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Abstract This position paper provides an overview of our

recent advances in the study of big graphs, from theory to

systems to applications. We introduce a theory of bounded

evaluability, to query big graphs by accessing a bounded

amount of the data. Based on this, we propose a framework

to query big graphs with constrained resources. Beyond

queries, we propose functional dependencies for graphs, to

detect inconsistencies in knowledge bases and catch spams

in social networks. As an example application of big graph

analyses, we extend association rules from itemsets to

graphs for social media marketing. We also identify open

problems in connection with querying, cleaning and mining

big graphs.

Keywords Big graphs � Bounded evaluability �
Dependencies � Association rules � Social media

marketing � Knowledge base enrichment

1 Introduction

The study of graphs has generated renewed interest in the

past decade. Graphs make an important source of big data

and have found prevalent use in, e.g., social media mar-

keting, knowledge discovery, transportation networks,

mobile network analysis, computer vision, the study of

adolescent drug use [93], and intelligence analysis for

identifying terrorist organizations [55]. In light of these, a

large number of algorithms, optimization techniques, graph

partition strategies and parallel systems have been devel-

oped for graph computations.

Are we done with the study of graphs?

Not yet! Real-life graphs introduce new challenges to

query evaluation, data cleaning and data mining, among

other things. They demand a departure from traditional

theory to systems and applications and call for new tech-

niques to query big graphs, improve data quality and

identify associations among entities.

1.1 Querying Big Graphs

Consider a classQ of graph queries, such as graph traversal

(e.g., depth-first search DFS and breadth-first search BFS),

graph connectivity (e.g., strongly connected components),

graph pattern matching (via e.g., graph simulation or sub-

graph isomorphism) and keyword search. Given a query

Q 2 Q and a big graph G, the problem of querying big

graphs is to compute the answers Q(G) to Q in G.

When G is ‘‘big,’’ it is often costly to compute Q(G).

Indeed, DFS takes O(|G|) time, not to mention graph pat-

tern matching via subgraph isomorphism, for which it is

NP-complete to decide whether Q(G) is empty, i.e., whe-

ther there exists a match of pattern Q in G (cf. [102]).

Worse yet, real-life graphs are often of large scale, e.g.,

Facebook has billions of users and trillions of links, which

amount to about 300PB of data [37].

One might be tempted to think that we could cope with

big graphs by means of parallel computing. That is, when

G grows big, we add more processors and parallelize the

computation of Q(G), to make the computation scale with

G. Based on this assumption, several parallel graph query

systems have been developed, e.g., Pregel [52], GraphLab
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[99], GraphX [36], Giraph [34], Giraph?? [104], Blogel

[106] and Trinity [105].

However, there exist graph computation problems that

are not parallel scalable. That is, for some query classes Q,

their parallel running time cannot be substantially reduced

no matter how many processors are used. Consider, for

example, graph simulation [41], a quadratic-time problem.

It has been shown that no parallel algorithms for the

problem can scale well with the increase in processors

used [26]. This is actually not very surprising. The degree

of parallelism is constrained by the depth of a computation,

i.e., the longest chain of dependencies among its opera-

tions [46]. As a consequence, some graph computation

problems are ‘‘inherently sequential’’ [94]. Add to the

complication that parallel algorithms nowadays are typi-

cally developed over a shared-nothing architecture [58].

For such algorithms, with the increase in processors also

come higher communication costs, not to mention skewed

graphs, skewed workload, start-up costs and interference

when processors compete for, e.g., network bandwidth.

Moreover, even for queries that are parallel scalable,

small businesses often have constrained resources such as

limited budget and available processors and cannot afford

renting thousands of Amazon EC2 instances.

With these observations come the following questions.

Is it possible to efficiently compute Q(G) when G is big and

Q is expensive, and when we have constrained resources?

In other words, can we provide small businesses with the

benefit of big graph analysis?

We tackle these questions in this paper. We propose a

theory of bounded evaluability, which helps us answer

queries in big graphs with constrained resour-

ces [13–15, 17, 22, 24]. Based on the theory, we introduce

a resource-constrained framework to query big graphs.

1.2 Catching Inconsistencies

To make practical use of big data, we have to cope with not

only its quantity (volume) but also its quality (velocity).

Real-life data are dirty: ‘‘more than 25% of critical data in

the world’s top companies is flawed’’ [33]. Dirty data are

costly. Indeed, ‘‘bad data or poor data quality costs US

businesses $600 billion annually’’ [79], ‘‘poor data can

cost businesses 20–35% of their operating revenue’’ [67],

and ‘‘poor data across businesses and the government costs

the US economy $3.1 trillion a year’’ [67].

The quality of real-life graph data is no better.

Example 1 It is common to find inconsistencies in

knowledge bases that are being widely used.

(a) DBPedia: Flight A123 has two entries with the same

departure time 14:50 and arrival time 22:35, but one

entry is from Paris to New York, while the other is

from Paris to Singapore [59].

(b) DBPedia: John Brown is claimed to be both a child

and a parent of the same person, Owen Brown.

(c) Yago: Soccer player David Beckham is labeled with

two birth places Leytonstone and Old Trafford [21].

(d) MKNF marks that all birds can fly and penguins are

birds [43], despite their evolved wing structures.

To build a knowledge base of high quality, effective

methods have to be in place to catch inconsistencies in

graph-structured data. Indeed, consistency checking is a

major challenge to knowledge acquisition and knowledge

base enrichment, among other things.

This highlights the need for theory and techniques to

improve data quality. To catch semantic inconsistencies,

we need data quality rules, which are typically expressed as

dependencies. For relational data, a variety of dependen-

cies have been studied, such as conditional functional

dependencies (CFDs) [23] and denial constraints [4].

Employing the dependencies, a host of techniques have

been developed to detect errors in relational data and repair

the data (see [91] for a survey).

When it comes to graphs, however, the study of

dependencies is still in its infancy. Even primitive depen-

dencies such as functional dependencies and keys are not

yet well studied for graph-structured data. Such depen-

dencies are particularly important for graphs since unlike

relational databases, real-life graphs typically do not come

with a schema. Dependencies provide us with one of few

means to specify a fundamental part of the semantics of the

data, and help us detect inconsistencies in knowledge bases

and catch spams in social networks [29], among other

things. However, as will be seen shortly, dependencies for

graph-structured data are far more challenging than their

relational counterparts.

We introduce a class of graph functional dependencies,

referred to as GFDs [29]. GFDs capture both attribute-

value dependencies and topological structures of entities

and subsume CFDs as a special case. We show that GFDs

can be used as data quality rules and are capable of

catching inconsistencies commonly found in knowledge

bases, as violations of the GFDs. We study the classical

problems for reasoning about GFDs, such as their satisfi-

ability, implication and validation problems. We also show

that there exist effective algorithms for catching violations

of GFDs in large-scale graphs, which are parallel scalable

under practical conditions.

1.3 Identifying Associations

Association rules have been well studied for discovering

regularities between items in relational data and have
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proven effective in marketing activities such as promo-

tional pricing and product placements [72, 107]. They have

a traditional form X ) Y , where X and Y are disjoint

itemsets. For example, ðfdipper, milkg ) fbeerg) is an

association rule indicating that if customers buy dipper and

milk, then the chances are that they will also buy beer.

The need for studying associations between entities in

graphs is also evident, in emerging applications such as

social media marketing. Social media marketing is pre-

dicted to trump traditional marketing. Indeed, ‘‘90% of

customers trust peer recommendations versus 14% who

trust advertising’’ [101], ‘‘60% of users said Twitter plays

an important role in their shopping’’ [62], and ‘‘the peer

influence from one’s friends causes more than 50%

increases in odds of buying products’’ [7].

Example 2 Association rules for social graphs are defined

on entities in a graph, not on itemsets. As examples, below

are association rules taken from [28, 89].

(a) If x and x0 are friends living in the same city c, there

are at least 3 French restaurants in city c that x and x0

both like, and if x0 went to a newly opened French

restaurant y in c, then x may also go to y.

(b) If person x is in a music club, and among the people

whom x follows, at least 80% of them like an album

y, then it is likely that x will also buy y.

(c) If all the people followed by x buy Nova Plus (a

brand of mobile phones), and none of them gives

Nova Plus a bad rating, then the chances are that

x may also buy Nova Plus.

These rules help us identify potential customers. For

example, consider a newly opened French restaurant y. If a

person x satisfies the conditions specified in rule (a) above,

then restaurant y may opt to send x a coupon, and the

chances are that x will become a customer of y. Similarly

for rules (b) and (c), which help music album vendors and

mobile phone manufactures find potential customers and

advertise their new products.

As opposed to association rules for itemsets, association

rules for graphs, referred to as GPARs, involve social

groups with multiple entities. GPARs depart from asso-

ciation rules for itemsets and introduce several challenges.

(1) To identify social groups, the rules need to be defined in

terms of graph pattern matching, possibly with counting

quantifiers [(see rules (b) and (c)]. (2) As will be seen later,

conventional support and confidence metrics no longer

work for GPARs. (3) It is intractable to discover top-

ranked diversified GPARs, and conventional mining

algorithms for traditional rules and frequent graph patterns

cannot be directly used to discover such rules. (4) A major

application of such rules is to identify potential customers

in social graphs. This is costly: graph pattern matching by

subgraph isomorphism is intractable. Worse still, real-life

social graphs are typically big, as remarked earlier.

We propose a class of GPARs defined in terms of graph

patterns [89] and counting quantifiers [28]. These GPARs

differ from conventional association rules for itemsets in

both syntax and semantics. They are useful in social media

marketing, community structure analysis, social recom-

mendation, knowledge extraction and link predic-

tion [100], among other things. We propose topological

support and confidence measures for GPARs. We also

study the problem of discovering top-k diversified GPARs,

and the problem of identifying potential customers with

GPARs, establishing their complexity bounds and pro-

viding algorithms that are parallel scalable under practical

conditions.

1.3.1 Organization

This paper is a progress report of our recent work. The

remainder of the paper is organized as follows. We start

with basic notations in Sect. 2. We then present a theory of

bounded evaluation and a resource-bounded framework for

querying big graphs in Sect. 3. We propose GFDs in

Sect. 4, from formulation to classical decision problems to

their applications. We present association rules for graphs

in Sect. 5 and show how the rules help us in social media

marketing. Open problems are identified in Sect. 6.

The study of big graphs has raised as many questions as

it has answered. We hope that the paper will incite interest

in the study of big graphs, and we invite interested col-

leagues to join forces with us in the study.

2 Preliminaries

We first review basic notations of graphs and queries that

will be used in the rest of the paper.

2.1 Graphs

We consider w.l.o.g. directed graphs G ¼ ðV;E; LÞ, where
(1) V is a finite set of nodes; (2) E � V � V is a set of

edges, in which ðv; v0Þ denotes an edge from node v to v0;
(3) each node v in V carries a label L(v) taken from an

alphabet R of labels, indicating the content of the node, as

found in social networks, knowledge bases and property

graphs.

We denote the size of G as |G| = jVj þ jEj.
We will use two notions of subgraphs. A graph G0 ¼

ðV 0;E0; L0Þ is called a subgraph of G if V 0 � V , E0 � E, and

for each node v 2 V 0, L0ðvÞ ¼ LðvÞ.
Subgraph G0 is said to be induced by V 0 if E0 consists of

all the edges in G whose endpoints are both in V 0.
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2.2 Graph Pattern Matching

As an example of graph queries, we take graph pattern

matching defined in terms of subgraph isomorphism, stated

as follows.

A graph pattern Q is a graph ðVQ;EQ; LQÞ, in which (a)

VQ is a set of query nodes, (b) EQ is a set of query edges,

and (c) each node u 2 VQ carries a label LQðuÞ.
A match of pattern Q in a graph G is a subgraph Gs of G

that is isomorphic to Q, i.e., there exists a bijective function

h from VQ to the set of nodes of Gs such that (a) for each

node u 2 VQ, LQðuÞ ¼ LðhðuÞÞ, and (b) ðu; u0Þ is an edge in

Q if and only if ðhðuÞ; hðu0ÞÞ is an edge in Gs. The answer

Q(G) to Q in G is the set of all matches of Q in G. The

problem is as follows.

• Input: A graph G and a pattern Q.

• Output: The set Q(G) of all matches of Q in G.

The graph matching problem is intractable: it is NP-com-

plete to decide whether Q(G) is empty (cf. [102]).

3 Querying Big Graphs

We start with querying big real-life graphs with con-

strained resources, in order to provide small businesses

with the benefit of big graph analyses. We first present a

theory of bounded evaluability in Sect. 3.1. We then pro-

pose a resource-constrained framework to cope with the

sheer volume of big graphs, based on the theory and

approximate query answering in Sect. 3.2. This section is

based on results from [15, 22, 26, 27, 84].

3.1 Bounded Evaluability

Consider graph pattern queries Q defined in terms of sub-

graph isomorphism. As remarked earlier, such pattern

queries are intractable and expensive.

Can we still efficiently compute exact answers Q(G) to

pattern queries when graphs G is big and when we have

constrained resources such as a single processor?

3.1.1 Bounded Evaluability

We approach this by making big graphs small. The idea is

to make use of a set A of access constraints, which are a

combination of indices and simple cardinality constraints

defined on the labels of neighboring nodes of G. Given a

query Q, we check whether Q is boundedly evaluable under

A, i.e., whether for all graphs G that satisfy the access

constraints of A, there exists a subgraph GQ � G such that

(a) QðGQÞ ¼ QðGÞ, and

(b) the size jGQj of GQ and the time for identifying GQ

are determined by A and Q only, independent of |G|.

If Q is boundedly evaluable, we generate a query plan that

for all G satisfying A computes Q(G) by accessing (visiting

and fetching) a small GQ in time independent of |G|, no

matter how big G is. More specifically, we identify GQ by

reasoning about the cardinality constraints of A and fetch

GQ by using the indices in A.

A large number of real-life queries are actually bound-

edly evaluable under simple access constraints, as illus-

trated by the example below, taken from [15].

Example 3 Consider IMDb [44], a graph G0 in which

nodes represent movies, casts, countries, years and awards

from 1880 to 2013, and edges denote various relationships

between the nodes. An example query on IMDb is to find

pairs of first-billed actor and actress (main characters)

from the same country who co-stared in a award-winning

film released in 2011–2013.

The query can be represented as a graph pattern Q0

shown in Fig. 1. It is to first find the set Q0ðG0Þ of matches,

i.e., subgraphs G0 of G0 that are isomorphic to Q0; it then

extracts and returns actor–actress pairs from each match

G0. The challenge is that Q0ðG0Þ takes exponential time to

compute on the IMDb graph, which has 5.1 million nodes

and 19.5 million edges.

Not all is lost. Using simple aggregate queries, one can

readily find the following real-life cardinality constraints

on the movie dataset from 1880–2013:

(a) in each year, every award is presented to no more

than 4 movies (C1);

(b) each movie has at most 30 first-billed actors and

actresses (C2), and each person has only one country

of origin (C3); and

(c) there are no more than 135 years (C4, i.e.,

2013–1880), 24 major movie awards (C5) and 196

countries (C6) in IMDb in total [44].

An index can be built on the labels and nodes of G0 for

each of these cardinality constraints, yielding a set A0 of 8

access constraints. For instance, given a year and an award,

the index for C1 returns at most 4 movies that received the

award in that year.

Fig. 1 Pattern query Q0 on IMDb
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Under A0, query Q0 is boundedly evaluable. We can

compute Q0ðG0Þ by accessing at most 17923 nodes and

35136 edges in G0, regardless of the size of G0, no matter

how big G0 is, by the following query plan:

(a) we first identify a set V1 of 135 year nodes, 24

award nodes and 196 country nodes, by using the

indices built for access constraints C4–C6;

(b) we then fetch a set V2 of at most 24� 3� 4 ¼ 288

award-winning movie s released between 2011–

2013, with no more than 288� 2 ¼ 576 edges

connecting movies to awards and years, by using

those award and year nodes in V1 and the index for

C1;

(c) after these, we fetch a set V3 of at most ð30þ 30Þ �
288 ¼ 17280 actor s and actress es with 17280

edges, by using the set V2 and the index for C2; and

(d) we connect the actors and actresses in V3 to country

nodes in V1, with at most 17280 edges by using the

index for constraint C3. Finally, we output (actor,

actress) pairs connected to the same country in V1.

The query plan visits at most 135 ? 24 ? 196 ? 288 ?

17280 = 17923 nodes, and 576 ? 17280 ? 17280 = 35136

edges, by using the cardinality constraints and indices in

A0, as opposed to tens of millions of nodes and edges in

IMDb. Moreover, the number of nodes and edges is deci-

ded by Q0 and cardinality bounds in A0; it remains a

constant no matter how big IMDb grows.

3.1.2 Bounded Evaluation

We next provide more insight into bounded evaluation of

graph pattern queries. We invite the interested reader to

consult [15] for details.

Access Schema An access constraint is of the form

S ! ðl;NÞ;

where S � R is a (possibly empty) set of labels, l is a label

in R and N is a natural number. Recall that R is the

alphabet of labels (see Sect. 2).

A graph G(V, E, L) satisfies the access constraint if

• for any S-labeled set VS of nodes in V, there exist at

most N common neighbors of VS with label l; and

• there exists an index on S for l that for any S-labeled set

VS in G finds all common neighbors of VS labeled with

l in O(N)-time, independent of |G|.

Here VS is a set in which each node is labeled with a

distinct label in S. A node v is a common neighbor of VS if

for each node v0 2 VS, either ðv; v0Þ or ðv0; vÞ is an edge in

G. In particular, when VS is ;, all nodes of G are common

neighbors of VS.

Intuitively, an access constraint is a combination of (a) a

cardinality constraint and (b) an index on the labels of

neighboring nodes. It tells us that for any S-node labeled

set VS, there exist a bounded number of common neighbors

Vl labeled with l, and moreover, Vl can be efficiently

retrieved with the index.

Example 4 Constraints C1–C6 on IMDb given in

Example 3 are access constraints ui (for i 2 ½1; 8�):
u1 : ðyear; awardÞ ! ðmovie; 4Þ;
u2 : movie ! ðactors; 30Þ;
u3 : movie ! ðactress; 30Þ;
u4 : actor ! ðcountry; 1Þ;
u5 : actress ! ðcountry; 1Þ;
u6 : ; ! ðyear; 135Þ;
u7 : ; ! ðaward; 24Þ;
u8 : ; ! ðcountry; 196Þ:

Constraint u1 states that for any pair of year and award

nodes, there are at most 4 movie nodes connected to both,

i.e., an award is given to at most 4 movies each year;

similarly for u2–u5. Constraint u6 is simpler. It says that

(between 1880 and 2013) there are at most 135 years in the

entire graph; note that the set S (i.e., the set VS) for u6 is

empty; similarly for u7 and u8.

We denote a set A of access constraints as an access

schema. We say that G satisfies A, denoted by G � A, if G

satisfies all the access constraints in A.

Deciding Bounded Evaluability To make practical use of

bounded evaluation, we need to answer the following

question, to decide whether a given query is boundedly

evaluable under a set of available access constraints.

• Input: A pattern query Q, an access schema A.

• Question: Is Q boundedly evaluable under A?

The question is nontrivial for relational queries. It is

decidable but EXPSPACE-hard for SPC queries and is

undecidable for queries in the relational algebra [22].

The good news is that for graph pattern queries, the

problem is in low polynomial time in the size of Q and A,

independent of data graphs G. Indeed, for pattern queries

Q ¼ ðVQ;EQ; LQÞ, it is in OðjAjjEQj þ jjAjjjVQj2Þ time to

decide whether Q is boundedly evaluable under A [15],

where jEQj and jVQj are the numbers of nodes and edges in

Q, respectively; jjAjj is the number of constraints in A, and

jAj is the size of A. In practice, Q and A are much smaller

than data graphs G.

With this complexity bound, an algorithm for deciding

the bounded evaluability of graph pattern queries is given

in [15]. It is based on a characterization of bounded

evaluability, i.e., a sufficient and necessary condition for
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deciding whether a pattern query Q is boundedly evaluable

under an access schema A.

Generating Bounded Query Plans After a pattern query

Q is found boundedly evaluable under an access schema A,

we need to generate a ‘‘good’’ query plan for Q that, given

any (big) graph G, computes Q(G) by fetching a small GQ

such that QðGÞ ¼ QðGQÞ and jGQj is determined by Q and

A, independent of |G|.

In a nutshell, a query plan P for Q under A consists of

three phases, presented as follows:

(1) Plan P tells us what nodes to retrieve from G. It

starts with a sequence of node fetching operations of

the form fetchðu;VS;uÞ, where u is a l-labeled node

in Q, VS denotes a S-labeled set of Q and u is a

constraint u ¼ S ! ðl;NÞ in A. On a graph G, the

operation is to retrieve a set V(u) of candidate

matches for u from G: given VS that was retrieved

from G earlier, it fetches common neighbors of VS

from G that are labeled with l. These nodes are

fetched by using the index of u and are stored in

V(u). In particular, when S ¼ ;, the operation fetches

all l-labeled nodes in G as V(u) for u. The operations

fetch1; fetch2; � � � ; fetchn in P are executed one by

one. In fetchi, its VS consists of nodes from Vj

fetched earlier by fetchj for j\i.

(2) From the data fetched by P, a subgraph GQðVP;EPÞ
is built. It takes care to ensure that QðGQÞ ¼ QðGÞ.
More specifically, (a) VP consists of candidates V(u)

fetched for each pattern node u in Q, and (b) EP

consists of edges ðv; v0Þ in Vu � Vu0 if ðu; u0Þ is a

pattern edge in Q; checking whether ðv; v0Þ is an edge
in G is also confined to the nodes fetched via access

constraints and thus can also be done with bounded

data access.

(3) Finally, plan P simply computes QðGQÞ as Q(G).
We say that P is a bounded query plan for Q if for all

graphs G � A, it builds a subgraph GQ of G such that (a)

QðGQÞ ¼ QðGÞ, and (b) it accesses G via fetch operations

only, and each fetch is controlled by an access constraint

u in A. Since P fetches data from G by using the indices

in A only, the time for fetching data from G by all

operations in P depends on A and Q only. That is, P

fetches a bounded amount of data from G and builds a

small GQ from it. As a consequence, jGQj is also inde-

pendent of the size |G| of G.

An algorithm is developed in [15] that, given any

boundedly evaluable pattern query Q under an access

schema A, finds a bounded query plan for Q in

OðjVQjjEQjjAjÞ time. As remarked earlier, Q and A are

much smaller than data graphs G.

Effectiveness The approach has been verified effective

using real-life graphs consisting of billions of nodes and

edges [15]. We find the following. (1) Under a couple of

hundreds of access constraints, more than 60% of pattern

queries are boundedly evaluable. (2) Bounded query plans

outperform conventional algorithms such as VF2 [76] by 4

orders of magnitude, and access GQ such that jGQj ¼
3:2 � 10	5 � jGj on average, reducing |G| of PB size to

32 GB. (3) It takes at most 37 ms to decide whether a

pattern query Q is boundedly evaluable and to generate a

bounded query plan for bounded Q.

3.1.3 Related Work

As remarked earlier, the principle behind bounded evalu-

ation is to make big graphs small. There are typically two

ways to reduce search space. (1) Graph indexing uses

precomputed global information of G to compute dis-

tance [75], shortest paths [38] or substructure match-

ing [57]. (2) Graph compression computes a summary Gc

of a big graph G and uses Gc to answer all queries posed on

G [9, 25, 54].

In contrast to the prior work, (1) bounded evaluation is

based on access schema, which extends traditional indices

by incorporating cardinality constraints, such that we can

reason about the cardinality constraints and decide whether

a query can be answered by accessing a bounded amount of

data in advance, before we access the underlying graphs.

Moreover, the indices in an access schema are based on

labels of neighboring nodes, which are quite different from

prior indexing structures. (2) Instead of using one-size-fit-

all compressed graphs Gc to answer all queries posed on G,

we adopt a dynamic data reduction scheme that finds a

subgraph GQ of G for each query Q. Since GQ consists of

only the information needed for answering Q, it allows us

to compute Q(G) by using GQ that is much smaller than Gc

and hence using much less resources. (3) When Q is

boundedly evaluable, for all graphs G that satisfy A we can

find GQ of size independent of |G|; in contrast, jGcj may be

proportional to |G|.

The theory of bounded evaluation was first studied for

relational queries [13, 14, 17, 22, 24]. It has proven

effective on a variety of real-life datasets. It is shown that

on average 77% of SPC queries [17] and 67% of relational

algebra queries [13] are boundedly evaluable under a few

hundreds of access constraints. Bounded evaluation out-

performs commercial query engines by 3 orders of mag-

nitude, and in fact, the gap gets larger on bigger datasets.

The evaluation results from our industry collaborators are

even more encouraging. They find that more than 90% of

their big-data queries are boundedly evaluable, improving
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the performance from 25 times to 5 orders of

magnitude [16].

The theory is extended from relations to graphs in [15],

showing that bounded evaluation is also effective for graph

pattern queries defined in terms of subgraph isomorphism

and graph simulation.

3.2 A Resource-Constrained Framework

As remarked earlier, we can answer about 60% of pattern

queries in big graphs by accessing a bounded amount of

data no matter how big the graphs grow. Then, what should

we do about the queries that are not boundedly evaluable

under an access schema? Can we still answer those queries

with constrained resources?

To this end, we propose a resource-constrained frame-

work to query big graphs, which can be readily built on top

of (parallel) graph query engines.

3.2.1 A Framework to Query Big Graphs

The framework, referred to as RESOURCE (RESOURce-

Constrained Engine), aims to answer queries posed on big

graphs when we have constrained resources such as limited

available processors and time. To measure the constraints

on resources, it takes a resource ratio a 2 ð0; 1� as a

parameter, indicating that our available resources allow us

to only access a a-fraction of a big graph. Employing an

access schema A, RESOURCE works as follows. Given a

query Q and a graph G that satisfies A,

(1) it first checks whether Q is boundedly evaluable

under A, i.e., whether exact answers Q(G) can be

computed by accessing a fraction GQ � G such that

its size jGQj is independent of the size jGj of G;
(2) if so, it computes Q(G) by accessing a bounded

fraction GQ of G, by generating a bounded query

plan under A as described in Sect. 3.1;

(3) otherwise, it answers Q in G by means of data-driven

approximation [27, 92], which accesses a small

GQ � G in the entire process such that jGQj 
 ajGj,
possibly by also using access constraints in A.

That is, under resource constraint specified by a,
RESOURCE computes exact answers Q(G) whenever

bounded evaluation is possible by employing access

schema A; otherwise, it returns approximate answers

QðGQÞ within the given budget ajGj.
We next give more details about RESOURCE.

ð1ÞResource Ratio a The ratio is decided by available

resources and the complexity of the class of queries to be

processed. For example, for graph pattern queries (an

essentially exponential-time process), one may pick an a
smaller than the one for reachability queries (to decide

whether there exists a path from one node to another,

which is a linear-time problem). Intuitively, it indicates the

‘‘resolution’’ of the data we can afford: the larger a is, the

more accurate the query answers are.

(2) Data-driven Approximation For each class Q of

graph queries of users’ choice, one can develop a data-

driven approximation algorithm. Given a query Q 2 Q
posed on a (possibly big) graph G, the approximation

algorithm identifies a fraction GQ such that jGQj 
 ajGj,
and computes QðGQÞ as approximate answer to Q in G. A

detailed presentation of the data-driven approximation

scheme can be found in [92].

Such a data-driven approximation algorithm has been

developed for graph pattern queries for personalized social

search [27], as used by Graph Search of Facebook.

Experimenting with real-life social graphs, we find that the

algorithm easily scales with large-scale graphs: when

graphs grows big, we simply decrease a and hence access

smaller amount of data. Better still, the algorithm is

accurate: even when the resource ratio a is as small as

15 � 10	6, the algorithm returns matches with 100%

accuracy. That is, when G consists of 1PB of data, ajGj is
down to 15GB, i.e., data-driven approximation makes big

data small, without paying too high a price of sacrificing

the accuracy of query answers.

ð3ÞAlgorithmsUnderlyingRESOURCE. RESOURCE

can be built on top of existing graph query engines pro-

vided with the following algorithms:

1. offline algorithms for discovering access constraints

from real-life graphs and for maintaining the con-

straints in response to changes to the graphs; and

2. online algorithms for deciding whether a query is

boundedly evaluable under an access schema, gener-

ating a bounded query plan for a boundedly evaluable

query, and for data-driven approximation. As remarked

earlier, these algorithms are already available for graph

pattern queries (Sect. 3.1 and [27]).

The framework can also incorporate other techniques for

querying big graphs, by making big graphs small, including

but not limited to the following.

(a) Query-driven approximation For an expensive query

class Q, we can approximate its queries by adopting a

cheaper class Q0 of queries. For instance, for social com-

munity detection, one may want to use bounded graph

simulation [51, 81], which takes cubic time, instead of

subgraph isomorphism, for which the decision problem is

NP-complete. Another example is to compute top-k

diversified answers for queries of Q, instead of computing

the entire set Q(G) of answers [86] (see [92] for details of

query-drive approximation).

(b) Query preserving graph compression We may

compress a big graph G relative to a query classQ of users’
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choice [25]. More specifically, a query preserving graph

compression for Q is a pair hR;Pi of functions, where Rð�Þ
is a compression function and Pð�Þ is a post-processing

function. For any graph G, Gc ¼ RðGÞ is the compressed

graph computed from G by Rð�Þ, such that (i) jGcj 
 jGj,
and (ii) for all queries Q 2 Q, QðGÞ ¼ PðQðGcÞÞ. Here
PðQðGcÞÞ is the result of post-processing the answers

QðGcÞ to Q in Gc.

That is, we preprocess G by computing the compressed

Gc of G offline. After this step, for any query Q 2 Q, the

answers Q(G) to Q in the original big G can be computed

by evaluating the same query Q on the smaller Gc online,

without decompressing Gc. The compression schema may

be lossy: we do not need to restore the original graph G

from Gc. That is, Gc only needs to retain the information

necessary for answering queries in Q and hence can

achieve a better compression ratio than lossless compres-

sion schemes. The effectiveness of this approach has been

verified in [25].

(c) Query answering using views Given a query Q 2 Q
and a set V of view definitions, query answering using

views is to reformulate Q into another query Q0 such that (i)
Q and Q0 are equivalent, i.e., for all graphs G, Q and Q0

produce the same answers in G, and moreover, (ii) Q0 refers
only to V and its extensions (small cached views) VðGÞ,
without accessing the underlying G.

More specifically, given a big graph G, one may identify

a set V of views (pattern queries) and materialize them with

VðGÞ of matches for patterns of V in G, as a preprocessing

step offline. We compute matches of input queries Q online

by using VðGÞ only. In practice, VðGÞ is typically much

smaller than G, and hence, this approach allows us to query

big G by accessing small VðGÞ. Better still, the views can

be incrementally maintained offline in response to changes

to G and adaptively adjusted to cover various queries [90].

One can further extend the traditional notion of query

answering using views, by incorporating bounded evalua-

tion, as studied for relational queries [14].

(d) Parallel query processing RESOURCE can be built

on top of a parallel graph query engine and hence combine

parallel query processing with bounded evaluation and

data-driven approximation. In particular, we promote

GRAPE, a parallel GRAPh Engine [30]. It allows us to

‘‘plug in’’ existing sequential graph algorithms, and makes

the computations parallel across multiple processors,

without drastic degradation in performance or functionality

of existing systems.

GRAPE has the following unique feature. The state-of-

the-art parallel graph systems require users to recast

existing graph algorithms into a new model. While graph

computations have been studied for decades and a large

number of sophisticated sequential graph algorithms are

already in place, to use Pregel, for instance, one has to

‘‘think like a vertex’’ and recast the existing algorithms into

Pregel, similarly when programming with other systems.

The recasting is nontrivial for people who are not very

familiar with the parallel models. This makes these systems

a privilege for experienced users only, just like computers

three decades ago that were accessible only to people who

knew DOS or Unix.

In contrast, GRAPE supports a simple programming

model. For a class Q of graph queries, users only need to

plug in three existing sequential (incremental) algorithms

for Q, without the need for recasting the algorithms into a

new model. GRAPE automatically parallelizes the com-

putation across processors and inherits all optimization

strategies developed for sequential graph algorithms. This

makes parallel graph computations accessible to users who

know conventional graph algorithms covered in under-

graduate textbooks.

Better still, GRAPE is based on a principled approach

by combining partial evaluation and incremental compu-

tation and can be modeled as fixpoint computation. As

shown in [30], it guarantees its parallel processing to ter-

minate with correct answers as long as the sequential

algorithms plugged in are correct.

In addition, automated parallelization does not imply

performance degradation. Indeed, GRAPE outperforms

Giraph [34] (a open-source version of Pregel [52]),

GraphLab [99] and Blogel [106] in both response time and

communication costs, for a variety of computations such as

graph traversal, pattern matching, connectivity and key-

word search. We invite the interested reader to consult [30]

for the details of GRAPE.

3.2.2 Related Work

In addition to bounded evaluation, RESOURCE high-

lights data-driven approximation. Recall that traditional

approximate query answering is often based on synopses

such as sampling, sketching, histogram or wavelets (see

[18, 77] for surveys). It is to compute a synopsis G0 of a
graph G and use G0 to answer all queries posed on G. As

opposed to a one-size-fit-all G0, data-driven approximation

dynamically identifies GQ for each input query Q and

hence achieves a higher accuracy of approximate query

answers.

There has also been work on dynamic sampling for

answering relational aggregate queries, e.g., [1, 5].

Assuming certain information about a query load, e.g.,

queries, the frequency of columns used in queries, or sys-

tem logs, the prior work adaptively precomputes samples

offline and picks some samples for answering the ‘‘pre-

dictable queries’’ online. In contrast, we study graph

queries, where sampling is much harder. This is because

(a) the graph queries are rather ‘‘unpredictable’’ due to
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topological constraints embedded in graph queries, and

(b) as opposed to homogeneous relational data, there is no

‘‘one-fit-for-all’’ schema available for data nodes in a

graph. We also do not assume the existence of abundant

query logs and workload for sampling strategy. Instead, we

develop dynamic reduction techniques to identify and only

access promising ‘‘areas’’ that lead to reasonable approxi-

mate answers.

Related to the data-driven approximation scheme are

also anytime algorithms [108], which allow users either to

specify a budget on resources (e.g., running time, known as

contract algorithms [70]), or to terminate the run of the

algorithms at any time and return intermediate answers as

approximate answers (known as interruptible algo-

rithms [39]). Contract anytime algorithms have been

explored for (a) budgeted search such as bounded-cost

planning [64, 66, 108] under a user-specified budget and

(b) graph search via subgraph isomorphism, to find inter-

mediate answers within the budget, either by assigning

dynamically maintained budgets and costs to nodes during

the traversal [11], or by deciding search orders based on

the frequencies of certain features in queries and

graphs [61].

In contrast, RESOURCE (a) computes exact answers

whenever bounded evaluation is possible, instead of

heuristics; (b) it aims to strike a balance between the cost

of finding solutions and the quality of the answers, by

dynamic data reduction; and (c) it takes a given (arbitrarily

small) ratio a as a parameter, accesses promising nodes

only and guarantees bounded search space, by leveraging

access schema as much as possible.

4 Dependencies for Graphs

We now turn to the other side of big graphs, namely the

quality of graph-structured data. As remarked earlier, when

the data are dirty, query answers computed in the data may

not be correct and may even do more harm than good, no

matter how efficient and scalable our systems and algo-

rithms are for querying big graphs.

To catch inconsistencies in graphs, we propose a class of

functional dependencies for graphs, referred to as GFDs,

in Sect. 4.1. We settle the classical problems for reasoning

about GFDs in Sect. 4.2. We make use of GFDs to catch

errors in real-life graphs in Sect. 4.3.

The main results of this section come from [29, 88].

4.1 GFDs: Graph Functional Dependencies

We now present GFDs introduced in [29]. GFDs are

defined with graph patterns. To simplify the discussion, we

extend the notation of Sect. 2 and write a graph pattern as

Q½�x� = (VQ, EQ, LQ, l), where VQ and EQ are the same as

before; LQ is extended to also associate edges with labels; �x

is a list of distinct variables, one for each node in VQ; and l
is a bijective mapping from �x to VQ, i.e., it assigns a distinct

variable to each node v in VQ. For x 2 �x, we use lðxÞ and
x interchangeably when it is clear in the context.

We also allow wildcard ‘_’ as a special label in LQ.

4.1.1 GFDs

A GFD u is a pair Q½�x�ðX ! YÞ, where

• Q½�x� is a graph pattern, called the pattern of u, and
• X and Y are two sets of literals of �x.

Here a literal of �x has the form of either x:A ¼ c or

x:A ¼ y:B, where x; y 2 �x, A and B denote attributes (not

specified in Q) and c is a constant.

Intuitively, GFD u specifies two constraints:

• a topological constraint imposed by pattern Q, and

• attribute dependency specified by X ! Y .

Recall that the ‘‘scope’’ of a relational functional dependency

(FD) RðX ! YÞ is specified by a relation schemaR: theFD is

applied only to instances of R. Unlike relational databases,

graphs do not have a schema.HereQ specifies the scope of the

GFD, such that the dependencyX ! Y is imposed only on the

attributes of the vertices in each subgraph identified by Q.

Constant literals x:A ¼ c enforce bindings of semantically

related constants, along the same lines as CFDs [23].

Example 5 To catch the inconsistencies in real-life

knowledge bases described in Example 1, we use GFDs

defined with patterns Q1 		Q4 of Fig. 2 as follows.

(1) Flight GFD u1 = Q1½x; x1-x5; y; y1-y5�ðX1 ! Y1Þ, in
which pattern Q1 specifies two flight entities, where l maps

x to a flight, x1–x5 to its id, departure city, destination,

departure time and arrival time, respectively; similarly for

y and y1–y5; in addition, val is an attribute indicating the

content of a node (not shown in Q1). In u1, X1 is

x1:val ¼ y1:val, and Y1 consists of x2:val ¼ y2:val and

x3:val ¼ y3:val.

Intuitively, GFD u1 states that for all flight entities

x and y, if they share the same flight id, then they must have

the same departing city and destination.

(2) Parent-child GFD u2 = Q2½x; y�ð; ! falseÞ, where
Q2 specifies a pair of persons connected by child and

parent relationships. It states that there exists no person

entity x who is both a child and a parent of another person

entity y. Note that X in Q2 is an empty set, i.e., no

precondition is imposed on the attributes of Q2, and Y is

Boolean constant false, a syntactic sugar that can be

expressed as, e.g., y:A ¼ c ^ y:A ¼ d for distinct constants

c and d, for attribute A of y.
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(3) Birth places GFD u3 = Q3½x; y; z�ð; ! y:val ¼
z:val), where Q3 depicts a person entity with two distinct

cities as birth places. Intuitively, u3 is to ensure that for all

person entities x, if x has two birth places y and z, then

y and z share the same name.

(3) Generic is _a: GFD u4 = Q4½x; y�ð; ! x:A ¼ y:A). It

enforces a general property of is a relationship: if entity y

is a x, then for any property A of x (represented by attribute

A), x:A ¼ y:A. In particular, if x is labeled with bird, y with

penguin, and A is can fly, then u4 catches the inconsistency

described inExample 1.Observe that x and y inQ4 are labeled

with wildcard ‘_’, to match arbitrary generic entities.

4.1.2 Semantics

To interpret GFD u ¼ Q½�x�ðX ! YÞ, we use the following
notations. We denote a match of pattern Q in a graph G as a

vector hð�xÞ, consisting of h(x) (i.e., hðlðxÞÞ) for all x 2 �x,
in the same order as �x.

Consider a match hð�xÞ of Q in G, and a literal x:A ¼ c of

�x. We say that hð�xÞ satisfies the literal if there exists

attribute A at the node v ¼ hðxÞ (i.e., v ¼ hðlðxÞÞ) and

v:A ¼ c; similarly for literal x:A ¼ y:B. We denote by

hð�xÞ � X if hð�xÞ satisfies all the literals in X; similarly for

hð�xÞ � Y . Here we write hðlðxÞÞ as h(x), where l is the

mapping in Q from �x to nodes in Q. We write hð�xÞ � X !
Y if hð�xÞ � Y whenever hð�xÞ � X.

We say that graph G satisfies GFD u = Q½�x�ðX ! YÞ,
denoted by G � u, if for all matches hð�xÞ of Q in G, we

have that hð�xÞ � X ! Y .

To check whether G � u, we need to examine all

matches of Q in G. In addition, observe the following.

(1) For a literal x:A ¼ c in X, if h(x) has no attribute A,

then hð�xÞ trivially satisfies X ! Y . That is, node h(x)

is not required to have attribute A; similarly for

literals x:A ¼ y:B. This allows us to accommodate

the semi-structured nature of graphs.

(2) In contrast, if x:A ¼ c is in Y and hð�xÞ � Y , then h(x)

must have attribute A by the definition of satisfaction

above; similarly for x:A ¼ y:B.

(3) When X is ;, hð�xÞ � X for any match hð�xÞ of Q in G.

That is, empty X indicates Boolean constant true.

(4) When Y ¼ ;, it indicates that Y is constantly true, and

u becomes trivial. When Y is false and X ¼ ;,G 6� u

if there exists a match of Q; i.e., u states that Q is an

‘‘illegal’’ pattern that should not find any matches.

Intuitively, if a match hð�xÞ of pattern Q in G violates the

attribute dependency X ! Y , i.e., hð�xÞ � X but hð�xÞ 6� Y ,

then the subgraph induced by hð�xÞ is inconsistent, i.e., its
entities have inconsistencies.

Example 6 Recall the inconsistencies about Flight A123

in DBPedia from Example 1 and GFD u1 from Example 5.

Then, there exists a match hð�xÞ of the pattern Q1 of u1 in

the graph depicting DBPedia, such that h(x) and h(y) have

the same id, i.e., hð�xÞ � X1; however, hð�xÞ 6� hðY1Þ, a

violation of u1. That is, u1 catches the inconsistencies of

the flight in DBPedia.

Similarly, we can apply u2–u4 of Example 5 as data

quality rules to knowledge bases and catch the other

inconsistencies described in Example 1.

We say that a graph G satisfies a set R of GFDs if for all

u 2 R, G � u, i.e., G satisfies every GFD in R.
Special Cases GFDs have the following special cases.

(1) As shown in [29], relational FDs and CFDs can be

expressed as GFDs when tuples in a relation are

represented as nodes in a graph. In fact, GFDs are

able to express equality-generating dependencies

(EGDs) [71].

(2) GFDs can specify certain type information.For anentity

x of type s, GFD Q½x�ð; ! x:A ¼ x:AÞ enforces that x
must have an A attribute, where Q consists of a single

vertex labeled s and denoted by variable x. However,

GFDs cannot enforce that an attributeA of x has a finite

domain, e.g., Boolean. In relational databases, finite

domains are specified by a relational schema, which are

typically not in place for real-life graphs.

(3) As shown by u2 of Example 5, we can express

‘‘forbidding’’ GFDs of the form Q½�x�ðX ! falseÞ,
where X is satisfiable. A forbidding GFD states that

there exists no nonempty graph G such that Q can

find a match hð�xÞ in G and hð�xÞ � X. That is, Q and

X put together specify an inconsistent combination.

(4) As indicated by u4 of Example 5, GFDs can express

generic is a relationship. Along the same lines,

GFDs can enforce inheritance relationship subclass

as well.

x y

person person

parent

child
Q2

city city
y z

x
person

birth−placebirth−place

Q3

is_a

y

x_

_id
x1

city
x2

city time time

number
depart

arrive
from to

x5x4x3

flight
x

id city city time time

number
depart

arrive
from to

y1 y4y2 y3 y5

y
flight

Q1 Q4

Fig. 2 Graph patterns

W. Fan, C. Hu

123



4.1.3 Related Work

There has been work on extending relational FDs to

graph-structured data, mostly focusing on

RDF [2, 12, 19, 40, 42, 49, 69]. This line of work

started from [49], by extending relational techniques to

RDF. Based on triple patterns with variables, [2, 19]

define FDs with triple embedding, homomorphism and

coincidence of variable valuations. Employing clustered

values, [69] defines FDs with conjunctive path patterns;

the work is extended to CFDs for RDF [42]. FDs are

also defined by mapping relations to RDF [12], using

tree patterns in which nodes represent relation

attributes.

The class of GFDs differs from the prior work as fol-

lows. (a) GFDs are defined for general property graphs,

not limited to RDF. (b) GFDs support topological con-

straints by incorporating (possibly cyclic) graph patterns

with variables, as opposed to [12, 42, 69]. In contrast

to [2, 19, 40, 49, 69] that take a value-based approach to

defining FDs, GFDs are enforced on graph-structured

entities identified by graph patterns via subgraph isomor-

phism. (c) GFDs support bindings of semantically related

constants like CFDs [23], as well as forbidding GFDs

with false. These allow us to specify data quality rules for

consistency checking, but cannot be expressed as the FDs

of [2, 12, 19, 42, 69]. (d) The validation and implication

problems for GFDs have been settled [29], while matching

complexity bounds for the FDs previously proposed are yet

to be developed.

Related to GFDs is a class of keys defined for

RDF [88]. Keys are defined as a graph pattern Q[x],

with a designated variable x denoting an entity. Intu-

itively, it indicates that for any two matches h1 and h2
of Q in a graph G, h1ðxÞ and h2ðxÞ refer to the same

entity and should be identified. Keys are recursively

defined, i.e., Q may include entities other than x to be

identified (perhaps with other keys), in order to match

entities with a graph structure. Such keys aim to detect

deduplicate entities and to fuse information from dif-

ferent sources that refers to the same entity, in

knowledge fusion and knowledge base expansion; they

also find applications in social network reconciliation,

to reconcile user accounts across multiple social net-

works. We invite the interested reader to consult [88]

for details.

4.2 Reasoning about GFDs

There are two classical problems associated with any class

of dependencies, namely the satisfiability and implication

problems, which are stated as follows.

4.2.1 Satisfiability

A set R ofGFDs is satisfiable if R has a model; that is, there

exists a graph G such that (a) G � R, and (b) for each GFD

Q½�x�ðX ! YÞ in R, there exists a match of Q in G. Intu-

itively, it is to check whether the GFDs are ‘‘dirty’’ them-

selves when used as data quality rules. A model G of R
requires all patterns in the GFDs of R to find a match in G,

to ensure that the GFDs in R do not conflict with each other.

The satisfiability problem for GFDs is to determine,

given a set R of GFDs, whether R is satisfiable.

Over relational data, any set R of FDs is satisfiable, i.e.,

there always exists a nonempty relation that satisfies

R [91]. However, a set R of conditional functional

dependencies (CFDs) may not be satisfiable, i.e., there

exists no nonempty relation that satisfies R [23]. As GFDs

subsume CFDs, it is not surprising that a set of GFDs may

not be satisfiable, as shown in [29].

4.2.2 Implication

A set R of GFDs implies another GFD u, denoted by

R � u, if for all graphs G, if G � R then G � u, i.e., u is a

logical consequence of R. In practice, the implication

analysis helps us eliminate redundant data quality rules

defined as GFDs and hence optimize our error detection

process by minimizing rules.

The implication problem for GFDs is to decide, given a

set R of GFDs and another GFD u, whether R � u.

4.2.3 Complexity

These problems have been well studied for relational

dependencies. For FDs, the satisfiability problem is in O(1)

time (since all FDs are satisfiable) and the implication

problem is in linear time (cf. [71]). For CFDs, the satis-

fiability problem is NP-complete and the implication

problem is coNP-complete in the presence of finite-do-

main attributes, but are in PTIME when all attributes

involved have an infinite domain [23].

These problems have also been settled for GFDs [29]:

• the satisfiability problem is coNP-complete, and

• the implication problem is NP-complete.

The complexity bounds are rather robust, e.g., the problems

remain intractable for GFDs defined with graph patterns

that are acyclic directed graphs (DAGs).

As shown in [29], the intractability of the satisfiability

and implication problems arises from subgraph isomor-

phism embedded in these problems, which is NP-complete

(cf. [102]). The complexity is not inherited from CFDs

although GFDs subsume CFDs as a special case. Indeed,

the satisfiability analysis of CFDs is NP-hard only under a
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relational schema that enforces attributes to have a finite

domain [23], e.g., Boolean, i.e., the problem is

intractable when CFDs and finite domains are put together.

In contrast, graphs do not come with a schema; while

GFDs subsume CFDs, they cannot specify finite domains.

That is, the satisfiability problem for GFDs is already

coNP-hard in the absence of a schema, similarly for the

implication analysis.

Several tractable special cases of the satisfiability and

implication problems for GFDs are identified in [29].

Putting these together, our main conclusion is that while

GFDs are a combination of a topological constraint and an

attribute dependency and are more complicated than

CFDs, reasoning about GFDs is no harder than their

relational counterparts such as CFDs.

4.3 Putting GFDs in Actions

One of the applications of GFDs is to detect inconsisten-

cies in graph-structured data. That is, we use GFDs as data

quality rules along the same lines as CFDs and catch

violations of the rules by means of the validation analysis

of GFDs, which is stated as follows.

4.3.1 Validation Analysis

Given a GFD u = Q½�x�ðX ! YÞ and a graph G, we say that

a match hð�xÞ of Q in G is a violation of u if Gh 6� u, where
Gh is the subgraph induced by hð�xÞ. For a set R of GFDs,

we denote by VioðR;GÞ the set of all violations of GFDs in

G, i.e., hð�xÞ 2 VioðR;GÞ if and only if there exists a GFD

u in R such that hð�xÞ is a violation of u in G. That is,

VioðR;GÞ collects all entities of G that are inconsistent

when the set R of GFDs is used as data quality rules.

The error detection problem is stated as follows:

• Input: A set R of GFDs and a graph G.

• Output: The set VioðR;GÞ of violations.
Recall that the error detection problem is in PTIME for

relational FDs and CFDs. In fact, when FDs and CFDs

are used as data quality rules, errors in relations can be

detected by two SQL queries that can be automatically

generated from the FDs and CFDs [23].

In contrast, error detection is more challenging in

graphs. Indeed, consider the decision version of the prob-

lem, referred to as the validation problem for GFDs. It is to

decide whether G � R, i.e., whether VioðR;GÞ is empty.

This problem is coNP-complete [29].

4.3.2 Parallel Scalable Algorithms

The error detection problem is intractable. As remarked

earlier, real-life graphs are often of large scale. Then, is error

detection feasible in real-life graphs? The answer is affir-

mative, by using parallel algorithms to compute VioðR;GÞ.
As shown in [29], there exist parallel scalable algo-

rithms for detecting errors in graphs by using GFDs, with

the following property. Denote by

• tðjRj; jGjÞ the running time of a ‘‘best’’ sequential

algorithm to compute VioðR;GÞ, i.e., the least worst-

case complexity among all such algorithms; and

• TðjRj; jGj; pÞ the time taken by a parallel algorithm to

compute VioðR;GÞ by using p processors.

Then, there exist parallel algorithms T p such that

TðjRj; jGj; pÞ ¼ c � tðjRj; jGjÞ
p

under certain practical conditions. Intuitively, T p guaran-

tees to reduce its running time when p gets larger. That is,

the more processors are used, the less time it takes to

compute VioðR;GÞ. In other words, it can scale with large-

scale graphs despite the complexity, by increasing resour-

ces employed when graphs get larger.

5 Association Rules for Graphs

Besides the quantity and quality of big graphs, we next

consider how to make practical use of big graph analyses in

social media marketing, an emerging application.

We first introduce a class of primitive graph pattern

association rules, referred to as GPARs, in Sect. 5.1. We

then explore possible extensions of GPARs, by adding

counting quantifiers in Sect. 5.2. To apply GPARs in

social media marketing, we finally address how to discover

GPARs and how to identify potential customers by using

GPARs, in Sect. 5.3.

The results of the section are taken from [28, 89].

5.1 GPARs: Graph Pattern Association Rules

We start with the GPARs introduced in [89].

5.1.1 GPARs

A graph pattern association rule (GPAR) R(x, y) is

defined as Qðx; yÞ ) qðx; yÞ, where Q(x, y) is a graph

pattern in which x and y are two designated nodes in Q, and

q(x, y) is an edge labeled q from x to y, i.e., a relationship

between x and y. We refer to Q and q as the antecedent and

consequent of R, respectively.

The rule states that for all nodes vx and vy in a (social) graph

G, if there exists a match h 2 QðGÞ such that hðxÞ ¼ vx and

hðyÞ ¼ vy, i.e., vx and vy match the designated nodes x and y in

Q, respectively, then the consequent qðvx; vyÞwill likely hold.
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Intuitively, qðvx; vyÞ may indicate that vx is a potential

customer of vy. Denote by Q(x, G) the set of h(x) for all

matches h in QðGÞ, i.e., the matches of x in G via Q. Then

in a social graph G, Q(x, y) identifies potential customers

by computing matches Q(x, G).

We model R(x, y) as a graph pattern PR, by extending Q

with a (dotted) edge q(x, y). We refer to pattern PR simply

as R when it is clear from the context.

Example 7 Recall association rule (a) described in

Example 2. It can be expressed as a GPAR R1ðx; yÞ:
Q5ðx; yÞ ) visitðx; yÞ, as depicted in Fig. 3. Its antecedent

is the pattern Q5 (excluding the dotted edge) and its con-

sequent is visitðx; yÞ. As opposed to conventional associa-

tion rules, the GPAR is specified with a graph pattern Q5

that enforces topological conditions on various entities:

associations between customers (the friend relation), cus-

tomers and restaurants (like, visit), city and restaurants (in),

and city and customers (in).

This GPAR helps us identify potential customers for

restaurant y. In a social graph G, we find matches of pattern

Q5 via subgraph isomorphism; for x and y in each of the

matches (subgraphs of G), i.e., for x and y satisfying the

antecedent of Q1, the chances are that x likes y, and hence,

we can recommend y to x.

To simplify the discussion, we define the consequent of

GPAR in terms of a single predicate q(x, y) follow-

ing [72]. However, a consequent can be readily extended to

multiple predicates and even to a graph pattern. We con-

sider nontrivial GPARs by requiring that (a) PR is con-

nected; (b) Q is nonempty, i.e., it has at least one edge; and

(c) q(x, y) does not appear in Q.

5.1.2 Related Work

Introduced in [72], association rules are traditionally

defined on relations. Prior work on association rules for

social networks [60] and RDF resorts to mining conven-

tional rules and Horn rules (as conjunctive binary predi-

cates) [31] on tuples with extracted attributes from graphs,

instead of exploiting graph patterns. While [6] studies time-

dependent rules via graph patterns, it focuses on evolving

graphs and adopts different semantics for support and

confidence.

GPARs extend association rules from relations to

graphs. (a) It demands topological support and confidence

metrics. (b) GPARs are interpreted with isomorphic

functions and hence cannot be expressed as conjunctive

queries, which do not support negation or inequality nee-

ded for functions. (c) Applying GPARs becomes an

intractable problem of multi-pattern-query processing in

big graphs. (d) Mining (diversified) GPARs is beyond

traditional rule mining from itemsets [107].

It should be remarked that conventional association

rules [72] and a range of predication and classification

rules [103] can be considered as a special case of GPARs,

since their antecedents can be readily modeled as a graph

pattern in which nodes represent items.

5.2 Adding Counting Quantifiers

In applications such as social media marketing, knowledge

discovery and cyber security, more expressive patterns are

needed, notably ones with counting quantifiers. In light of

this, we extend GPARs with quantified graph patterns, by

supporting counting quantifiers [28].

5.2.1 Quantified Graph Patterns

A quantified graph pattern QðxoÞ is defined as (VQ, EQ, LQ,

f), where (a) VQ, EQ and LQ are the same as in patterns

defined in Sect. 2, (b) xo is a designated node in VQ,

referred to as the query focus of Q, and (c) f is a function

such that for each edge e 2 EQ, f(e) is a predicate of
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• a positive form rðeÞ � p% for a real number

p 2 ð0; 100�, or rðeÞ � p for a positive integer p, or

• rðeÞ ¼ 0, where e is referred to as a negated edge.

Here � is either ¼ or � , and rðeÞ indicates the number of

matches of edge e (via subgraph isomorphism with Q; see

[28] for detailed semantics of rðeÞ). We refer to f(e) as the

counting quantifier of e, and p% and p as ratio and numeric

aggregate, respectively.

We leave out f(e) from QðxoÞ if it is rðeÞ� 1.

We extend GPARs with quantified graph patterns.

Example 8 Association rules (b) and (c) described in

Example 2 are defined with quantified graph patterns. They

are depicted in Fig. 3 and illustrated as follows.

For (b), the GPAR is R2ðx; yÞ: Q6ðx; yÞ ) buyðx; yÞ. Its
antecedent is a quantified pattern Q6 (excluding the dotted

edge) and its consequent is buyðx; yÞ. Its query focus is x,

indicating potential customers. Observe that edge

followðx; x0Þ carries a counting quantifier ‘‘� 80%’’. In a

social graph G, a node vx matches x if (i) there exists an

isomorphism h from Q6 to a subgraph G0 of G such that

hðxÞ ¼ vx, i.e., G
0 satisfies the topological constraints of

Q5, and (ii) among all the people whom vx follows, at least

80% of them account for matches of x0 in Q6ðGÞ, satisfying
the counting quantifier.

For (c), the GPAR is R3ðx; yÞ: Q7ðx; yÞ ) buyðx; yÞ,
where the antecedent is again a quantified pattern Q7

(excluding the dotted edge), and its query focus is x. Note

that Q7 carries both a universal quantification (= 100%)

and a negation (= 0). More specifically, a node vx in G

matches x in Q7 only if (i) for all people x
0 followed by x, x0

buys a Nova Plus, i.e., counting quantifier ‘‘=100%’’

enforces a universal quantification, and (ii) there exists no

node vw in G such that followðvx; vwÞ is an edge in G and

there exists an edge from vw to Nova Plus labeled ‘‘bad

rating’’; that is, counting quantifier ‘‘¼ 0’’ on edge

followðxo; z2Þ enforces negation.

As demonstrated by Example 8, counting quantifiers

express first-order logic (FO) quantifiers as follows:

• negation when f(e) is rðeÞ ¼ 0 (e.g., Q7);

• existential quantification if f(e) is rðeÞ� 1; and

• universal quantifier if f(e) is rðeÞ ¼ 100% (Q7).

A conventional graph pattern Q is a special case of quan-

tified patterns when f(e) is rðeÞ� 1 for all edges e in Q, i.e.,

it carries existential quantification only.

We call a quantified pattern Q positive if it contains no

negated edges, and negative otherwise. For example, in the

quantified patterns shown in Fig. 3, Q5 and Q6 are positive,

while Q7 is negative.

Restrictions To strike a balance between the expressive

power and complexity, we assume a predefined constant l

such that on any simple path (i.e., a path that contains no

cycle) in QðxoÞ, (a) there exist at most l quantifiers that are

not existential, and (b) there exist no more than one

negated edge, i.e., we exclude ‘‘double negation’’ from

quantified patterns.

The reason for imposing the restriction is twofold. (1)

Without the restriction, quantified patterns can express

first-order logic (FO) on graphs. Such patterns inherit the

complexity of FO, in addition to #P complication. Then,

even the problem for deciding whether there exists a graph

that matches such a pattern is beyond reach in practice. As

will be seen shortly, the restriction makes discovery and

applications of quantified patterns feasible in large-scale

graphs. (2) Moreover, we find that quantified patterns with

the restriction suffice to express graph patterns commonly

needed in real-life applications, with small l. Indeed,

empirical study suggests that l is at most 2, and ‘‘double

negation’’ is rare, since ‘‘99% of real-world queries are

star-like’’ [32].

One can extend f(e) in QðxoÞ to support other built-in

predicates[, 6¼ and 
 as �, and conjunctions of predi-

cates. To simplify the discussion, we focus on the simple

form of quantified patterns given above.

5.2.2 Quantified pattern matching

We revise the statement of the graph pattern matching

problem given in Sect. 2 for quantified patterns as follows.

• Input: A quantified pattern QðxoÞ and a graph G.

• Output: The set Qðxo;GÞ of hðxoÞ for all h in Q(G), i.e.,

all matches of query focus xo of Q in G.

Its decision problem, referred to as the quantified matching

problem, is stated as follows.

• Input: A quantified graph pattern QðxoÞ, a graph G and

a node v in G.

• Question: Is v 2 Qðxo;GÞ?
When QðxoÞ is a conventional graph pattern, the problem is

NP-complete. When it comes to quantified patterns, how-

ever, ratio aggregates r� p% and negation r ¼ 0 increase

the expressive power and make the analysis more intrigu-

ing. It has been shown [28] that the increased expressive

power does come with a price; however, the complexity

bound of the quantified matching problem does not get

much higher. More specifically, the quantified matching

problem is

• DP-complete for general quantified patterns and

• NP-complete for positive quantified patterns.

Here DP is a complexity class above NP (unless P = NP),

denoting the class of languages recognized by oracle
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machines that make a call to an NP oracle and a call to a

coNP oracle. That is, a language L is in DP if there exist

languages L1 2 NP and L2 2 coNP such that L ¼ L1 \ L2
(see [102] for details about DP).

5.2.3 Relate Work

Over relational data, quantified association rules [63] and

ratio rules [48] impose value ranges or ratios (e.g., the

aggregated ratio of two attribute values) as constraints on

attribute values. Similarly, mining quantitative correlated

pattern [47] has been studied, with value ranges imposed

on correlated attribute values, rather than on matches.

GPARs with quantified patterns extend quantified and

ratio association rules from relations to graph-structured

data.

The need for counting in graph queries has long been

recognized. To this end, SPARQLog [97] extends

SPARQL with FO rules, including existential and univer-

sal quantification over node variables. Rules for social

recommendation are studied in [98], using support count as

constraints. QGRAPH [74] annotates nodes and edges with

a counting range (count 0 as negated edge) to specify the

number of matches that must exist in a database. Set reg-

ular path queries (SRPQ) [50] extends regular path queries

with quantification for group selection, to restrict the nodes

in one set connected to the nodes of another. For social

networks, SocialScope [3] and SNQL [53] define algebraic

languages with numeric aggregates on node and edge sets.

We define quantified patterns to strike a balance

between their expressive power and complexity. It differs

from the prior work in the following. (1) Using a uniform

form of counting quantifiers, quantified patterns support

numeric and ratio aggregates (e.g., at least p friends and

80% of friends), and universal (100%) and existential

quantification (� 1). In contrast, previous proposals do not

allow at least one of these. (2) We focus on graph pattern

queries, beyond set regular expressions [50] and rules

of [98]. (3) We show that quantified matching is DP-

complete at worst, slightly higher than conventional

matching (NP-complete) in the polynomial hierar-

chy [102]. In contrast, SPARQL and SPARQLog are

PSPACE-hard [97], and SRPQ takes EXPTIME [50];

while the complexity bounds for QGRAPH [74], SocialS-

cope [3] and SNQL [53] are unknown, they are either more

expensive than quantified patterns (e.g., QGRAPH is a

fragment of FOðcountÞ) or cannot express numeric and

ratio quantifiers [3, 53].

5.3 Discovering and Applying GPARs

To make practical use of GPARs, we next consider two

problems, namely GPAR discovery and application of

GPARs for identifying potential customers. Below we

focus on GPARs studied in [89] (Sect. 5.1) in the absence

of counting quantifiers, unless stated otherwise.

5.3.1 Discovering GPARs

To discover nontrivial and interesting GPARs, we first

present their topological support and confidence, which are

a departure from their conventional counterparts over

relations.

Support The support of a pattern Q in a graph G,

denoted by suppðQ;GÞ, indicates how often Q is appli-

cable. As for association rules over itemsets, the support

measure should be anti-monotonic, i.e., for patterns Q and

Q0, if Q0YQ (in terms of containment), then in any graph

G, suppðQ0;GÞ� suppðQ;GÞ.
One may want to define suppðQ;GÞ as the number

jQðGÞj of matches of Q in Q(G), following its counterpart

for itemsets [107]. However, as observed in [10, 80, 96],

this conventional notion is not anti-monotonic. For exam-

ple, consider pattern Q0 with a single node labeled person,

and Q with a single edge childðperson; personÞ. When

posed on a real-life graph G, one may find that

suppðQ0;GÞ\suppðQ;GÞ although Q0YQ, as a person

may have multiple children.

We define the support of pattern QðxoÞ in G as

suppðQ;GÞ ¼ jQðxo;GÞj, i.e., the number of distinct mat-

ches of the designated node xo in Q(G). One can verify that

this support measure is anti-monotonic.

For GPAR R(x, y): Qðx; yÞ ) qðx; yÞ, we define

suppðR;GÞ ¼ Qðx;GÞ \ qðx;GÞ, using the designated

node x in Q(x, y), by treating R as a graph pattern.

Confidence To find how likely q(x, y) holds when x and

y satisfy the constraints of Q(x, y), we study the confidence

of R(x, y) in graph G, denoted as confðR;GÞ. We follow

the local close world assumption (LCWA) [20], assuming

that G is locally complete, i.e., either G includes the

complete neighbors of a node for any edge type, or it has

no information about these neighbors.

We define confðR;GÞ = jRðx;GÞj
jQðx;GÞ\Xoj, where Xo is the set of

candidates of x that are associated with an edge labeled q.

Intuitively, Xo retains ‘‘true’’ negative examples under

LCWA, i.e., those that have required q relationship of x but

are not a match of x.

These support and confidence measures apply to

GPARs with or without counting (see [28, 89]).

The Diversified Mining Problem We want to find

GPARs for a particular event q(x, y). However, this often

generates an excessive number of rules, which often pertain

to the same or similar people [68, 73]. This suggests that

we study a diversified mining problem, to discover GPARs

that are both interesting and diverse.
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To formalize the problem, we first define a function

diffð; Þ to measure the difference of GPARs. Given two

GPARs R1 and R2, diffðR1;R2Þ is defined as

diffðR1;R2Þ ¼ 1	 jR1ðx;GÞ \ R2ðx;GÞj
jR1ðx;GÞ [ R2ðx;GÞj

:

It measures the difference between GPARs in terms of the

Jaccard distance of their match sets, by treating R1 and R2

as graph patterns. Such diversification has been adopted by

recommender systems to avoid overconcentration and

reduce too ‘‘homogeneous’’ items [73].

Given a set Lk of k GPARs that pertain to the same

predicate q(x, y), where k is a given natural number, we

define the objective function FðLkÞ by following the

practice of recommender systems [35, 78]:

ð1	 kÞ
X

Ri2S

confðRiÞ
N

þ 2k
k 	 1

X

Ri;Ri2S;i\j

diffðRi;RjÞ:

This is known as max-sum diversification and aims to strike

a balance between the interestingness and diversity of the

rules with a parameter k controlled by users.

Based on the objective function, the diversified GPAR

mining problem is stated as follows.

• Input A graph G, a predicate q(x, y), a support bound r
and positive integers k and d.

• Output A set Lk of k GPARs pertaining to q(x, y) such

that (a) FðLkÞ is maximized, and (b) for each GPAR

R 2 Lk, suppðR;GÞ� r and rðPR; xÞ
 d.

Here rðPR; xÞ denotes the radius of PR (i.e., R) at x, i.e.,

the longest distance from designated node x to all nodes in

PR when PR is treated as an undirected graph.

This is a bi-criteria optimization problem. It aims to

discover GPARs for a particular event q(x, y) with high

support, bounded radius, and a balanced confidence and

diversity. In practice, users can freely specify q(x, y) of

interests. Proper parameters (e.g., support, confidence,

diversity) can be estimated from query logs or be recom-

mended by domain experts.

The problem is nontrivial. It is not surprising that its

decision problem is intractable, since max-sum diversifi-

cation is intractable itself [35]. Nonetheless, a parallel

algorithm is developed in [89] that is able to find a set Lk of

top-k diversified GPARs such that Lk has approximation

ratio 2, and moreover, it is parallel scalable with the

increase in processors under practical conditions. That is,

while the problem is intractable, it is feasible to find useful

GPARs in real-life graphs by leveraging parallel com-

puting, provided that we can employ more processors when

the graphs grow big.

It remains open whether there exist parallel scalable

algorithms for discovering diversified top-k GPARs

defined with quantified patterns (Sect. 5.2).

5.3.2 Identifying Potential Customers

We want to use GPARs to identify entities of interests that

match certain behavior patterns specified by (quantified)

patterns. We formalize this problem as follows [28, 89].

Consider a set R of GPARs that pertain to the same

predicate q(x, y), i.e., their consequents are the same event

q(x, y). We define the set of entities identified by R in a

(social) graph G with confidence g as follows:

Rðx;G; gÞ ¼fvx j vx 2 Qðx;GÞ;Qðx; yÞ ) qðx; yÞ 2 R;

confðR;GÞ� gg:

We study the entity identification problem:

• Input: A set R of GPARs pertaining to the same

q(x, y), a confidence bound g[ 0, and a graph G.

• Output: The set Rðx;G; gÞ of entities.
Intuitively, it can be used to find potential customers x of y

in a social graph G that are identified by at least one GPAR

in R, with confidence of at least g.
The problem is also nontrivial. Its decision problem is to

determine, given R, G and g, whether Rðx;G; gÞ 6¼ ;. It is
NP-hard for GPARs without counting quantifiers [89],

and DP-hard when counting quantifiers are present [28].

Nonetheless, parallel algorithms are already in place for

entity identification, which are parallel scalable under

practical conditions, no matter whether the GPARs carry

counting quantifiers or not. That is, these algorithm guar-

antee reduction in parallel running time when more pro-

cessors are employed. In other words, it is feasible to

identify potential customers in real-life social graphs by

employing GPARs.

6 Conclusion

We have reported an account of our recent work in con-

nection with big graph analyses. The area of big graphs is,

however, a rich source of questions and vitality. Much

more work needs to be done, and many questions remain to

be answered. Below we list some of the topics for future

work, which deserve a full treatment.

6.1 Querying Big Graphs

We start with two questions associated with RESOURCE.

We then address a general question about the effectiveness

of parallel computing.

6.1.1 Discovering Access Schema

As we have seen in Sect. 3.1, bounded evaluation allows

us to answer a large number of real-life queries by
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accessing a bounded amount of data no matter how big

graphs grow. The key idea is to decide the bounded

evaluability of an input query Q by reasoning about

access schema A and to access only the part of data

needed for answering Q by employing the indices in A.

Now the question is how we can discover ‘‘effective’’

access schema A from real-life graphs for answering

queries in a given application?

The discovery problem is a bi-criteria optimization

problem. On one hand, we want to find an access schema A
such that A ‘‘covers’’ as many queries of the applications

as possible. On the other hand, we want to reduce the cost

of A and make the indices in A as small as possible. It is to

strike a balance between the effectiveness of A and its cost.

It also depends on whether the query load is known in

advance or not.

6.1.2 Accuracy Guarantee

As remarked in Sect. 3.2, to answer queries that are not

boundedly evaluable under A, RESOURCE employs

data-driven approximation. This gives rise to another

question. For a class Q of graph queries and a resource

ratio a, do there exist a data-driven approximation algo-

rithm T and an accuracy bound g, such that given any

query Q 2 Q and graph Q, the approximate answers QðGQÞ
computed by T under a are guaranteed to have accuracy at

least g? That is, up to g, (a) each approximate answer in

QðGQÞ is close enough to an exact answer to Q(G), i.e., it is
a sensible answer in users’ interest, and conversely, (b) for

each exact answer in Q(G), there exists an approximate

answer in QðGQÞ that is close enough, i.e., QðGQÞ ‘‘cov-

ers’’ all exact answers in Q(G). One naturally wants to find

an approximation scheme T that maximizes accuracy ratio

g subject to the resource budget given by a.

6.1.3 Parallel Scalability

As remarked in Sect. 1, not all parallel algorithms have the

property that the more processors (resources) are used, the

faster their computations get. Worse still, there are graph

query classes for which there exist no parallel algorithm

that has this property. A natural question is then how to

characterize the effectiveness of parallel algorithms? In

other words, we want to assess a parallel algorithm by

evaluating its scalability with the increase in resources

used.

Several models have been proposed for this purpose,

e.g., [29, 45, 56, 65, 85]. However, the study of this issue

is still in its infancy. A characterization remains to be

developed for general shared-nothing systems beyond

MapReduce, to be widely accepted in practice.

6.2 Cleaning Big Graphs

Querying big graphs is hard, and cleaning big graphs is

even harder.

6.2.1 Discovering GFDs

To use GFDs to detect inconsistencies in real-life graphs,

effective algorithms have to be in place to discover non-

trivial and interesting GFDs from real-life graphs. GFD

discovery is much harder than discovery of relational FDs

(e.g., [95]) and CFDs (e.g., [82]), since GFDs are a

combination of topological constraints and attribute

dependencies. Among other things, the validation analysis

of GFDs discovered is NP-complete, compared to low

PTIME for its FD and CFD counterparts (Sect. 4.3). It is

also more challenging than graph pattern mining since it

has to deal with disconnected patterns (see u1 of Exam-

ple 5) and forbidding GFDs that do not expect to find

matches in any consistent graphs (e.g., u3), not to mention

their intractable satisfiability and implication analyses.

6.2.2 Repairing Graph-structured Data

After we detect errors in a graph, we need effective

methods to fix the errors, known as data repairing [4].

Repairing big data are much harder than error detection and

introduce a variety of challenges (see [87] for a survey).

Even when only relational FDs are involved, the data

complexity of the data repairing problem is already

intractable [8], i.e., the problem is NP-hard even when we

only use fixed FDs. It is even more challenging when

certain fixes have to be computed [83], i.e., fixes that are

guaranteed 100% correct and accurate, to repair ‘‘critical

data’’ such as a knowledge base for medical data.

6.3 Big Graph Mining

As we have seen in Sect. 5, GPARs are catching up in

practice when social media marketing is predicted to trump

traditional marketing. However, an immediate topic is to

develop effective algorithms for discovering GPARs with

quantified patterns (counting quantifiers). As remarked

earlier, quantified pattern matching is DP-complete for

patterns with possibly negated edges, and real-life graphs

are often big. It is not yet known whether parallel scala-

bility is within reach for discovering general GPARs,

although the problem has been settled in positive for

GPARs without counting quantifiers [89].

Another question concerns how to determine parameters

in the diversified GPAR mining problem, namely support

bound r and radius bound d (Sect. 5.3). To make practical

use of GPARs in social media marketing, we need to
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identify the ‘‘right’’ thresholds that yield interesting

GPARs. Similarly, we need to determine the ‘‘right’’

threshold for confidence bound g in the entity identification

problem for real-life applications.
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