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ABSTRACT 
Electrocardiogram (ECG) signals are analysed using the 
nonlinear method of recurrence plots, which reveals subtle 
time correlations in time-domain signals. Large-scale 
features in the recurrence plots, which consist entirely of 
single dots, line segments of different orientations and white 
spaces, are directly related to time-domain features in the 
original signals. The relationship between recurrence plot 
features and time-domain features is easy to see for these 
ECG signals, and can be used to infer time-domain features 
of other signals (such as other bioelectric signals) that are 
more difficult to interpret due to their complexity. 

1. INTRODUCTION 
The aim of this study was to demonstrate how features that 
can be clearly observed in a time-domain signal give rise to 
particular features in recurrence plots of the data. Originally 
proposed in the physics literature, recurrence plots are a 
nonlinear dynamical analysis method describing subtle time 
correlation information about a signal [l]. They have since 
been applied to a diverse range of biomedical data, 
including bioelectric signals [2]-[5], interval analysis [4], 
[6] and motion analysis [7]. However, little attention has 
been paid to the way in which large scale features of 
recurrence plots relate to specific features of the analysed 
signals. In this study, recurrence plot analysis was applied 
to electrocardiogram (ECG) signals which have clear time- 
domain features. 

2. RECURRENCE PLOTS 

2.1 Formal Definition 

Fundamental to the definition of recurrence plots is the idea 
that any scalar time series s(n) can be considered as the 
projection of a multivariate signal x(n) onto the single 
dimension that we observe. Consider, for example, the ECG 
which originates in 3 dimensions, yet each lead is only a 1- 
dimensional signal. Not all variables represented by x(n) are 
necessarily observable. By use of Takens and Maiib’s 
Embedding Theorem, we can create d-dimensional vectors 
y(n)  from the original time series s(n) so that the evolution 
in time of y(n) follows that of x(n), even though the 
dimensions of x(n) and y(n)  may differ [SI. The form of 
these vectors is: 

Lag Tis chosen as the value that gives the first minimum of 
the average mutual information (AMI) between s(n) and 
s(n + r)  [9]. Embedding dimension d is the smallest 
dimension that gives no ‘global false nearest neighbours’; 
that is, the distance between y(n)  and its nearest neighbour 
in dimension d is not increased too much by extending both 
vectors into dimension (d + 1) [8]. 

Two forms of recurrence plots, which we refer to as direct 
and relative forms, appear in the literature. Suppose that we 
have constructed N vectors y(n) from a given scalar time 
series. Then a direct form recurrence plot is a scatter plot of 
dots in an N x N square, where a dot at (id] indicates that 
y( i )  is close to yo’) in d-dimensional space [ 13. Direct form 
recurrence plots contain a line of identity, since y( i )  must be 
close to yo]  if i = j .  The test for whether two vectors are 
‘close’ has been defined variously in terms of a required 
number of neighbours for each vector [l], or in terms of a 
threshold for the distance between vectors [3], [4] where the 
distance may be defined by different norms [6], [lo]. If a 
fixed threshold is used, then a direct form recurrence plot is 
symmetrical about its line of identity. A relative form 
recurrence plot is a modified form where a dot at ( i j )  
indicates that y( i )  is close to y(i + j )  [3], [6]. In these plots, 
the vertical time index J is relative to the horizontal index I .  
Before interpreting any recurrence plot, care must be taken 
to ascertain whether it is in direct or relative form. 

2.2 Alternative Interpretation 

While recurrence plots are strictly defined as above, they 
can also be understood based on more traditional signal 
processing concepts. The axes of the plot can be thought of 
as the time indices of two sliding windows I and J, similar 
to the time index for short-time Fourier transforms. For 
direct form recurrence plots, each dot ( i j )  indicates that 
windows I and J are similar, where the measure of similarity 
is whether vectors formed from the time-ordered windowed 
data are ‘close’. If I is considered the current window, then 
above the line of identity, J represents future windows; 
below, it represents past windows. In relative form plots, J 
only represents future windows. The data may be 
oversampled for the purposes of generating a recurrence 
plot; that is, the mutual information between successive 
samples may be too high. This can be remedied by 
downsampling the data within each window by a factor T, 
where T is a lag value corresponding to the first minimum 
of the average mutual information between s(n) and s(n + T )  
[9]. A global false nearest neighbours test [SI is then used to 
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Figure 1. Plots used to determine appropriate parameters for calculating the recurrence plot for the normal 
ECG record in figure 2(a). The first minimum of the average mutual information between the original and 
lagged data occurs at a lag of 4 samples. Embedding the data using this lag, the percentage of false nearest 
neighbours becomes zero at an embedding dimension of 5. Similar results were found for the paced ECG. 

determine how many samples d should be contained in each 
(downsampled) window. This number d is such that if 
windows I and J each contain d samples and are similar, 
then they will also be similar if they contain (d+ 1) 
samples. 

3. MATERIALS AND METHODS 
ECG records of several beats were obtained from the MIT- 
BIH Arrhythrma Database (Massachusetts Institute of 
Technology, 1992). Three successive beats each from a 
noisy, normal ECG and a rhythm paced ECG are shown in 
figures 2(a) and 2(b) respectively. Programs were written 
using Matlab (version 5.2, The Mathworks, Inc., Natick, 
MA) to determine an appropriate time lag and embedding 
dimension for creating vectors from the data 181, and for 
generating direct form recurrence plots using these values 
and a threshold of 10% of the maximum Euclidean distance 
(b norm) between vectors [3]. 

4. RESULTS 
Plots of average mutual information and percentage of false 
nearest neighbours for the normal ECG are shown in figure 
1. For both the normal ECG and the paced ECG, the lag 
corresponding to the first minimum of the average mutual 
information was found to be 4 samples and the embedding 
dimension was found to be 5. These values were used to 
generate the recurrence plots shown in figures 2(c) and 2(d) 
respectively. 

5. DISCUSSION 
The following is a discussion of the qualitative features of 
direct form recurrence plots. See [3] for features of relative 
form plots, and [4] for a discussion of possible quantitative 
measures that could also be obtained. 

Each recmence plot in figure 2 can be divided roughly into 
nine regions or sub-plots a-i: 

With respect to the signals in figures 2(a) and 2(b), regions 
g, e and c correspond to the first, second and third beats 
respectively; regions d and h both compare the first and 
second beats; regions a and i both compare the first and 
third beats; and regions b and f both compare the second 
and hiid beats. 

The plots consist of isolated dots, dots joined into line 
segments (two or more adjacent dots) and white spaces [4]. 
Care must be taken to analyse recurrence plots at an 
adequate screen or print resolution, otherwise some of these 
features may be lost. Little can be concluded from isolated 
dots, as they are due to chance recurrences such as in white 
noise. Line segments and white spaces, however, can be 
clearly related to features of the signal. 

In region e of figure 2(c), horizontal line segments at 
J=415,  reflected as vertical line segments at 1=415, 
correspond to the baseline crossing between the R and S 
waves in beat 2 of the normal ECG. The horizontal line 
segments indicate that several successive overlapping 
windows {I1, It, ..., In} (baseline activity between beats 2 
and 3) are all similar to a separate window J (baseline 
crossing between R and S), and so { I l ,  I2 ,..., In} are also 
similar to each other. This may indicate slow-changing 
regions of a signal. Since vertical line segments are 
reflections of horizontal line segments about the line of 
identity, they can be interpreted similarly; a vertical line 
segment indicates that several successive overlapping 
windows { J 1 ,  Jz, .  . ., J n }  are similar to a separate window I .  
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Figure 2. (a) Normal, noisy ECG signal. (b) Paced ECG signal. Abscissa units are sample numbers, ordinate 
units are arbitrary. (c) Recurrence plot of the normal ECG signal. (d) Recurrence plot of the paced ECG 
signal. Lag = 4 samples, embedding dimension = 5 and threshold = 39 units for both plots. 

Each pair of reflected horizontal and vertical line segments 
corresponds to a pair of line segments that appear to split 
away from the line of identity, although these may be 
obscured by larger 'shapes'. 

Upwards diagonal line segments with a slope of 1 can be 
seen clearly in regions a, b, d , f ,  h and i of figure 2(c), and 
in regions b andfof figure 2(d). These indicate that while 
successive windows may not be close, the closeness 
between two windows from different parts of the signal is 
maintained as the windows slide simultaneously along the 
signal. They therefore show where the same dynamics occur 
in different parts of the signal so are a particularly important 
feature of recurrence plots. The upwards diagonals 
identified above indicate the recurring waveform. Similar 
shapes located along regularly spaced, separate diagonals 
can indicate a periodic or, as in this case, a quasi-periodic 
component to the signal. 

The larger shapes evident in both recurrence plots can be 
thought of as consisting of line segments of any orientation 
stacked on top of each other. However, the overall shape 
may suggest an orientation of line segment that is better 
than others for describing the signal. Squarish shapes 
suggest horizontal and vertical line segments which indicate 
slow-changing parts of the signal. Examples are baseline 
activity between beats and sections of the paced ECG 

immediately following the pacing spike; see I ,  J = 100, 400 
and 680 in figure 2(c). The main parts of the arrowhead-like 
shapes along the line of identity in both plots suggest 
upwards diagonals, indicating that nearby windows are 
changing similarly, as is certainly the case during the 
corresponding S waves of both signals. However, the 
diagonals suggested here seem to have slopes other than 1. 
Where the slope is steeper, the part of the signal 
corresponding to the I index is changing faster than the 
section corresponding to the J index; where the slope is 
more gradual, the part of the signal corresponding to the I 
index is changing slower than the section corresponding to 
the J index. In the normal ECG for example, the descending 
part of the S wave has a steeper slope in beat 2 than in beat 
1 and this is shown by the arrowhead shapes in regions d 
and h of figure 2(c). The 'barbs' of these shapes suggest 
downwards diagonal line segments (negative slope). These 
correspond to parts of the signal that have opposite (time- 
reversed) dynamics within the same amplitude range, such 
as either side of the minimum of the S waves. Similarly, the 
broad downwards diagonals in regions c, e and g of figure 
2(d) indicate the rising and falling parts of the T waves of 
the paced ECG. The apparent curve of these diagonals is 
due to the T wave rising faster than it falls. Similar to 
upward diagonals, we observe for downwards diagonals that 
where the slope is steeper, the part of the signal 
corresponding to the I index is changing faster than the 
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section corresponding to the J index; where the slope is 
more gradual, the part of the signal corresponding to the I 
index is changing slower than the section corresponding to 
the J index. 

White spaces in the recurrence plots are also important. 
Bands due to the high amplitude transients (R wave and 
pacing spike) run horizontally and vertically through both 
plots. In figure 2(c), there is an additional band due to the S 
wave that mostly merges with the first band, although they 
are sometimes separated such as in region a at I =  120. In 
contrast, the lower magnitude S wave of the paced signal 
results in irregular-shaped white areas, such as that at 
( I J  = (14030) in figure 2(d). The T wave is partly 
obscured by noise in the normal ECG but is more prominent 
in the paced ECG. The irregular white spaces due to the T 
wave are therefore more prominent in figure 2(d), 
contributing to the large X shapes. 

White space can also indicate general nonstationarities such 
as baseline drift in the signal. Regions c ,  e and g appear 
similar within both figures 2(c) and (d), indicating that the 
waveforms for the different beats are similar within both 
signals. If the beats were identical then all 9 regions of the 
recurrence plot would also be identical. But slight 
differences and baseline drift cause windows of the signal 
that would otherwise appear similar to become further apart, 
resulting in ‘paling’ [ 11 or increased white space away from 
the line of identity. A negative drift is evident in both 
signals, but more so in the paced ECG. This shows as a 
complete loss of the distinctive shape away from the line of 
identity in regions a and i of figure 2(d). 

Each of the large scale features of recurrence plots 
described above is related quite simply to features of the 
ECG signals. Similar features may be identified in the more 
complex recurrence plots of signals such as 
electroencephalograms [2] and electromyograms [SI. Since 
recurrence plot features relate directly to features of time- 
domain signals, recurrence plots have the potential to reveal 
time-domain features in complex signals. 

6. SUMMARY 
Features of direct form recurrence plots are: 

Isolated dots indicate chance recurrences. 
Horizontal and vertical line segments indicate regions of 
the signal that change little and are similar to another 
separate window of the signal. 
Upward line segments with a slope of 1 indicate that the 
same dynamic occurs in separate parts of the signal. A 
steeper or more gradual slope indicates that the part of 
the signal corresponding to the I index is changing faster 
or slower (respectively) than the section corresponding 

to the J index. 
Downward line segments with a slope of -1 indicate that 
opposite dynamics occur in separate parts of the signal. 
A steeper or more gradual slope indicates that the part of 
the signal corresponding to the Z index is changing faster 
or slower (respectively) than the section corresponding 
to the J index. 
Larger shapes are stacks of the above line segments. 
White bands and irregular white areas indicate transients 
in the time-domain signal. 
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