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E. T. BELL

IV.     TlIE  FUNDAMENTAL SERIES  FOR  PARAPHRASE

1. A former paper under the same title is continued.! We first collect a

few Fourier developments in a specially prepared form immediately suitable

for paraphrase, and then apply the theory of the preceding paper to read off

from them a few of their innumerable arithmetical consequences. The classi-

cal expansions are not in the appropriate form; we require the arithmetical

developments in which the coefficients of the powers of q are given as explicit

functions of the divisors of the exponents. These developments are unique.

The chief elliptic theta series for paraphrase fall naturally into two sets accord-

ing as they do or do not explicitly involve class numbers in their coefficients.

This paper is concerned only with the latter kind and their more immediate

paraphrases; but in all work like the present with the arithmetic of elliptic

functions, these series of the first set appear to be fundamental, presenting

themselves repeatedly in the most diverse investigations. Hence we shall

give a fairly representative selection from them.

In writing down the few paraphrases of this paper we have aimed merely

to show how such lists of properly prepared formulas may be used, much as a

table of logarithms in other computations, for the almost immediate discovery

of paraphrases broadly of the Liouville kind. We have purposely omitted

all applications to specialized functions and their related theorems, the method

of deriving special results being sufficiently evident from the papers of Liouville

and Pepin, and from Bachmann's book. In connection with the series only

brief notes on the calculations, in all cases simple, have been retained; but

there are sufficient indications of the course followed for all the expansions

to be quickly rechecked if desired.
2. The to , n, 2*, d, S, Ti, T2, T3 notation, explained in § 7 of Part I, is

used throughout;  and in the elliptic or theta series the summations refer to

* Read before the San Francisco Section of the American Mathematical Society, October,

1918. To save space, the extensive lists of theta and other expansions contained in the paper

as read, have been omitted. Some of these, for the doubly periodic functions of the third

kind, will appear elsewhere. Only the series necessary for illustrating the method of para-

phrase in V have been retained.

t These Transactions, vol. 22 (1921), pp. 1-30.
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all values > 0 of the type 7'i, T2 or T3 indicated, the coefficients of the several

powers of q being written after those powers in ( ), { } or [ ] as convenient.

The tfa notation is that of Jacobi (Werke, vol. 1, p. 501), with do in place of

his â. After glancing at the notation in §§ 3, 4 here and Part I § 7, the

reader may pass at once to § 12, using §§ 3-11 only for reference. An im-

portant desideratum in regard to the series is pointed out in § 7, footnote.

3. Numerical functions. The constants occurring throughout this kind of

work, other than class numbers, depend chiefly upon the functions now

defined. Let fr(n), ï'r(n), Ç'r'(n) denote respectively the sum of the rth

powers of all, of the odd, of the even divisors of n; and let ¿r(n) denote the

excess of the sum of the rth powers of all divisors ■ 1 mod 4 of n over the

sum of the rth powers of all those = — 1 mod 4; also let £'(n) denote the

excess of the sum of the rth powers of all divisors of n whose conjugates are

= 1 mod 4 over the sum of the rth powers of all those whose conjugates are

= — 1 mod 4; and define £/(h) by the identity £'r(n) + í"(w) = %r(n).

Write

Mn), Mn), r;>), fo(n), 6(1»), &'(n) m f(n), •••, £"<»),

denoting the respective numbers of divisors pertaining to the six classes defined

by the functions.   For convenience we introduce six further functions

ar(n) =nrrlr(n);       Xr(n) = [l+2(- l)"]c,(n);

Urin) =fr(n) + f;(n);

ßr(n) =m(n)-i¡r(n);       vT(n) = f"(n) - ( - 1)» ^(n);

Pr(n) = t'r(n) - i'r'(n);

and as before write ao(n), ••-, po(n) = a(n), ■■-, p(n). Of these,

ar (n) is seen to be the sum of the rth powers of all those divisors of n whose

conjugates are odd. The equations for the rest express frequently occurring

functions of the divisors which it is unnecessary at this point to define verbally.

All twelve functions fr, • • •, pr will be recognized as those which first present

themselves in the principal theorems concerning representations of n as a

sum of 2, 4, 6 or 8 squares; and in the simplest applications of the paraphrases,

such as those arising from f(x\) = 1, x2, .r4, • ■ •, g( \x) = x, x3, x*, • • • for

all values of x, they reappear in many investigations, including those for

3, 5, 7, 9, 11 or 13 squares.* In reductions of formulas the following imme-

diate consequences of their definitions are most frequently useful.

* The treatment of these odd numbers of squares is given in the American Journal

of Mathematics, vol. 42 (1920), pp. 168-188.
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m = — 1 mod 4,       ¿(m) = 0;
(1)

mm ±lmod4,       £(to) = (- 1 )<*-»/» tr(m);

£" ( m ) = 0 or 2£r ( to ) according as m, s + 1 or — 1 mod 4.

For n = 2* to, to = </5, a g 0; (2)-(7)

rtoo + f/oo =*?,(») = [2(»+i)r-i]rr(TO)/(2'-i);-
(2)

fr(n) = fr(ffi);

(3) (2'-1K;'(w) =2r(2"-l)f;(tt);

(4) 2l>d = 2"+1ri(re) ==fi(n) + f',(n) -«(»);

(5) f¡(2re) = f;(re);       r;'(2ft) = 2ri(n)-|fí'(2n)-fi(2»);

(6) fi(n)+fi'(n) = f,"(2») -f¡(2re) = -Pl(2n);.

£ ( - 1 )(««+»)/*d = ( - i)(m+D/2 h'm);
(7)

Z(-D(d-1,/2 = H«) = Hm);
and for re = dS,

(8) E(-l)d+id = -Xi(re);       E(-l)i+'«r(n)-X(n).

To emphasize once more the notation, which will be followed in all subse-

quent lists, the 2 in (4), (7), (8) refers to all divisors d, S of the indicated types,

here Tt for (4), (7), and T3 for (8).

4. Theta series and constants; &a(x) = âa(x, q), »?„ = da(0).

(9) d0(x) = l+2'£(- l)"qn°cos2nx,       d0 = 1 + 2£ ( - l)n <?"';

*i(*) = 2J3 ( - 1 )(m-,,/2 qmi/i sin m.T,       t?i = rJ0 tf2 #3

= 21Z(-iym~1)l2mqm"'li;

(11) tfi(*) = 2Zy,/4cos mx, d2 = 2Xîm'/4;

(12) *, (a;) - 1 + 2£<?n2 cos 2n.r, d3 = 1 + 2£>!.

With but a few exceptions which can be derived from the others by means

of the transformation of the second order, all of the series for t?£ dbß in which

ia, ß) = (2,3), (0,3), (0,2) and (a, b) - (1, 1), (2,2), (2,4),

(4,2), (3,3), (4,4), (0,2), (0,4), (0,6), (0,8), can be simply
found from the series for the /;, k', K constants and their powers as given by

Jacobi in §§ 40-42 of the Fundamenta Nova. For the rapid and systematic

use of the method of paraphrase the series for all of these constants will be

found indispensable. The coefficients of all are expressible directly in terms

of the numerical functions defined in § 3. Here however we need give only

the following selection :

(10)
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d*»3 = 2¿2qmlii;(m);       do#3 = l + 4D<f (- l)"S(n);

¿o tfj = 2X)gra/4 ( - 1 )<m-1)/4 $ (m );

** = l+42>(-DnS(n);       t>l = iZqm'2Hm);

^-i + 4E?"i(»);
and the following essential constants in reduced form from Jacobi, /. c, § 41 :

A = 4Zt Mi (n);       P = - 4Eï" ( ~ 1 )n Mi (»);
(15) ^

C = l+S]L<72nPi('0;

B + C = 1 -S2>(- D"»i(n);      ^-P = 1G£4»mi(»);
(10) ^

C-A = l -ST,qnvi(n),

of which C is 47v7i1/ir2, and all are required in the derivations of the series

in §6.

5. Eighteen doubly periodic theta quotients* We shall give explicitly only

those of the eighteen which can not be derived from others by changes of q

into — q and x into x + jr/2, or by the transformation of the second order.

(17) <Pi(x) = &2#3¿i(x)/ao(x) =4ZqmßCLsindx), [Tx];

fc (x) = â2â3â0(x)/âi(x)
(1§) ^      ^

= csc a- + 4j>[ £ ( - 1 )w-1>/2 cos dx],[T2];

4>o(x) = â0â3â3(x)/â0(x)

(19) ^      ^
= 1 + 4£g"[ £ ( - 1 )(i-1,/2 cos 2«+1 da-], [ T,];

0u(a-) = ô0o,ôtix)/âiix)-
(20)

= cot x + 4£o2n[ Z ( - 1 )s sin 2dx), [ T3];

in which, a* always henceforth, the [ TJ indicates the type of division for the

m or n in the exponent. Note particularly that when the exponent is en, c

being a numerical constant, the type refers to the divisors of n, and not of en,

and so in all similar cases.

It will be sufficient here to indicate how the remaining fourteen functions

in Hermite's list (which includes all of the doubly periodic functions considered

by Jacobi, and six others), may be derived from these.   In (21) the first

* Calculated (with corrections) from the equivalent set given by Hermite, Sur les Théorèmes

de 31. Kronecker, etc., Oeuvres, vol. 1, p. 243, or Journal de Mathématiques

pures et appliquées, (2), vol. 9 (1864), p. 145. The suffixes correspond to the order

of the functions in Hermite's list. For the connection of these with the doubly periodic

functions of the second kind (§ 10), cf. Messenger of Mathematics, vol. 49

(1919-20), p. SI.
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member in each triad of functions is transformed into the second by the

substitution x ~ a; + ir/2, and into the third by g ~ — ç; i = V— 1. Thus,

carrying out the indicated transformations we find from (17) and the first

triad the developments of

(bsix) = d2d3ôi(x)/ûs(x)

upon changing x into .r + ir/2 in (17), and

(bsix)   -  ÔQ0,ÔI{X)/Ô,(X)

on replacing q by — q in (17) and reducing.    Similarly for all fourteen.

( 01, 03 , ¿05 ) , i 03 ,   — 01 , Í<h ) , i 07 ,   — 05 , ¿03 ) ;

( 02 , 4>i , 06 ) . ( 04 ,   — 02 , 08 ) , ( 06 , 08 , 02 ), ( 08 ,   ~ 06 , 04 ) !

(21) ( 09 , <pio , <t>10 ) , (010,09,09), (^11, — <t>12, <Pll), (012,-011,012);

(01J, —014, 01a), (014,-013,016), (015,-016,013), (016, _015, 014) ',

(017,—01T,—017),        (018,-018,018);

with which we need for the last two,

(22) 4>nix,q) = 20i(2.r, o2),       0i8(.t, q) = 202(2a;, q2),

which, upon reducing the functions on the right by the transformation of the

second order to functions of a:, q, yield Hermite's forms. It may be noted

that the set yields no further quotients of the same kind under any of these

transformations.

The derivation of the expansions (17)-(20) is sufficiently evident from

Hermite's detailed similar calculation in the supplement to Lacroix' Calculus,

reproduced in Oeuvres, vol. 1, pp. 219-220. Hermite's remarks regarding these

fundamental developments are so apposite in the present connection that we

quote them. "Il est impossible de ne pas être frappé du caractère arith-

métique de ces expressions (S sin dx, etc.) ; elles offrent un exemple des fonc-

tions numériques qui ont été le sujet des belles recherches de M. Liouville,

et la manière simple dont elles sont amenées par la théorie des fonctions

elliptiques peut aisément faire présumer le rôle de cette théorie dans l'étude

des propriétés des nombres." It was from precisely this observation that the

(probably) true origin of Liouville's general formulas first became evident:

in fact his first is equivalent to the identity [0i(a;)]2 = 0i(a:) X 0i(a;)..

Others of his formulas (of which we shall omit discussion) follow from equally

simple identities, such as

<Pi(aO<p2(a;) = <h(z)4n(x) = ¿I t>!;       0is(a;)0i6(a;) = at;

0Í = 07 09, where <b[ denotes the .r-derivative* of 0i (x).

* For the complete set of these in reduced form, cf. Messenger of Matnematics,

vol. 47 (1917-18), p. 55, where are also given the calculations for § 6.
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6. Squares of the eighteen <f>j(x). All may be inferred from the following

by means of (21), (22).

(23) <p\(x) = 4£qnpi(n) - 85>(5>d cos 2*+1 dx), [ T2\;

(24) <t>\ (x) = 45> Mi (n) + csc2 x - S^a2» ( Jjd cos 2da:), [ T,];.

(25) 4i ( x ) - 1 + 8£o2n pi ( n ) + 8£o" ( 2> d cos 2«*1 d.r )', [ T, ];

(261 tf.f» = - SX^Pii») + cot2 a; - 8Y,<?n CE.d ™s 2dx), [ T3].

For the verification of these, (15), (16) will be found necessary.

7. In explanation of the unusual forms of these expansions which, if con-

sidered only for their use in the customary applications of elliptic functions

are of slight significance, it will be well to state here what are the desirable

characteristics, from the standpoint of paraphrases, for such series and identi-

ties between them to possess.   Consider for example

2*í(*)*l(íe)*7(íe)*,(:r) - »¡'«Mac),

which is easily seen to be true. On the left we have the product of sevei

known series, viz., #o(x) counted four times, by <pi(x), <fo(x), 4h(x);

while on the right we have the product of only four, or, if the transformation

of the third order be used to give the series for d[ , only two. Or, the left

may clearly be read as the product of six in three ways, each of <j>x <fa, <p7 <fo,

fad>x being known from the derivative <p[ (x). Hence, reading the identity

in the first way, we shall get a paraphrase connecting i-functions of parity

( 0 ¡ 1 ) integrated over two separations of degrees 7 and 4 respectively, or

7 and 2; in the other ways the degrees are 6, 4 (three times) and 5,4. There-

fore since in these the separations of degree 4 or 2 are the same, we have a

syzygy between integrations over separations of degrees 4 (or 2 ), 5, 6,7.

Thus it follows that these arithmetical facts connected with the separations

of degrees 7, 6, 5 (which relate respectively to representations in quadratic

forms containing 7, 6, 5 indeterminates), may be reduced to others con-

cerning separations of degrees 4 or 2 (which relate to representations in quater-

nary or binary quadratic forms), and the theorems corresponding to the

specializations of the ¿-functions, similarly reduced. This course has obvi-

ously been followed, for simpler identities, by Liouville in his 17th and lSth

memoirs; also elsewhere. Our object then is to find, where possible, simple

expansions for fairly complicated functions, in order to reduce complex arith-

metical relations to others which are simpler. The greater, the complexity of

the function which is reduced to a simpler product of known series, and itself

expanded in a power series in q, the greater will be the variety and interest

of the paraphrases.   The most desirable case is the reduction of a product of
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many theta factors to a single series whose coefficients are given as explicit

functions of the real divisors of the exponents of q .*

8. All possible cases of the paraphrase of identities involving tangents,

cotangents, secants or cosecants are covered by the sixteen formulas following.

They may be verified by inspection on multiplying throughout by sin x in

the cases of th,e cotangents and cosecants, by cos x in the others. The suffix

in Mo (x), • • •, v>t (x) is even or odd according as the integer in ( ) is even or

odd; and where necessary to. indicate both variables, the function's will be

written w0 (2re, x), • • •, wt (2re, x).

n

«o (2re) = sin 2nx csc x = 2 ^T, cos (2r — 1 )x,
r=l

(«-D/Ï

Ui(m)  m sin mx csc x = 1 + 2 ^  cos ^rx>

(27)
n

w2(2re) = sin2nxseca; = 2(- l)n£ (- l)rsin (2r - l)a;,
r=l

[(m-l)/2 "I

tana; + 2 ]£  ( -1 )r sin 2ra; I.

n

Vo(2n) = cos 2rea; csc x = csc a; — 2 ^ sin (2r — 1 )x,

(m-l)/2

vi ( to )  = cos mx csc x = cot x — 2 ^ sm 2ra;,
r=l

(28) vt(2n) m cos 2nx sec a;

= ( - 1 )n |sec x + 2 ¿ ( - 1 )r cos (2r - 1 ) .r   ,

[(M-1V2 "I

1 + 2  Z   (- l)rcos2ra;   .

n~l

Wo ( 2re ) = sin 2n.r cot x =* 1 + cos 2n.T + 2 23 cos 2rx,
r=l

(m-D/2

u'i ( to )  = sin m.r cot x = cos TOa; + 2 ]£ cos ( 2r — 1 ) x,-
r=l

W2 ( 2re ) = sin 2nx tan a;

(29) = ( - 1 )""! jl + ( - 1 )" cos 2rea; + 2E ( - 1 )r cos 2r.rl,

w3(m)  = sin ma; tan a;

= ( - 1 )(™-1)/2   sec a: + ( - 1 Ym+V»2 cos ma;

(»-D/2 "I

+ 2  Z   (- l)rcos (2r - 1)1   .
_ r=l J

* In particular much light would be thrown on the arithmetic of quadratic forms in n inde-

terminates by the corresponding developments of

0a(,Xl +X2 +   ■■■   +Xn)/*g(.Zl)*.,{Xt)  •••  *>,(*»),
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n-1

Wi ( 2re ) = cos 2rea; cot x = cot x — sin 2nx — 2 23 sin 2ra;,
1=1

Ws ( m )  = cos mx cot x = csc x — sin mx — 2 23 sin ( 2r — 1 ) x,
1=1

we ( 2n ) s cos 2na; tan x

(30)
= (- l)n   tan.x + (- l)"sin2na: + 2¿(- l)rsin2ra; 1,

w7 ( to )   =h cos ma; tan x
(m-l)/2

= sin ma; - 2 ( - 1 )(m-1)/2 23 (-l)'sin (2r-l)a\
r=l

(28)-(30) are connected by many simple and interesting group relations

which, as they lie off the main course of this paper, we omit. We may notice,

however, a theorem of which the proof presents no difficulty, and which often

either gives additional paraphrases or affords a check on the reductions of

theta series. Let h ( x ) denote any one of sec x, csc x, tan x, cot x, and A,

B quantities independent of x. Suppose that over some separation the

following is an identity in x,

Ah(x) +B + T,a¡t(mx) = 0,

in which t represents either sin or cos.   Then this implies

A = 0,       B + 2>ii(««-a;) = 0.

9. We frequently meet expressions involving secants, etc., of several vari-

ables to be paraphrased. An example will make clear the procedure in all

such cases.   Writing z = x + y, we have

sin (mx + 2ny) csc (x + y) = sin{(m — 2re)a* + 2rez}cscz

= v0(2n, z) sin (to — 2n)x + u0(2n,z) cos (m — 2re)x,

and each term is in a form suitable for paraphrase.

10. Doubly periodic functions of the second kind* From the standpoint of

paraphrase, these functions are of the highest importance.   They not only

where a, ß, y, •••, í, are any of the numbers 0, 1, 2, 3. The case n = 2 is considered

below, § 11. Note that, as pointed out by Glaisher (Messenger of Mathematics,

vol. 14 (1884-85), p. 162), these, the arithmetical developments, are unique, while the analytical

representations are not.

* The nomenclature is that of Hermite. The doubly periodic functions of the third kind

also are of great use in this subject. They are particularly valuable in the derivation of new

and generalized class number relations. As the forms of these functions due to Hermite,

Biehler, Appel and others can be changed to their arithmetical forms only after many reduc-

tions, we shall give the appropriate developments elsewhere.
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include the doubly periodic functions as limiting cases* in one direction and

give rise to a great variety of doubly periodic functions of the third kind in

another, but they also afford us the first and most essential link connecting

paraphrases in which the order of the functions is unity with those in which

the order exceeds unity. It is of interest to note that equivalents of the series

given presently can easily be derived from Jacobi's investigations on the rota-

tion of a rigid body and were, therefore, most probably familiar to Liouville.

Consider the function

040T(Xi,x2) = â[âa(xx + x2)/&ß (a-i)ây(x2), = <f>aßy;

and denote by Si<paßy, P,0a8v (i, j = 1, 2) the results of replacing a;,-, xj by

,T, + ir/2, xj + 7rr/2 respectively, where r has the usual meaning in terms of

the half-periods; and let • • • P, P> S,- P¡ denote the application of the sub-

stitutions P,, Si, Pj, P,, • • • in the order last written. Construct the sub-

stitutions (which do not form a group) o-¿(i = 1,2, •••,16):

o"i = 1, 02 = S2, a3 = Si S2, an — Si;

0-4 = P2, ff5 = S2P2, at = Sx Pi, <?i = S2 Sx Pi',

0"12 — 7*1, 0'i3 = Si Pi, o-« = S2Px, o« = S2SxPx',

erg = Pi Pi,        09 = S2 Pi P2, 0"io = S2 Si Pi P2, o"i« — Si Pj Pi;

and apply them to #100, giving :f

01 = 0100» 02  = 0208, 03 = 0133, 011  = 023OÎ

04  = 0001, 05 = 0302, 06 = 0331» 07 = 0032 !

012  = 0010» 013  = 0320» 014 = 0313» 015 = 0023 Î

08 = 0111» 09 = 0212» 010 = 0122» 016  = 0221-

It may be verified that, disregarding signs, these sixteen functions are all

those that can be generated from any one of them, <pk, by successive appli-

cations of Si, Si, Pi, P2. Hence from the series for <pk may be written down

those for the remaining fifteen, and no others, by this process of transformation.

The paraphrase interpretation of Si, S2 has been considered in Part I, § 30;

that of Pi, P2 is by no means so obvious, and need not detain us here.

♦Messenger of Mathematics, vol.49 (1919-20), p. 81.
t The factor ± 1 being immaterial for our purpose, it is ignored. The sign is — for j = 3,

10, and for the rest +. In all there are 64 possible functions </>aSyJ the remaining 48 need not

concern us here. There is an obvious advantage in deriving the functions from one of them,

^ioo (any other of the 16 might have been selected), instead of from two distinct fundamental

series as done by Hermite.
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11. Series for the functions of the second kind* Applying the substitutions

a to 0100, writing <paßy m <paßy(x, y), x', y' = x + tt/2, y + tt/2, and de-

veloping in powers of q t we find after all reductions the following four in which

the type is ï\,

(31) 0i(s, y) m <pi00 = 4239",/îl 23 sin (dx + Sy)\,

(32) <pt(x, y) m <p203 = 0i(.t, y') = 423<f*/î[23(- l)(S-1)/!!cos (dx + Sy)],

4>s(x,y) = 0133 = - 0i(a;', y')

(33) ^ ^
= 4239m/21 ( - 1 )<"^>'223 sin (dx + Sy)],

(34) 4>n(x,y) m 023o(a;,2/) = <h(y,x);

eight in which the type is T2,

(35) 04(*, y) - 0001 = csc 27 + 423o" [ 23 sin (2*+1 dx + Sy)],

<t>i(x,y) m (bsoi = 4>i(x,y')

(36) ^      ^
= sec 17 + 4 239Bf E (-1 )(s_1)/2 cos ( 2"+1 da; + 5y )],

06'(a-1.37) ■ 0331 = 04(a;', y)

(37)
= csc y + 4239" [ ( - 1 )" 23 sin ( 2«+1 da; + Sy ) ],

<hix,y) m <po3i = 4>iix',y')

(38) ,_, ^,
= sec y + 423«?B [( -1 )"£ ( -1 )(*"1}/î cos (2«+1 da; + Sy)],

(39) 012 (a?, 27) = 0010 = 04(7/, a:),

(40) 0i3(a;, 2/) = 0320 = 05(27, «).

(41) 014 (a;, 27) - 0313 = 06(27.-"r),

(42) 0i5(a;,?y) = 0023 = 07(27.»);

and four in which the type is T3,

* This list being of such importance it was calculated and checked in several ways, to

eliminate printers' errors prevalent in other forms in the literature. It was calculated: (i) by

Hermite's method, Sur quelques applications des fonctions elliptiques (Comptes Rendus,

vol. 85 (1877), •• • 94 (1SS2), Oeuvres, vol. 3, p. 267; (ii) by applying the <r¡ to Halphen's
form of <t>t{x, y) (Traité, vol. 1, p. 418 (15)), and comparing with the same for 4>i(x, y);

(iii) by carrying out in detail the calculations in Hermite's paper Sur une application de la

théorie des fonctions doublement périodiques de seconde espèce, (Annales de l'École

Normale Supérieure, (3), vol. 2 (1885), p. 303, reprinted with corrections in Oeuvres,

vol. 4, p. 190). Finally it was compared with Hermite's final list, Oeuvres, vol. 4, pp. 199-200,

which still contains an error (in the expansion of <put(x, y), as may be verified upon putting

x, y = 0, x/2 and comparing with the series for the elliptic functions). Equivalent forms

for certain members of thisrlist quoted by other writers with an indefinite reference to Kro-

necker, are unreliable, and should be recalculated before use.
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(43)     0s(a:, y) = <pm = cot x + cot y + Ç£tf* [ E sin 2 (dz + íy) ],

fa(x,y) = 0212 = 08(a;, y') = cot x - tan y

(44)
+ 4E'Z2n[E(-l)isin2(d.r + ôy)],

010(a:, y) = 4>m = - <p3(x', y') = tan x + tan y

(45)
- 4£?2n [ E ( - 1 )d+a sin 2 (d.r + Sy ) ],

(46)    (pit(x,y) = <t>22i = <p9(y,x).

V.     THE  METHOD  OF  PARAPHRASE,   SIMPLE  ILLUSTRATIONS *

12. As already remarked, lists of formulas in the d, S form, such as the

foregoing, are analogous in paraphrasing to tables of logarithms in common

arithmetic. It will be evident that by combining the series to form identities

there is implicit in the lists given an infinity of paraphrases such as those

exemplified in Part I; and as a systematic derivation of all the most obvious

paraphrases is out of the question in a paper of this length, we shall limit the

illustrations to a few only of the paraphrases lying on the surface, choosing the

examples partly for their own interest, and partly to show one or two of the

simpler methods for using such lists of developments. For this purpose we

may select 7^-functions of degrees 1,2, and confine our attention principally

to linear separations, the other cases being treated with equal facility.

13. By the theory developed in Part I, trigonometric products are always

to be written in their equivalent sum forms before proceeding to paraphrase.

We shall accordingly write trigonometric identities derived from elliptic in

the latter form at once, omitting the intermediate product forms, unless the

separation into sums is not obvious.

As a first example, consider the eighteen identities of the form

<j>)(x) =0,(ar) X<p3(x).
From (17), (23),

0i(a-,o2) X<px(x,q2) =<p\(x,q2)

is equivalent to

16£9m ( E sin dx) X E?m ( E sin dx)

= 4E<72n px in) - 8Eg2" [ 2* Erf cos 2a+1 dx],

where, as in all such cases, the types of division being defined in the lists from

which the series are transcribed, need not be written ; here they are Tx on the

* At this point it will be advantageous to glance through the Introduction to Part I, attend-

ing particularly to the bar notation for ¿-functions and the notation for separations there

explained, also to the illustrative examples of paraphrases, as we shall not again refer to any

of the notation. See also the references at the end of Part I. We shall cite Liouville's the-

orems by giving the numbers of the memoir, page and formula, thus: Liouville (1), 144, (A).
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left, Tt on the right. On referring to § 3 (4) for the d-form of m(n), and

equating coefficients of q2n, we get

2n = m' + to";       n = 2*m;       to, to', to" = dS, d' S', d" S":

23[cos(d' - d")x - cos(d"' + d")x] = 2a23<i[l ~ cos 2a+1 dx];

and this, on writing/(x|) = f(x), paraphrases into

2n = TO' + m";       re = 2" to;       to, to' , to" = dS, d' S', d" S':

(I)        ^ ^
23 [fid' - d") -f(d' + d")] = 2"23d[/(0) -f(2^d)];

which is Liouville's (2), 194, (a), and for a = 0 his first formula, (1), 144, (A).

It is of course not necessary in any such case as this to replace the numerical

functions m(n), etc., by their d-forms; but doing so increases the symmetry

of the paraphrases.   For simplicity in writing we shall henceforth put

/(*■)-/(*).

In (I) each argument is even. Hence fix) may be replaced by / ( x/2 ),

giving

E[/(^)-/(^)]-r»r/(o)-./(«)i.

In this case no material simplification is thus effected. But when the con-

trary is the case we shall make the change without notice. A similar trans-

formation of a paraphrase involving odd arguments is not permissible, since,

by the definition of an L-iunction, / ( to/2 ) does not necessarily exist.

14. The use of (27)-(30) will be sufficiently clear from the following, which

we give in some detail as it illustrates transformations of several types which

occur frequently. Any identity involving csc, tan or cot might be chosen;

we take 02 (a;) X 02 (a-) = <b\(x), and use (18), (24), getting

[ csc x + 423?" ( 23 sin dx ) f = 423<?" 7*i ( » ) + csc2 x - 823</2n ( 23«" cos 2dx ).

Equating coefficients of qn, where re = 2a to , a > 0, we have for the separa-

tions re/2 = di 5i, and

re = re' + re";       n,n', re" = 2" m, 2a' w', 2a"to";

m, to', ?«" = dS,d'S',d"S",
the following

23 sin dx csc x + 23 [ cos (d' — d") x — cos (d' + d")x]

— \ pi ( re ) — 23^i cos 2di x.

Since d is odd, (27) gives for 2 sin dx csc x the value Swi ( d, x Y, or

Trans. Am. Math. Soc. 14
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r (á-D/2 -i

E    1 + 2   E  cos 2rx   ,

— f ' (n ) + 2E t cos 2a; + cos 4a; + cos 6a; + • • • + cos ( d — l)x],

where we have taken J"' from § 3. We may eliminate the separation n/2

= di ôi, by the following obvious identity

Edi cos 2di x = E td cos 2dx + 2d cos 22 dx + ■ ■ ■ + 2a"1 d cos 2a dx],

which results upon segregating the odd divisors d and (when a > 1 ) the even

divisors 2ß d(0 < ß < a — 1) among all the divisors di of 2a_1 m. Hence,

substituting the sums thus found for the respective terms of the original sin,

cos, csc identity, and paraphrasing, we have

n = 2* m = 2a' m' + 2a" m";       a > 0;       m, m', to" = do, d' ô', d" S":

T,[f(d'-d") -f(d' +d")] = [i/ii(n) - rU)]/(0)

(II) -2Et/(2)+/(4)+/(6) + ••• +/(d-l)]

-Ed[/(2d) + 2/(22d)+ ••• + 2~7(2* d)].

The subcases of all paraphrases such as (II) in which a = 0 (although this

does not directly come under (II), a being > 0 therein, the paraphrases are

closely related, both being consequences of the <pi(x) identity), are of great

importance in connection with the representations of primes p in the form

ax2 + brc y2, where a, b are constants and r is prime, in that the specialized

forms of these subcases for / ( x ) = 1, x2, ■ • • give rise to identities of the

forms considered by Bouniakowsky and Liouville as the point of departure

for determining the number of such representations. In the present instance,

the sum 2Q2n(2di cos 2dia;) can contribute nothing to the coefficient of qm;

hence the second 2-on the right of (II) is absent. Again, for a = 0, we have

m = 2a'to' + 2a"to". Hence one and only one of a', a" = 0; and therefore

the value of S [fid' - d") -fid' + d")] over the separation n = 2°'to'

+ 2a" to" is the sum of its values over the (identical) separations

TO = to' + 2a" to" ,        TO = 2a' to' + to" .

Finally then we have, on referring to § 3 (4) for the numerical functions,

to = 2"' to' + to";       m,m', m" = dô, d' Ô', d" 5":

(HI)   2Et/(d'-d") -/(d' + d")] = [ri(TO)-f(TO)]/(0)

-2E[/(2)+/(4) + ••• +/(d-l)].

This is Liouville's (3), 201, (D). We have not yet exhausted the obvious

consequences of <pl — <p2 X <b2 ; any identity involving csc x gives at once two
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paraphrases, one similarly to (II), and the other by paraphrasing the result

of multiplying the identity throughout by sin a; to eliminate csc x. In the

present case we get, on equating coefficients of qn, n — 2" m, a > 0, as in

proving (II):

23[sin(l + d'-d")a; + sin(l -d' + d")x

+ sin ( - 1 + d' + d")x - sin (1 + d' + d")x]

= pi ( re ) sin x — 223 s*n dx

- 223[Ê2^1d{sin (2'd + l)x - sin (2rd - l)x}1,

which, on writing g(x) = f ( \x), gives the paraphrase

n = 2"m - 2*'m' + 2*"m";       a > 0;       to, to', m" = dS,d'o', d"ô":

23 [g(l + d' - d") + a(l - d' + d") + g(- 1 + d' + d")

(IV) -ff(l + d' + d")]=jui(n)a(l)-2230(d)

- 2Z[Ê2-ld{p(2'd + 1) - g(2'd - 1)\ J.

The diversity in form of (II), (IV), is the more striking in that (IV) is merely

the paraphrase of the same elliptic identity as that which gives rise to (II)

when it is multiplied throughout by sin x. For identities involving csc x or

cot x we thus get the paraphrases corresponding to (IV) on multiplying first

by sin x; for those containing sec x or tan x we first multiply throughout by

cos x.   Similarly to (IV), corresponding to (III), we get,

to = 2*'to' + to";       m, m', m" = dS, d' Ô", d" S":

(V) 23[o(l + d' - d") + g(l - d' + d") + g( - 1 + d' + d")

-í7(l + d' + d")] = ri(TO)a(l)- Sff(d),

which is Liouville (3), 206, (E). He remarks that (III), (V) are ultimately

the same thing, which is obvious from their origin. His (F), ibid., p. 208, is a

paraphrase (among others) of Jacobi's Z2 ( u ), Fundamenta Nova, § 47, equa-

tion (1); also his (4), 242, (G) is from the same source, or it follows from one

of the formulas for functions/( a;, 271) given below in (XVII).

15. Although their arithmetical consequences are often widely different, at

least in appearance, we shall regard paraphrases that may be derived from

one another by means of the elementary transformations of Part I (III) as

equivalent. We shall now show how the simplest properties of the elliptic

or theta functions such as those in (21) are of direct use in finding all the
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distinct and equivalent paraphrases implicit in a complete set of identities of a

given kind, here 0/ (x) X 0, (a;) = tp* (x).

Obviously 017(a;) X <t>xiix) — 4>\r(x) gives nothing distinct from (I), as

may be seen on glancing at (22). In the same way we dispose of j = 13, 14,

18 when the paraphrase forj = 11 is known; and (21), (22) show that for the

following pairs of values of j the <¡>* = <p}- X 0/ paraphrases will be identical,

(1,5), (2,6), (3,7), (4,8), (9,10), (13,15), (14,16),

since in each case the resulting elliptic identities may be transformed into one

another by changing the sign of q. And from the same source it is seen that

the paraphrases corresponding to the next pairs will be equivalent in the sense

that either in a given pair may be transformed into the other by one of the

elementary transformations considered in Part I (III),

(1,3), (2,4), (5,7), (6,8), (9,10), (11,12), (13,14), (15,16).

Hence we shall find all the required paraphrases by taking j = 1,2,3,4,9,

11, 12. The cases j = 1, 2 give the paraphrases (I)-(V); omitting the

alternative forms that correspond to (IV), (V) we get the following in the

same way for j = 3, 4, 9, 11, 12.

2n - to' + to";       n = 2ato;       to, to', to" = dh, d' J', d" S":

£[(_ l)0r--H»>/2 {/(d/ _ ¿») +f,d.+<r,)]]

(VI) =2-Ed[(-l)-/(2*Hlld)-/(0)];

E[(- i)(4'+i")/2 \f(d' - d") +f(d' + d")}]

= -2*£d[/(0)+/(2«-«d)l.

These are identical; the first comes from j = 3, the second from j = 7. For

j = 4 we use v3 from (28), getting

n = 2* to = 2»' to' + 2a" to";       a > 0;

TO,TO',m" = do,d'5',d"o":

E [ ( - 1 )(d'+0")/i \f(d' - d") +fid' + d")) ]
(VII)

= tr («)-*/*(») i/co)
-E(/(2)-/(4)+/(6)-+(-l)w+»'7(d-D]

+ Ed[-/<2d)+2/(22d)+ •■• +2-7(2"d)];

and the related form
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m = 2a'm' + m";       to, to', to" - dS, d' S', d" 5":

2£[( - 1 )<*+■*">« |/(d' - d") +/(d' + d")} ]
(VIII)

-tf(»)-fi(»)]/(0)

- 223[/(2) -/(4) + ■•• + (- Dw+1"2/(d - 1)].

For j = 9 we have

2am = 2a'TO' + 2""TO";       a > 0;

to,to',to" = d5,d'5',d"5":

(IX) 231 ( - 1 )(4'+î")/î {/ ( 2a' d' - 2«" d" ) + / ( 2a' d' + 2«" d" ).} ]

= [r'1'(2-iTO)-rí(2«-»TO)i/(o)

+ 23[(-l)(í-1)/2-2*d]/(2«d).

In this the f(x) which appears upon first paraphrasing has been replaced, as

allowable, by/(x/2).

to = 2"' to' + to";       to, to', m" = do, d' o', d" 8";       a' > 0:

(X) 223 [( - 1 y,'+'"yi {/(2*'d' - d") +/(2"'d' + d")} ]

-EK-iy^**-■<«/<*>.
For j = 11, using w0 from (29), we find

re - re' + n";       re, re', re" <- do, d' 5', d" 5":

23[(- l)''+i" {/(<*' - d") -f(d' + d")}]

(XI) = [p(n) - Pi(n)]f(0) - T,ld+(-l)&]f(d)

-223(~ !)'[/(!)+/(2) + ---+/(d-l)].

The special case in which n = to is of interest:

23K- D"+4" \f(d' - d") -f(d' + d")}]

(xii) = [f (to) - fi(m)]/(0) - 23(d - i)/(d)

+ 2E[/(D+/(2) + ---+/(d-l)].

The similarly derived paraphrases of the derivatives <b{ = 07 09, etc., and

those for the relations between pairs of functions whose products are constants,

also yield simple and interesting results, but to keep this paper within reason-

able limits we pass on to a very brief consideration of the more important

series (31)-(46).

16. Let us first paraphrase one of the obvious identities suggested by the

form of 08 (x, j) in (43), as the resulting paraphrase is one of those which
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Pépin ((1), 84-92) proved by Dirichlet's method.    By the addition theorems

for the »J-functions (Jacobi, Werke, vol. 1, p. 510, (C)), we have

H&x(x + y)ûxix-y) = âl(x)âliy) - ûl(x)ûliy);

and hence by (43), (IS), on multiplying this identity throughout by

dla¡/d¡(x)*Í(x),
we get

- faix, y)fa(x, -y) = 0i(y) - <hl(x).

Substituting in this the respective series as given by (43), (24), replacing o by

Vç, and equating coefficients of qn, we find

n - n' + n";       n, n', n" = dS, d' S', d" S":

E [ cot a- sin 2d.r cos 25y — cot y cos 2dx sin 25y ]

+ S[cos2{(d'-d").r+(o' + o")y}

- cos 2{(d' + d")x + (5' - o")y} ] = E^cos 2dy - cos 2d.r].

By (29) the first sum*

= E [ cos 2dy — cos 2dx] + 2E    E {cos 2rx cos 2oy — cos 2S.v cos 2ry\    .

Considering the second sum (on the left), we havef

£sin2(j7' -d").rsin2(S' + 5")y = 0

■ E sin 2 id' + d" )'* sin 2 ( 8' - 5" ) y,

the d' being identical in reversed order with the d", and similarly for the 5', 5" ;

hence the second sum reduces to

E[cos2(d'-d")a;cos2(5' + o")y-cos2(d' + d")a;cos2(o' - 8")y}.

Making all these reductions in the original cot, sin, cos identity, replacing

then x, y by a;/2, y/2 and paraphrasing, we get

* d, S may clearly be interchanged in either term under the 2:

S[irç{2d,x)eoa2ty — wt(2i,y) cos2dx\ s 2[w0(2d, x) cos2iy - u\>(2d,¡») cos2ia;].

We have made this change before writing out the S by (29) in the next step; henceforth it

will be unnecessary to point out similar transformations.

t The reduction in this step may be obviated by paraphrasing the right of

-4<t>i(x,y)4>s(x, -y) m [4>s(x,y) - 4>s(x, - y)]> -\<t>i(x,y) + <t>$(x, - y)]',

instead of, as above, the left.   Such devices sometimes avoid complicated arithmetical reduc-

tions.
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re = re' + re";       n, re', re" = di, d'ó", d" 5";

f(x,y) =f(x, I/I):

(XIII)   23[/(d' " d"' *' + 5"} ~f{d> + á"'5' ~ 5")]

= 23[(d--l)(/(0,d)-/(d,0)}]

+ 223[¿{/(«,0-/(r,í)}],

Putting/(x, 2/) = fix) orfiy) in (XIII), we find at once

re = n' + re";       re, re', re" = dS,d'S', d" 8":

23[/(d'-d")-/(d' + d")]
(XIV) _

= [fi(») - f(»)]/(0) + 23(25 - d - l)/(rf)

-223[/(l)+/(2)+ ••• +/(d-l]).

Henceforth we shall write f(x,y\) = f(x, y).

17. By a simple transformation (XIII), (XIV) take more elegant forms.

We remark, however, that although slightly simpler in appearance, the new

forms are in reality not so simple, containing redundant terms; we give the

transformation merely to show the identity of the forms above with Liouville's.

For n = d8, let £'[ 53''=l/(5, r)] denote the result of deleting from

Z [ S'r'=lf(8,r)\ every f(S, r) for which r is a divisor of d, and similarly

for £' [ ¿',ti f(r,S)],ÍL'[ £'/=! fir)].    Then it is easily seen that

23['2i/(ô,0 -/(r,*)}]- E'[2/(«.r-)]- Z'['ë/('',5)],

23'[/(-')+/(3) + ••• +/(d-l)]

= 23t/(D+/(2)+ •■• +/(d-i)]-23tf(s)-i]/(d).

Hence (XIII), (XIV) over the same separations may be written,

23 If id' - d", 8' + 5") -f(d' + d", 8' - 8")]

(XIIF) =E(^-i)[/(o,d)-/(d,o)]
r,i-i

+ 2E'[|Íí/(5>r)-/(r,o)j];

23[/(d'-d") -/(d' + d")] = [fi(re)-r(«)]/(0)

(XIV) -23[2f(S)+d-2«-l]/(d)

-223'[/(2) +/(3)+ ••• +/(d-l)];

which are respectively Liouville's (5), 284, (f) and (4), 247, (H).
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18. To generalize a paraphrase that arose from fa2, we seek faix,y),

faix, y) such that

± faix,y) faix, -y) = fa2(x) ±fa2(y).

Thus for j = 7, we have the identity (from (31), and the application of the

transformations indicated in the first triads of (21) upon (17))

fa(x,y)fa(x, - y) = fa2ix) - fa2(y),

where we have used

ô\ûiix + y)diix-y) = <,2aix)âliy)-ôlix)ûliy).

Paraphrasing the (^-identity as in § 16, we find immediately

2n = m' + m";       n = 2* m;        m, to', m" = dS, d' S', d" S":

(XV) T,U(d' -d",S' + S") -fid' + d",S' -8")]

= 2"i:d[/(0,2'+1d)-/(2«+:d,0)],

which is Liouville (2), 199, (b), (c), and which becomes (I) for

f(x,y) = f(x),f(y).

Since by (33), faix, y) = — faix',y'), the paraphrase of

fa(x,y)fa(x, -y) = fa2ix) - fa2(y)

is (XV).    From (32), (21) we get

fa(x,y)fa(x, - y) = fa2(x) - fa2(y),

whose paraphrase may be written down from (XV) by means of the elementary

transformations of Part I, § 30, on observing that fa(x, y) = fa(x, y').

Over the same separation as (XV) it is

E [ ( - 1 ys'-v'w-»i2{f(d' + d", 8' - 8") +f(d' - d", 8' + 8")\ ]
(XVI) _

= 2*E¿[/(2a+1d,0) - (- l)»/(0,2"+1d)].

On putting f(x,y) =f(x) in this it becomes (VI), second form; for

f(x,y) = f(y) it is the first form of (VI). Continuing thus with the obvious

consequences of the developments in § 11, we find from

àlMx + y)ô0(x-y) = âl(x) â2(y) + ûl(x) â\(y),

- fa(x,y)fa(x, -y) = <p\(y) +fa2(x),

on using Mi (5, y) from (27), the following paraphrase:
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re = re' + re";       re, re', re" = 2* m, 2a' m', 2a" to";

to, to', to" = d5,d'5',d"8":

23[/(2"'d' - 2""d", 5' + 5") -f(2T'd' + 2»"d", 5' - 5")]

(XVII) = ill + ( - 1)»¡23 [dfiO, 2d) + 2d/(0, 22 d) + • • •

+ 2-1d/(0,2«d)] -23(2*d-l)/(2«d,0)

+ 223Lf(2'd, 2) + /(2"d, 4) +/(2«d, 6) + •• •

+ /(2'd,8-l)].

For/(x, y) = fiy) this becomes (II), (III); for/(x, y) = fix) we find

after a simple reduction,

2" to = 2"' to' + 2"" to";       to, to' , to" = dS, d' S', d" 8";

a >0:
(XVIII) „

23t/(2a'd'-2«"d") -/(2"'d' + 2""d")]

= 23(8-2«d)[/(2«d)-/(0)];
and when a = 0,

to = 2«' to' + to";       to, to', to" = dS, d' 8', d" 8":
(XIX) „ _

2E[/<2"'d' -d") ~/(2-'d' + d")] = 23(5 -d)fid).

These three are Liouville's (5), 280, (e); (3), 208, (F); (4), 242, .(G).   Simi-

larly from (36) we have

4>&(x,y)4>s(x, -27) = 0l(î7) + 4>iix),

which gives upon reduction by t>s(8, y) from (28),

re = re' + re";       re, re', re" = 2*to, 2*'to', 2'"to";

to, to', to" = dS,d'S',d'S":

23 [( - 1 )(«'-!«+«"-»/»{/(2-'d' + 2'"d", 8' - 8")

+ /(2*'d'-2*"d",8' + 8")}]
(XX) ^, ^

= 23(2"d-l)/(2'd,0) + 223[/(2-d,2)-/(2-d,4)

+ ---+(-D<i+,)/2/(2«d,8-l)]

-è(l + (-l)B}Za[-/(0,2d) + 2/(0,22d)

+ ... +2-1/(0, 2-d)],

which might have been derived by the elementary transformations from

(XVn); as it is the transformation affords a Check of a kind which frequently

¡8 valuable.   For/(x, y) — f(x) this is easily seen to be
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E [ ( - i)<*'-^+(í"-'>/2{/(2«'d' + 2*"d") +/(2"'d' - 2""d")} 1

(XXI) =e{l + (-l)n}(3-2")rí(n)/(0)

+ E{2ad+(-l)(<+1"2}/(2-d),

over the same separation as the preceding.    This is essentially two theorems ;

the first corresponds to a = 0, and is (X); the second is, with a > 0,

E [ ( - 1 )«'-»'2+«"-»'2{/ ( 2«' ¿> + 2"-" d") +f( 2°-' d' - 2'" d")}]
(XXII) „

= (3-2a)f;(n) + Eí2ad+(- l)(5+1)/2}/(2*d).

This is Liouville (5), 282, (K). The examples which we have given are

probably sufficient as illustrations of the simplest methods of using the tables,

and the length of this paper forbids more systematic treatment here of the

lists sampled or of the numerous other sets in the theory of elliptic functions

which Liouville apparently did not touch. Also we must leave aside the

many interesting questions that suggest themselves; e.g., the classification of

the paraphrases, the inverse problem of finding paraphrases for a given separa-

tion (in which the theory of the transformation of elliptic functions finds a

new application to arithmetic), and the passage from paraphrases for functions

of degree 2 to degree exceeding 2. One natural starting point for the last is

Jacobi's (and H. J. S. Smith's) formula for the multiplication of four theta

functions, and its consequences for #„ ( x ± y ± z ), etc. This generalization

is of impoi tance, as it leads naturally to the general case of such paraphrases

as the present, viz., to the paraphrase of Riemann's theta formula and the

theory of the related functions, making possible a ready arithmetical inter-

pretation of some of the most striking analytical results in tne theory of abelian

functions.*

In the present order of ideas the series for the cp'j(x), n > 2 furnish inter-

esting results; e.g., fa3(x) gives the principal theorems in Liouville's sixth

memoir. We may conclude with two paraphrases for quadratic separations,

to illustrate the fact that there is no increase in difficulty by these methods

when we pass from linear separations to quadratic. This certainly is not the

case in methods used hitherto.

19. From the identity

and the following, which is easily derived from the known series,

* This generalization was carried out in some detail for the hyperelliptic functions of the

first order, and in particular for the transformation theory of such functions, in 1915; the

results, which lead to interesting arithmetical conclusions, will be published as soon as the

papers on the elliptic case have appeared. There is a notable gain in generality when we pass

beyond the elliptic case: the majority of the paraphrases refer to functions of n variables

unrestricted in any way whatever; parity no longer plays an essential part.
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ù[(x)/âi(x) = cota;+ 4E?2n(E sin 2dx), [T,],

we find upon replacing q by qi, writing e(n) = lorO according as n is or is

not the square of an integer > 0, and paraphrasing as usual ;

m = 8n' + TO"2;       n' = 8'd':

2E ( - 1 )(m"-1)/2 7 ( 2d' - to" ) - / ( 2d' + to" ) ]
(XXIII) ,_ _

= €(to)(- 1)<j-V«[(Vto - l)/(Vro) - 2/(1) - 2/(3)

-2/(Vro-2)].

Liouville gave several of the same kind, but not this. He does not seem to

have used the d'*(x)/d^(x).

20. One of the simplest methods for finding quadratic paraphrases con-

cerning functions of order > 1 is by proceeding from identities between theta

.functions (not their quotients) and series whose d, 5 forms are known. Thus

it is seen by inspection of (35) that

ih(x - y)fa(x - y,y) + ûu(x + y)fa(x + y, - y) = 0,

where we have not gone beyond two variables in order to keep the writing

simple. Substituting the series for #o ( x ± y ), <pt ( x =F y, ±y), and noting

that &o ( x ) may also be written 2 ( — 1 )"' o"' cos 2nx a;, where the range of

ni is — °o to + oo , we find after some simple reductions the following form

of the û, <j> identity:

» [- n-l -1

E qn'\ ( - 1 )n sin 2nx E cos ( 2r - 1 ) y

+   E   5"?+flirE(-l)",sin(2«^d2+2ni)a-cos (2«s+Id2-52+2n1)y]^0;
ni=—oo L J

and this being an identity in q, we have the next an identity in x, y, (the

separation in both cases is the same) ;

n - n] + n2;       ni = 0;       0 < n2 = 2" m2;       m2 = d2 82:

é(n)(- 1 )n sin 2vña;Ecos (2r - l)y
r=l

+ E(- 1)"' sin(2as+1d2 + 2n1)a;cos(2"+1d2 -o2 + 2m)y = 0;

and thence, over the same separation,

E(- D"7(2a5+1d2 - S2 + 2m|2«d2 + »,)

*        W = «(»)(- Dn-1E/(2r.- 1|VÏ).
r=l

University of Washington
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