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Abstract—As we all know, human vision is quite sensitive to 
abnormal behaviors, which is attributed to the discharging of the 
receptor cells in the brain visual cortex and the ensuing 
bioelectrical energy features. Inspired by this biological nature, 
this paper constructs a computing model to describe video 
dynamic energy, which can further improve the perception of 
machine vision to abnormal behaviors. Experiments show that 
this computing model can extract video energy features of 
abnormal behaviors under complex environment. 
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I.  INTRODUCTION  
Zone 17 of the brain cortex, namely the primary vision 

cortex or cortex zone 1, has been understood best among all the 
brain cortexes. As early as 1962, Hubel etc. proposed for the 
first time that biological vision cortexes have the structure of 
function columns [1,2] and found that all cells in vision 
cortexes share one commonality, the sensibility to directions of 
external stimuli. However, primary visual cortex only reacts to 
the input edge within the classic perception scope, which is a 
small visual area. As the perception objects often exist with a 
lot of environment information, this traditional perception 
scope theory is encountered with some limitations when 
explaining the perception of natural images in larger scopes. 
Therefore, scientists of biological vision have shifted their 
focuses onto areas beyond the classic perception scope. And 
substantial experiments demonstrate that outside of the 
perception scope of neurons of arena, LGN and visual cortex, 
there exist areas regulating the reaction of cells, which are 
much bigger than the traditional perception scope. Within these 
areas, stimulus of small light spot can not directly arouse the 
reaction of cells in perception scope, but these spots can 
suppress the reaction so as to weaken the stimulus of the 
perception scope itself. To distinguish them with the classic 
ones, these areas are defined as non-classic scopes, whose 
effects of inhabitation to discharging are shown in Figure 1. In 
this figure, (a) is the discharging rate of cells to isolated raster, 
(b) shows that of cells when raster to the same direction exits 
outside of the perception scope, (c) occurs when outside the 
scope there is raster to different directions, and (d) happens 
when there is no raster in the scope. 

The discharging results in Figure 1 illustrate that non-
classic perception scope has anisotropic suppression to visual 
stimuli. When the raster in the environment is to the same 
direction with the perception objects, the suppression effect is 
obvious; when the raster is vertical to the direction of the 
known objects, the suppression is weak. It is the feature of 
suppression that enables the vision to perceive significant 
features in a complicated natural scene. As shown in Figure 2, 
thanks to the suppression of the non-classic scope, we can 
easily perceive the small raster to different directions. The non-
classic scope enlarges the effective scope for receiving feature 
information of visual cortical neuron by tens of times, which 
makes it possible to explain the neuromechanism as how the 
cortical neuron can integrate the image features within a large 
scope. This feature is essential to deal with complex image 
information by machine vision. 

 
Fig. 1. Inhibition effect of non-classic receptive field on visual cells [3] 

 
Fig. 2. Lateral inhibition effect of non-classic receptive field 



II. COMPUTING MODEL  
Based on the sensitivity of simple cells in the vision cortex 

to raster from different directions, literature [4-6] have 
proposed to use Gabor function to simulate the directional 
selectivity of cells, and applied it in selectivity testing of image 
edges [7-10], whose directivity is mainly represented with the 
rotation of coordinates in the functions. On this basis, this 
paper constructs an energy computing model as shown in 
Figure 3.  
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Fig. 3. Image energy computing model inspired by V1 function features 

Explanation of the model and its mathematical description: 

Response of simple cell: This module simulates the 
sensitivity of V1 simple cells to edges with Gabor integral 
transformation proposed in the previous section, which can 
well test the edge line of images. The algorithm simulation will 
be shown later in the experiment section. 

Memory unit：shows the memory function of cells, which 
is expressed with the following integral,  
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Suppression module: as described in the first part, stimuli 
from the environment can suppress the response of cells within 
the perception scope, which is useful for the extraction of 
obvious contour. The non-classic scopes make the suppression 
degrees different in different directions and positions. This 
model makes use of the feature of anisotropic suppression of 
non-classic scopes, which can be explained as when stimuli are 
to the same direction, the suppression is greatest; when they 
vertical to each other, the suppression is weakest. The 
relationship between the suppression degree and direction 
angles can be expressed with the following cosine equation[11], 
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In (2),  represents the gradient direction angle of 

point , and  represents the 

suppression weight between points  and 

 caused by directional difference. Beside the 
impact of directions, the suppression is also related to the 
distance between cells, which is shown with the Gaussion error 
function, 
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and  represent the first order norm of 

phasor,  represents the distance suppression weight 

of point  to the origin. The value of the parameter 
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will be given later in the experiment section. 

Equation (2) and (3) can get the total suppression volume of 
environment to the given stimulus point, 
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 Here,  represents the environment of the interest poi   
   iM  represents the excitement response of environment 
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Energy map module: based on the amplitude and range, the 
video energy can be calculated as follows, 
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In (5), the parameter  represents energy value, 

 represents the dynamic features in the 

position of the image n (with the width of W, and height 

of H), and  is the weight of the dynamic features, 
represented with the gradient direction of the Module 2. 
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III. EXPERIMENT  
In order to prove the effectiveness of this model, 

experiments use two scenes as the objects for data processing, 
as shown in Figure 4, in which (a) is a single person scene, (b) 
is an abnormal scene. Evidently with biological facts, visual 
cells do not receive intense stimulus when seeing Figure 4(a), 
while seeing (b), human visual cells will show great 
stimulatory effect because of its abnormality, releasing much 
more bioelectrical energy and being more sensitive to the latter. 
On this basis, this paper proposes a computer energy 
representation model with characteristics of human visual 
effect. Figure 5(a) and (b) shows the energy amplitudes of cells 
for Figure 4 (a) and (b) respectively. As we can see, scene (b) 
shows greater computing energy value, consistent to the 
intensity of stimulus to visual cells. Similarly, when we analyze 
its directional distribution, we get the results shown in Figure 6. 
It shows, when we notice abnormal behaviors, the directions of 
the scene become scattered, while in a quiet scene, the 
directions are concentrated. This surprisingly coincide with the 
directional distribution of human vision; that is, in scene (a), 
human vision will follow the movement of the single person, 
while in scene (b), human vision will be attracted by different 



stimuli and show scattered distribution. Out computing mode 
get the results that are consistent to the response of human 
vision. 

 
                      (a)                                              (b) 

Fig. 4. The real scene for experiment. (a) Single person scene, (b) 
abnormal scene. 

 
Fig. 5. The energy amplitudes for Fig 4 (a) and (b) respectively 

 
Fig. 6. The energy directional distribution for fig  4 (a) and (b) respectively. 

IV. CONCLUSION 
Human visual system has strong perceptivity, so the 

simulation of biological visual features for strengthening 
computer vision processing ability has attracted high attention 
of scholars from home and abroad. This paper, inspired by the 
strengthened stimulus of abnormal behaviors to visual cells, 

constructs a video energy computing model based on visual 
features. Experiments prove that this model and algorithm 
possess biological visual features in representing energy in 
complex scenes, which can add great value to the methodology 
of machine vision and its application in engineering. 
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