊕ g) g = Onr f

10 Minus (f ⊕ g) h = Ifm g (Minus f h) (IsIn f g)
11 f (Minus g h) (IsIn f h)
12 Minus f g = Found f
13

14 type family Ifm g lp inr f rp inl where
15 Ifm g Nope inr f Nope inl = Nope
16 Ifm g Nope inr f rp Nop e = Onr f rp
17 Ifm g lp Nope f rp inl = Onl g lp
18

19 type family OutOf p where
20 OutOf (Onl x) = x
21 OutOf (Onr x) = x
22 OutOf (Le f p) = OutOf p ⊕ f
23 OutOf (Ri f p) = f ⊕ OutOf p

Figure 9: Subtracting types from sums.

are named by the location of the subtrahend, not the location of
the remainder. Le g p witnesses a proof of (f ⊕ g) 	 h = k
where h is found in f; the witness includes both g, one component
of the result type k, and the witness p that h can be subtracted from f.
Re f p is similar, but accounts for the case when h is found in g. For
example, we would expect Minus ((A ⊕ B) ⊕ C) B to rewrite to
Le C (Onr A). Note that as the results of IsIn do not contribute to
the implementation of (?), we have omitted them from the witnesses
of Minus. The implementation of Minus is mostly unsurprising.
Lines 7–9 and 12 contain base cases. The recursive cases are all
captured in lines 10–11, and deferred to the auxiliary class Ifm. In
the type Ifm g pf ing f pg inf, g and f are the summands of
the original coproduct, pf and pg the result of subtracting h from f
and g, respectively, and ing and inf capture whether h appears at
all in g and f. The first equations (line 15) captures the case where h
appears on neither side of the sum; the remaining equations capture
the cases where h appears on one side but not the other.

The typing of (?) depends upon the result type h; to express it,
we define an additional type function OutOf to extract the computed
result type from a Minus witness (lines 19–23). For example, given
that Minus ((A ⊕ B) ⊕ C) B rewrites to Le C (Onr A), we ex-
pect OutOf (Le C (Onr A)) to rewrite to A ⊕ C, the components
of the original coproduct remaining after removing B. Note that the
distinction between Onl and Onr is not significant in defining the
result type; we need only distinguish the cases to assure that the
definition of (?) is unambiguous.

We can now implement the branching combinator itself, shown
in Figure 10. As for Inj, the Without class (lines 1–3) has not
only f and g parameters, but also a witness p of Minus f g.
However, p now appears twice in the type of (??): not just to
direct the Without class, but also to give the type of the right-
hand argument of (??). The base cases (lines 5–9) are straight-
forward; note that the instances do not apply given the wrong
base-case witness. The recursive cases are more interesting. We
consider the case for Le g p (lines 11–14); the Ri case (lines 16–
19) is similar. We begin with the types of m and n. Suppose that
Minus (f ⊕ g) h = Le g p. We know that m :: h e → r and
n :: OutOf (Le g p) e → r; from the definition of OutOf, we
know that OutOf (Le g p) = f' ⊕ g where we assume that
OutOf (Minus f h) = f'. Finally, we consider the possible ar-



1 class Without f g p where
2 (??) :: (g e → r) → (OutOf p e → r) → p
3 → f e → r
4

5 instance Without (f ⊕ g) f (Onl g) where
6 (m ?? n) _ = m O n
7

8 instance Without (f ⊕ g) g (Onr f) where
9 (m ?? n) _ = n O m

10

11 instance Without f h p ⇒
12 Without (f ⊕ g) h (Le g p) where
13 (m ?? n) (_ :: Le g p) =
14 (m ?? (n ◦ Inl)) (undefined :: p) O (n ◦ Inr)
15

16 instance Without g h p ⇒
17 Without (f ⊕ g) h (Ri f p) where
18 (m ?? n) (_ :: Ri f p) =
19 (n ◦ Inl) O (m ?? (n ◦ Inr)) (undefined :: p)
20

21 (?) :: forall f g e r. Without f g (Minus f g)
22 ⇒ (g e → r) → (OutOf (Minus f g) e → r)
23 → f e → r
24 m ? n = (m ?? n) (undefined :: Minus f g)

Figure 10: Overloaded branching combinator.

guments to (m ?? n) p. If the argument is Inr x, then x :: g e;
this is the right-hand case handled by n. On the other hand, if the
argument is Inl x, then we know it is handled by either m or by
the left-hand case of n, and we rely on a recursive call to (??) to
determine which case applies. As in the definition of Inj, we rely
on a parameter tracking the witness to disambiguate the recursive
call.

Finally, we can define a wrapper function (?) which hides the
need for a Minus witness. The definitions of Minus and Without are
intertwined: Without relies on Minus witnesses being correctly
constructed, and assumes (without proof) that Minus properly
enforces its invariants. For example, suppose that a bug in the
definition of Minus resulted in Minus (A ⊕ A) rewriting to Onr A.
We could then have

(?) :: (A e → r) → (A e → r) → (A ⊕ A) e → r

where in m ? n, m is applied to Inr cases and n to Inl cases.

5.3 Discussion
We conclude by comparing our translations of < and 	 with the
original, and discussing some issues arising from the translation.

For ground types (i.e., types without type variables), the transla-
tions are equally expressive. That is, for any ground types τ, τ ′, υ,
we can prove τ<υ if and only if we can prove Inj τ υ (In τ υ), and
τ 	 τ ′ = υ if and only if we can prove Without τ τ ′ (Minus τ τ ′)
such that OutOf (Minus τ τ ′) ∼ υ. The correspondence is not as
close in the presence of type variables. For example, using the in-
stance chains encoding allows the following type for inj:

inj :: In f g fails ⇒ f e → (f ⊕ g) e

In this case, the In f g fails assumption is sufficient to discharge
the constraint f < (f ⊕ g). However, the same does not hold for
the implementation using type families. That is, we cannot show the
typing

inj :: IsIn f g ∼ Nope ⇒ f e → (f ⊕ g) e

Matching in closed type families is based on infinitary unification
(even though GHC does not permit infinite types); thus, the type
In f (f ⊕ g) can rewrite either to L Refl (relying on the assump-
tion that IsIn f g ∼ Nope) or to Refl (relying on the unification
f ∼ f⊕ g). Because of this ambiguity, the Into type function does

not rewrite until f and g have concrete instantiations. Thus, we can
conclude that our translation in terms of type families is not quite
as expressive as the original. However, it is unclear how significant
this loss of expressiveness would be in practice. While it results in
more complex types for polymorphic functions, we have not found
any programs which can type under one scheme but are do not type
(with any type scheme) under the other.

The (	) class has two functional dependencies: in a predicate
(	) f g h, f and g are sufficient to determine h, and f and h
are sufficient to determine g. In our encoding, we have only made
use of the first functional dependency. However, we could add the
second to the definition of (	) (Figure 5) without requiring any
other changes; the existing instances satisfy that dependency as
well. The case is not as clear for Minus and Without, however. It is
true that, if OutOf (Minus τ τ ′) = υ, then OutOf (Minus τ υ) = τ ′.
However, in defining Without (and thus (?)), we have chosen which
parameter to be determined: the generation of the witness p and
computation of h go hand-in-hand. We could certainly define a
version of Without in which the other parameter were determined,
but this would have to be a separate definition, resulting in a different
branching combinator.

6. Related Work
Blume et al. [2] give an ML-like language extended with polymor-
phic records and variants. Their system allows individual cases to
be defined independently and combined (as with our (?) opera-
tor); however, their type system distinguishes first-class cases from
functions and introduces a distinct elimination form for them. They
exploit the duality of products and coproducts to compile extensible
variants into extensible records, and then into efficient index-passing
code. Garrigue [4] gives a system of polymorphic variants, imple-
mented in Ocaml. His system does not support extensible variants
directly. However, Blume et al. observe that, by modifying his type
system somewhat, his compilation techniques could be adapted to
support extensible variants.

Row typing was originally introduced by Wand [19], as a
mechanism for typing extensible records (and thus, objects with
inheritance). His system did not include any way to restrict the labels
that appeared in a given row; this resulted in an incompleteness in
his type inference algorithm. Rémy [14, 15] proposed a modification
of Wand’s system that incorporated presence information into rows,
and so could express the absence of a label. Rémy’s system thus
repairs the incompleteness in Wand’s type inference algorithm.
Gaster and Jones [5] give a version of row typing that makes use
of predicates to exclude types from rows, rather than incorporating
absence information into the rows directly. This simplifies the form
of types. They show that their system also enjoys complete type
inference.

There is a large and varied literature on using type classes
to encode extensible records and variants. Liang et al. [10] is
the earliest we are aware of; their approach requires hardwiring
recursive uses of data types, but otherwise supports overloaded
injection and projection operators. Kiselyov et al. [9] focus on
heterogeneously-typed lists, and define type-directed lookup and
removal operators. Their lists can be viewed as extensible records,
and the type signatures of their operators parallel ours (albeit limited
to list-like structures). They show how their approach can be adapted
to work with labeled types, but do not address variants directly.
Swierstra [17] generalized the approach of Liang et al. to support
recursive types without hardwiring, but relies on introducing new
type classes for each function consumes extensible variants.

Bahr [1] describes an approach to extensible variants imple-
mented using closed type families. His approach is initially similar
to our type-family-based approach. However, there are several key
differences. He defines a projection operator similarly to that of



Liang et al., rather than defining a branching combinator as we do.
Defining the projection operator in terms of branching is direct:

prj = Just ? const Nothing

Defining branching in terms of projection is not as straightforward.
Bahr accomplishes it by generalizing injection to deconstruct co-
products, similar to the further generalizations of injection we dis-
cussed (§3.4). He can then use his injector to rearrange coproducts
and standard case statements for branching. For example, given a
term x of type (f ⊕ (g ⊕ h)) e and a branch m of type g e → r, he
can use inj to get a term of type (g⊕ (f ⊕ h)) e, and then do case
analysis on that term, applying m in the Inl branch. Our approach
differs in two important ways. First, Bahr’s approach sometimes
leaves ambiguities that are not present in our approach; we do not
know if they would be resolved by a similar defaulting mechanism
to the one we have proposed. Second, his approach relies on leaving
the implementation of the coproduct type exposed, whereas we can
treat (⊕) as an abstract type.

Morris and Jones [12] observed that instance chains could be
used to define a more expressive coproduct injector, but do not
completely rule out ambiguous coproducts. Morris [11] gives a
version that rules out ambiguous coproducts, and gives a version
of the branching combinator. That work does not consider the
coherence problems, and does not translate their implementation
into closed type families.

7. Conclusions
We have described a new encoding of extensible variants in Haskell,
based on overloaded injection and branching operators, and have
given two implementations of our encoding, one using instance
chains and one using closed type families. We have compared the
expressiveness of our system to those based on row types, identified
a source of ambiguity in our (and others’) encodings but not in
row type systems, and have proposed a generalized defaulting
mechanism to resolve this ambiguity. We conclude by discussing
future directions for language design and research.

We have focused exclusively on extensible variants in this
paper. We believe our approach would be equally applicable in
a number of other contexts. Most obviously, we could apply them
to build extensible records, but we also imagine they would have
applicability in encoding effect type systems. In particular, we think
there may be overlap between our typing of desugaring (§3.3) and
the typing of effect handlers.

In implementing inj and (?) using closed type families, we were
able to translate our instance chain-based implementations fairly
directly. This raises the question about whether a translation from
instance chains to closed type families can be defined in general,
and whether it could be automated. Such a translation would greatly
reduce the cost of providing instances chains in GHC. Even if
not all instance chains could be translated, we believe it would
still contribute to identify those instance chains which could be
translated, and provide automated translation in those cases.

The broader question raised by this work is how best to provide
features like extensible variants in Haskell. We believe that there are
three possible answer to this question.

• We may conclude that all of the approaches to encoding ex-
tensible variants are simply too complex, relying on numerous
extensions of existing type and class systems, and are unlikely to
be useful in practice. By comparison, row typing is well studied,
has been implemented in Haskell systems in the past, and may
require less overall complexity (even if it does necessarily touch
the core type system).

• Alternatively, we may conclude that the status quo is fine. While
the encodings are complex, this is to be expected for complex

features. The present work demonstrates that the encodings
can be sufficiently expressive, based only on existing features.
Finally, while the introduced ambiguities are unpleasant, we
may claim that programmers ought to be writing type signatures
anyway.

• Finally, we may conclude that we are most of the way there,
and that small additions, such as our generalized defaulting
mechanism, should get us the rest of the way. Features like
instance chains or closed type families are generally useful, not
simply for encoding extensible records and variants. Further, we
suspect that ambiguity issues like the ones we encounter will
appear in other contexts as well. Solutions to these problems
will enable more features than just extensible variants.

Unsurprisingly, perhaps, we take the third perspective. We acknowl-
edge that it is at least partly a matter of taste. We hope that further
development of these ideas, including investigation of the causes of
ambiguity and techniques for assuring coherence, can shed further
light on these options and lead to more modular Haskell programs
in the future.
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