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Abstract
This work deals with the so-called weighted independent domination problem, which is an

NP-hard combinatorial optimization problem in graphs. In contrast to previous work, this paper
considers the problem from a non-theoretical perspective. The first contribution consists in the
development of three integer linear programming models. Second, two greedy heuristics are
proposed. Finally, the last contribution is a population-based iterated greedy metaheuristic which
is applied in two different ways: (1) the metaheuristic is applied directly to each problem instance,
and (2) the metaheuristic is applied at each iteration of a higher-level framework—known as
construct, merge, solve & adapt—to sub-instances of the tackled problem instances. The results of
the considered algorithmic approaches show that integer linear programming approaches can only
compete with the developed metaheuristics in the context of graphs with up to 100 nodes. When
larger graphs are concerned, the application of the populated-based iterated greedy algorithm
within the higher-level framework works generally best. The experimental evaluation considers
graphs of different types, sizes, densities, and ways of generating the node and edge weights.

1 Introduction

Hard combinatorial optimization problems in which solutions are subsets of the nodes of a given
input graph are abundant in the scientific literature. Examples are the maximum independent set
(MIS) problem and the minimum dominating set (MDS) problem, as well as node-weighted variants
such as, for example, the minimum weight dominating set (MWDS) problem [2].

This work considers the so-called weighted independent domination problem, which is an NP-
hard combinatorial optimization problem that was initially introduced in [10]. Before describing the
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problem in technical terms, necessary concepts from graph theory are introduced in the following.
Given an undirected graph G = (V,E), V is the set of nodes and E refers to the set of edges. An edge
e ∈ E that connects nodes u 6= v ∈ V is equally denoted by (u,v) and by (v,u). The neighborhood
N(v) of a node v ∈ V is defined as N(v) := {u ∈ V | (v,u) ∈ E}, the closed neighborhood N[v] of a
node v ∈V is defined as N[v] := N(v)∪{v}, and the set of edges incident to a node v ∈V is denoted
by δ(v). Note, in this context, that an edge e ∈ E is called incident to a node v, if v forms one of the
two endpoints of e. Given an undirected graph G = (V,E), a subset D ⊆ V of the nodes is called a
dominating set if every node v∈V \D is adjacent to at least one node from D, that is, if for every node
v ∈ V \D there exists at least one node u ∈ D such that v ∈ N(u). Furthermore, a set I ⊆ V is called
an independent set if for any pair v 6= v′ ∈ I it holds that v and v′ are not connected by an edge in G.
Moreover, I ⊆V is called a maximal independent set if adding any node from V \ I would destroy the
independent set property. Note that every maximal independent set is, at the same time, a dominating
set. Therefore, a maximal independent set is also called an independent dominating set. Vice versa, a
subset D ⊆ V is an independent dominating set if D is a maximal independent set. Finally, given an
independent dominating set D∈V , for all v∈V \D we define the D-restricted neighborhood N(v |D)
as N(v | D) := N(v)∩D, that is, the neighborhood of v is restricted to all its neighbors that are in D.

1.1 The Weighted Independent Domination Problem

In the weighted independent domination (WID) problem we are given an undirected graph G = (V,E)
with node and edge weights. More specifically, for each v ∈ V , respectively e ∈ E, we are given an
integer weight w(v)≥ 0, respectively w(e)≥ 0. The WID problem consists in finding an independent
dominating set D in G that minimizes the following cost function:

f (D) := ∑
u∈D

w(u)+ ∑
v∈V\D

min{w(v,u) | u ∈ N(v | D)} (1)

In words, the objective function value of D is obtained by the sum of the weights of the nodes in D
plus the sum of the weights of the minimum-weight edges that connect the nodes that are not in D to
nodes that are in D. As an example consider the graphics in Figure 1. The node weights are indicated
inside the nodes and the edge weights are provided besides the edges. A possible input graph is shown
in Figure 1a, whereas the optimal solution is shown in Figure 1b. The nodes that form part of set D
are indicated with a darkgray background. The minimum weight edges that are chosen to connect
nodes not in D to nodes in D are indicated with bold lines. The objective function value of the optimal
solution is 13, which is composed of the nodes weights (2 + 1 + 2) and the edge weights (4 + 1 + 3).

1.2 Related Problems and Applications

Applications which can be modelled in terms of finding independent and/or dominating sets in graphs
are abundant in real life settings. In the following we will give a short overview concerning problems
that are closely related to the WID problem.

Maximum indepenent sets According to [14], finding maximum independent sets in undirected
graphs has a large variety of applications including coding theory, information retrieval, signal trans-
mission, classification theory, and experimental design, among others. The currently most successful
metaheuristic algorithms to solve this problem include the general swap-based multiple neighbor-
hood tabu search proposed in [14] and the fast local search routines presented in [1]. The currently
best metaheuristic for the node-weighted variant of the MIS problem, the so-called maximum weight
independent set problem, is an iterated local search proposed in [19].
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(b) Optimal solution to the
WID problem.

Figure 1: Example of the WID problem. (a) shows a possible input graph and (b) shows the corre-
sponding optimal solution.

Minimum dominating sets According to [7], the identification of small dominating sets is impor-
tant, for example, for misuse detection and gateway placement in wireless adhoc networks, and for
query-focused multi-document summarization. Moreover, in [26] the authors point out applications
in the deployment of wavelength division multiplexing all-optical networks and in network intrusion
detection. Additional applications are mentioned in the context of social networks [25] and for ana-
lyzing biological networks [17]. The currently best metaheuristics for solving the minimum weight
dominating set problem, which includes the non-weighted MDS problem as a special case, are an
ant colony optimization approach and a genetic algorithm from [23], a hybrid evolutionary algorithm
from [11], a hybrid approach combining iterated greedy algorithms and an integer linear programming
(ILP) solver in a sequential way from [7], a memetic algorithm from [15], and a local search based on
configuration checking in [26]. Other recent references include [18, 22].

Minimum independent dominating sets According to [28], finding minimum independent domi-
nating sets has, in particular, applications in the context of clustering approaches and the placement
of actors in their respective clusters in wireless networks. Another application in the context of virtual
backbone generation in mobile wireless adhoc networks is mentioned in [29]. The most recent meta-
heuristic approaches for this problem are a greedy randomized adaptive search procedure (GRASP)
from [28] and a memetic algorithm from [27].

Note that the WID problem considered in this paper is an extension of the minimum independent
dominating set problem by considering (1) node and edge weights, and (2) an augmented objective
function that considers the cost of connecting non-selected nodes with selected nodes. Therefore,
possible applications of the WID problem may arise in the context of clustering algorithms in (mobile)
wireless adhoc networks whenever a cost function is known for connecting non-selected nodes to
cluster heads, for example.
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1.3 Our Contribution

So far, the WID problem has only been considered from a theoretical perspective. It is easy to see
that the problem is NP-hard. This is because with w(v) = 1 for all v ∈ V and w(e) = 0 for all e ∈ E
it reduces to the independent domination problem which was shown to be NP-hard in [9]. A linear
time algorithm for the WID problem in series-parallel graphs was proposed in [10]. In this work
we consider the WID problem in general graphs from an algorithmic perspective. Our contributions
are as follows. First, we present three ILP models for the WID problem. Second, we propose two
different greedy heuristics for solving the problem. The first one is known from the minimum weight
independent dominating set problem, while the second one is specifically developed for the WID
problem. Third, we propose a so-called population-based iterated greedy (PBIG) algorithm. This
algorithm employs an iterated greedy metaheuristic in a population-based fashion, and can therefore
be seen as a hybrid between methods based on local search and population-based methods. Iterated
greedy algorithms have been shown to work very well for many combinatorial optimization problems
(see, for example, [24, 12]). The first PBIG approach was proposed in the context of the minimum
weight vertex cover problem in [6]. Later, PBIG was also applied to the delimitation and zoning of
rural settlements [21] and, as mentioned above, to the minimum weight dominating set problem [7].

Finally, in addition to applying the PBIG algorithm directly to all problem instances, our last
contribution consists in applying PBIG within a framework known as construct, merge, solve & adapt
(CMSA) [5]. Examples for the application of CMSA can be found in [5, 3] for the minimim common
string partition problem, and in [4] for the repetition-free longest common subsequence problem.
CMSA was initially introduced for being able to take profit from exact solvers—such as, for example,
the general purpose ILP solver CPLEX—in the context of problem instances that are too large to
be tackled directly by the respective exact solver. CMSA generates, at each iteration, a number of
probabilistic solutions which are used to produce sub-instances to the tackled problem instances. The
exact solver is then used to solve the corresponding sub-instance at each iteration of CMSA. In fact, in
the context of the WID problem we tried to implement a standard CMSA algorithm based on all three
ILP models proposed in this work. Unfortunately, these versions of CMSA were still not efficient
enough in order to be able to deal with, for example, graphs with 1000 nodes. Therefore, the idea was
to study if CMSA can also be used in order to improve the working of a standard metaheuristic such as
PBIG. This gave rise to a CMSA-PBIG algorithm which makes use of the framework of CMSA and
uses PBIG (instead of an exact solver) for deriving hopefully good solutions to the corresponding sub-
instance at each iteration of CMSA. The obtained results show that this is, indeed, the case. Note that
this work is a signficiant extension of a paper that appears in the conference proceedings of EvoCOP
2017 [20]. The extension concerns the development of two additional ILP models, the application of
PBIG within the CMSA framework, and the application to problem instances that represent different
types of graphs.

1.4 Organization

The remainder of this paper is organized as follows. In Section 2, three different ILP models for the
WID problem are proposed. Two greedy heuristics are outlined in Section 3. Moreover, the PBIG
approach and its application in the CMSA framework are described in Section 4. Finally, an extensive
experimental evaluation is provided in Section 5 and conclusions as well as an outlook to future work
is given in Section 6.

4



2 ILP Models

In the following we present three different ILP models for the WIDP problem. These models are
experimentally evaluated in Section 5.

2.1 ILP-1: Model based on Indicator Variables

The first one of the proposed ILP models—henceforth called ILP-1—uses three sets of binary vari-
ables. For each node v ∈ V it uses a binary variable xv. Moreover, for each edge e ∈ E the model
uses a binary variable ye and a binary variable ze. Hereby, xv indicates if v is chosen for the solution.
Moreover, ze indicates if e ∈ E is selected for connecting a non-chosen node to a chosen one. Variable
ye is an indicator variable, which indicates if e is choosable, or not.

(ILP-1) min ∑
v∈V

xvw(v)+ ∑
e∈E

zew(e)

s.t. xv + xu ≤ 1 for e = (u,v) ∈ E

xv + ∑
u∈N(v)

xu ≥ 1 for v ∈V

xv + xu = ye for e = (u,v) ∈ E

ze ≤ ye for e ∈ E

xv + ∑
e∈δ(v)

ze ≥ 1 for v ∈V

xv ∈ {0,1} for v ∈V

ye ∈ {0,1} for e ∈ E

ze ∈ {0,1} for e ∈ E

(2)

(3)

(4)

(5)

(6)

(7)

Hereby, constraints (3) are the independent set constraints, that is, they make sure that two adjacent
nodes can not take part in the solution. Constraints (4) are the dominating set constraints. They ensure
that for each node v∈V , either the node itself or at least one of its neighbors form part of the solution.
These two sets of constraints will be the same in all three ILP models. Constraints (5) ensure the
proper setting of the indicator variables. Note that edges that contribute to the objective function
value must always connect a node that is not chosen for the solution with a node that is in the solution.
Therefore, if—concerning an edge e = (u,v)—either v or u is in the solution, variable ye is forced
to take value one, which indicates that this edge is choosable. Constraints (6) relate the indicator
variables with the variables that actually show which edges are chosen. In particular, if an indicator
variable ye has value zero, ze is forced to take value zero, which means e cannot be chosen. Finally,
constraints (7) ensure that each node v ∈ V that does not form part of the solution—that is, when
xv = 0—is connected by an edge to a node that forms part of the solution. Due to the fact that the
optimization goal concerns minimization, the edge with the lowest weight is chosen for this purpose.

2.2 ILP-2: Eliminating the Indicator Variables

The second ILP model—henceforth called ILP-2—follows the same idea as ILP-1, apart from the fact
that it does not require the set of indicator variables. That is, model ILP-2 only makes use of binary
variables xv for all v ∈ V and binary variables ze for all e ∈ E. The meaning of these variables is
described above.
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(ILP-2) min ∑
v∈V

xvw(v)+ ∑
e∈E

zew(e)

s.t. xv + xu ≤ 1 for e = (u,v) ∈ E

xv + ∑
u∈N(v)

xu ≥ 1 for v ∈V

xv + xu ≥ ze for e = (u,v) ∈ E

(1− xv)+(1− xu)≥ ze for e = (u,v) ∈ E

xv + ∑
e∈δ(v)

ze ≥ 1 for v ∈V

xv ∈ {0,1} for v ∈V

ze ∈ {0,1} for e ∈ E

(8)

(9)

(10)

(11)

(12)

(13)

Note that the independent set constraints (9), the dominating set constraints (10), and constraints (13)
that ensure that each node v ∈ V that does not form part of the solution is connected by an edge to a
node that forms part of the solution, are the same as in model ILP-1. However, the two sets of con-
straints concerning the indicator variables from model ILP-1 (constraints (5) and (6)) are replaced by
constraints (11) and (12). Note that when both xv and xu—concerning an edge e = (u,v) ∈ E—are set
to zero, constraints (11) force variable ze to take value zero, which means that an edge that connects
two non-selected nodes can not be chosen for the solution. Furthermore, when both xv and xu—again
concerning an edge e = (u,v)∈ E—are set to one, constraints (17) force variable ze to take value zero,
which means that an edge that connects two selected nodes can not be chosen for the solution.

2.3 ILP-3: Expicit Variables for the Edge-Weight Contribution

The third ILP model—henceforth called ILP-3—is structurally different to ILP-1 and ILP-2. The
main idea is to model the edge-weight contribution of each node in terms of an integer variable qv for
all v ∈ V . Obviously, the edge-weight contribution of a selected node v ∈ V —that is, when xv = 1—
must be zero, whereas the edge-weight contribution of a non-selected node v ∈V must be equal to the
weight of the minimum-weight edge that connects this node to a selected node.

(ILP-3)

min ∑
v∈V

xvw(v)+qv

s.t. xv + xu ≤ 1 ∀ e = (u,v) ∈ E

xv + ∑
u∈N(v)

xu ≥ 1 ∀ v ∈V

qv ≤ (1− xv)M ∀ v ∈V

qv ≥ 0 ∀ v ∈V

qv ≥ xuw(e)−

xvM+ ∑
e′=(v,v′)∈δ(v)

s.t. w(e′)<w(e)

xv′M

 ∀ v ∈V,
e = (v,u) ∈ δ(v)

xv ∈ {0,1} ∀ v ∈V

qv ∈ {−|V | ·M, . . . ,M} ∀ v ∈V

(14)

(15)

(16)

(17)

(18)

(19)
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Algorithm 1 Greedy Heuristic (GREEDY1)
1: input: a undirected graph G = (V,E) with node and edge weights
2: S := /0

3: G′ := G
4: while V ′ 6= /0 do
5: v∗ := argmax{ |N(v|G′)|

w(v) | v ∈V ′} {Ties are randomly resolved}
6: S := S∪{v∗}
7: Remove from G′ all nodes from N[v | G′] and their incident edges
8: end while
9: output: An independent dominating set S of G

Observe that the independent set constraints (15) and the dominating set constraints (16) are again
as in ILP-1 and ILP-2. In addition, constraints (17) set the upper bound of an edge-contribution
variable to zero in case the corresponding node forms part of the solution, that is, of the independent
dominating set. In case a node does not form part of the solution, constraints (17) set the upper bound
to a large constant M, which we have set to the maximum weight of all edges of the graph in our
implementation. Furthermore, constraints (18) set the lower bound of all edge contributions to zero.
Finally, constraints (19) correctly set the lower bound of the edge contributions in order to be equal
to the weight of the minimum-weight edge connecting the respective node with one of its selected
neighbors.

3 Greedy Heuristics

The first one of two different greedy heuristics developed in this work is a simple extension of a
well-known heuristic for the minimum weight independent dominating set problem. Given an input
graph G, this heuristic starts with an empty solution S = /0 and adds, at each step, exactly one node
from the remaining graph G′ = (V ′,E ′) to S. Initally, the remaining graph G′ is a copy of G. After
adding a node v ∈ V ′ to S, all nodes from N[v | G′]—that is, from the closed neighborhood of v in
G′—are removed from V ′. Moreover all their incident edges are removed from E ′. In this way, only
those nodes that maintain the property of S being an independent set may be added to S. At each
step, the node v ∈V ′ that maximizes |N(v|G′)|

w(v) is chosen to be added to S, where N(v | G′) refers to the
neighborhood of v in G′. In other words, nodes with a high degree in the remaining graph G′ and with
a low node weight are preferred. Note that this greedy heuristic does not take the edge weights into
account. They are only considered when calculating the objective function value of the final solution
S. The pseude-code of this heuristic, henceforth referred to as GREEDY1, is shown in Algorithm 1.

In contrast to GREEDY1, the second greedy heuristic is designed to take into account the edge
weights already during the process of constructing a solution. The algorithmic framework of this
greedy heuristic—henceforth denoted by GREEDY2—is the same as the one of GREEDY1. However,
the way in which a node is chosen at each step is different. For the description of this greedy heuristic
the following notations are required. First, the maximum weight of any edge in E is denoted by wmax.
Then, let S ∈ V be a partial solution, that is, S is an independent set which is not yet a dominating
set, but which can be extended to be a dominating set. The auxiliary objective function value f aux(S)
is defined as ∑v∈V c(v | S), where c(v | S) is called the contribution of node v with respect to partial
solution S. Given S, these contributions are defined as follows:
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1. If v ∈ S: c(v | S) := w(v)

2. If v /∈ S and N(v)∩S = /0: c(v | S) := wmax

3. If v /∈ S and N(v)∩S 6= /0: c(v | S) := min{w(e) | e = (v,u),u ∈ S}

Note that in the case of S being a complete solution, it holds that f (S) = f aux(S). Now, in order to
obtain GREEDY2, line 5 of Algorithm 1 must be exchanged with the following one:

v∗ := argmin
{

f aux(S∪{v}) | v ∈V ′
}

(20)

4 Population-Based Iterated Greedy Algorithm

A high level description of the implemented PBIG approach—henceforth referred to as PBIG—is
given in Algorithm 2. Apart from the input graph G, PBIG requires values for five parameters: (1)
the population size psize ∈ Z+, (2) the lower bound (Dl) and the upper bound (Du) for the degree
of destruction applied to each solution of the population at each iteration, (3) the determinism rate
drate ∈ [0,1], and (4) the candidate list size lsize > 0. The latter two parameters control the greediness
of the probabilistic solution (re-)construction procedure. Moreover, note that for the values of the
above-mentioned bounds it must hold that 0≤Dl ≤Du ≤ 1. For the following description, each solu-
tion S is a subset of the nodes of V , has an objective function value f (S), and an individual, possibly
dynamic, destruction rate DS.

The algorithm works as follows. First, the psize solutions of the initial population are generated
by function GenerateInitialPopulation(psize,drate, lsize) (see line 2 of Alg. 2). Afterwards, each itera-
tion consists of the following steps. First, an empty population Pnew, called offspring population, is
created. Then, each solution S ∈P is partially destroyed using procedure DestroyPartially(S) (see
line 6 of Alg. 2). This results in a partial solution Ŝ. On the basis of Ŝ, a complete solution S′ is then
constructed using procedure Reconstruct(Ŝ,drate, lsize) (see line 7 of Alg. 2). Then, the destruction
rate DS of solution S is adapted depending on the quality of solution S′ in function AdaptDestruc-
tionRate(S,S′). Each newly obtained complete solution is stored in Pnew. Note that the two phases of
destruction and re-construction are applied to all solutions from P independently of each other. When
the iteration is completed, procedure Accept(P,Pnew) selects the best psize solutions from P ∪Pnew

for the population of the next iteration. In the case of two solutions from P ∪Pnew being equal,
the criterion used for tie-breaking is based on the individual destruction rates. More specifically, the
solution S with the highest individual destruction rate DS is preferred over the other one. Finally,
the algorithm terminates when a predefined CPU time limit is reached, and the best found solution is
returned. The four procedures that form the core of PBIG are described in more detail in the following.

GenerateInitialPopulation(psize,drate, lsize): This function generates psize solutions for the initial popu-
lation. For this purpose it uses the mechanism of GREEDY21 (see Section 3) in a probabilistic way. At
each construction step, first, a random number l ∈ [0,1] is generated. In case l ≤ drate, the best node
according to the greedy function is chosen. Otherwise, a candidate list of size min{|V ′|, lsize}, where
V ′ ⊆V are the nodes that can be selected at the current construction step, is generated, and one of the
nodes from the candidate list is chosen uniformly at random. Note also that the initial destruction rate

1Note that GREEDY2 is chosen over GREEDY1 because, as it will be shown later, GREEDY2 generally works better than
GREEDY1.
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Algorithm 2 PBIG for the WID problem
1: input: input graph G, parameters psize > 0, Dl,Du,drate, lsize ∈ [0,1]
2: P := GenerateInitialPopulation(psize,drate, lsize)
3: while termination condition not satisfied do
4: Pnew := /0

5: for each candidate solution S ∈P do
6: Ŝ := DestroyPartially(S)
7: S′ := Reconstruct(Ŝ,drate, lsize)
8: AdaptDestructionRate(S,S′)
9: Pnew := Pnew∪{S′}

10: end for
11: P := Accept(P,Pnew)
12: end while
13: output: argmin { f (S) | S ∈P}

(DS) of each solution S is set to the lower bound Dl for the destruction rates.

DestroyPartially(S): In this function, max{3,bDS · |S|c} randomly selected nodes are removed from S,
where DS is the current individual destruction rate of solution S.

Reconstruct(Ŝ,drate, lsize): Given as input a partial solution Ŝ, this function re-constructs a complete
solution S′ in the same way in which solutions are probabilistically constructed in the context of gen-
erating the initial population (see above). Moreover, the initial destruction rate DS′ of S′ is set to Dl .

AdaptDestructionRate(S,S′): The individual destruction rate DS of solution S (from which partial
solution Ŝ was obtained) is updated on the basis of the lower bound Dl and the upper bound Du as
follows. If f (S′)< f (S), the value of DS is set back to the lower bound Dl . Otherwise, the value of DS

is incremented by a certain amount. After initial experiments, we determined this amount to be 0.05.
If the value of DS, after this update, exceeds the upper bound Du, it is set back to the lower bound Dl .

Note that the idea behind this way of dynamically changing the value of DS is as follows. As long
as the algorithm is able to improve a solution using a low destruction rate, this rate is kept low. In this
way, the re-construction is faster. Only when the algorithm seems not to be able to improve over a
solution, the individual destruction rate of this solution is increased in a step-wise manner.

4.1 Application of PBIG in the CMSA Framework

As mentioned before, the CMSA framework was introduced in [5] in order to be able to take profit
from an efficient exact solver even in the context of problem instances that are too large to be solved
directly by the exact solver. The general idea of CMSA is as follows. At each iteration, solutions to
the tackled problem instance are generated in a probabilistic way. The solution components found in
these solutions are then added to a sub-instance of the original problem instance. Subsequently, an
exact solver such as, for example, CPLEX is used to solve the sub-instance to optimality. Moreover,
the algorithm is equipped with a mechanism for deleting seemingly useless solution components from
the sub-instance. This is done such that the sub-instance has a moderate size and can be solved rather
quickly to optimality.

In the context of the WID problem, the set of solution components corresponds to the set of nodes
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Algorithm 3 CMSA-PBIG for the WID problem
1: input: input graph G, parameter values for PBIG and parameter values for dcmsa

rate , lcmsa
size , agemax,

na, tmax, and optgreedy
2: Sbsf := NULL

3: V ′ := /0

4: age[v] := 0 for all v ∈V
5: while CPU time limit not reached do
6: for i = 1, . . . ,na do
7: S := ProbabilisticSolutionGeneration(optgreedy, dcmsa

rate , lcmsa
size )

8: for all v ∈ S and v /∈V ′ do
9: age[v] := 0

10: V ′←V ′∪{v}
11: end for
12: end for
13: S′pbig← ApplyPBIG(V ′)
14: if f (S′pbig)< f (Sbsf) then Sbsf := S′pbig
15: Adapt(V ′, S′pbig, agemax)
16: end while
17: output: Sbsf

of the input graph. Moreover, solutions can be probabilistically constructed by a probabilistic version
of either GREEDY1 or GREEDY2. In fact, both greedy heuristics can be made probabilistic by the
mechanism described in the context of PBIG in the previous section. For this purpose we require two
parameters: (1) the determinism rate parameter (called dcmsa

rate in the context of CMSA-PBIG) and (2)
the candidate list size (called lcmsa

size in the context of CMSA-PBIG). Our initial idea was to use one of
the three proposed ILP models in order to solve the sub-instances within CMSA-PBIG to optimality.
However, even though smaller than the original problem instances, this idea turned out to be inefficient
in the case of graphs with 500 and 1000 nodes. Therefore, we implemented the following option.
Instead of applying an exact solver to each sub-instance, the PBIG algorithm is applied with a certain
time limit to each sub-instance. The resulting pseudo-code of CMSA-PBIG is provided in Algorithm 3.

Each algorithm iteration works as follows. First, the best-so-far solution Sbsf is initialized to
NULL, indicating that no such solution exists yet. Moreover, the current sub-instance V ′ ⊆ V (where
V is the set of nodes of the input graph G) is initialized to the empty set. Then, at each iteration, na
solutions are probabilistically generated in function ProbabilisticSolutionGeneration(optgreedy, dcmsa

rate ,
lcmsa
size ), either making use of GREEDY1 (in case optgreedy = 0) or of GREEDY2 (in case optgreedy = 1).

The nodes found in the constructed solutions are then added to V ′. Furthermore, each node v ∈V ′ has
an age, labelled age[v], which is initialized to zero. Next, PBIG is applied in function ApplyPBIG(V ′)
to find a high-quality solution, however, restricted to the nodes from V ′; that is, the solution (re-
)construction process of PBIG is restricted to choose nodes from V ′. If the resulting solution, labelled
S′pbig, is better than the current best-so-far solution Sbsf, solution S′pbig is adopted as the new best-so-far
solution. Next, sub-instance V ′ is adapted on the basis of solution S′pbig in conjunction with the age
values of the nodes in V ′. This is done in function Adapt(V ′, S′pbig, agemax) as follows. First, the age
of each node in V ′ \ S′pbig is incremented while the age of each node in S′pbig is re-initialized to zero.
Subsequently, those nodes from V ′ with an age value greater than agemax—which is a parameter of the
algorithm—are removed from V ′. This causes that nodes that are never selected for the best solutions
of PBIG do not slow down the working of PBIG in coming iterations.
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5 Experimental Evaluation

The following seven algorithmic approaches are evaluated on a large variety of benchmark instances:
(1–3) the application of CPLEX to the three ILP models (ILP-1, ILP-2, and ILP-3), (4) GREEDY1,
(5) GREEDY2, (6) PBIG, and (7) CMSA-PBIG. All techniques were implemented in ANSI C++ using
GCC 4.6.3 for compiling the software.2 Moreover, we used CPLEX version 12.6 in single-threaded
execution for solving the ILP models. The experimental results that are presented in the following
were obtained on a cluster of 32 computers with Intel R© Xeon R© X5660 CPUs of 6 nuclei of 2.8 GHz
and (in total) 48 Gigabytes of RAM. For each run of CPLEX we allowed a maximum of 4 Gigabytes
of RAM. In the following, first, the set of benchmark instances is described. Then, a detailed analysis
of the experimental results is presented.

5.1 Benchmark Instances

Two types of graphs were considered for the experimental evaluation: (1) random graphs and (2) ran-
dom geometric graphs. In each case, graphs of different properties—for what concerns, for example,
the density—and different sizes were created. In particular, for each type we generated graphs of 100,
500 and 1000 nodes, that is, |V | ∈ {100,500,1000}. The random graphs were generated adding edges
between nodes totally at random, with a given probability ep for each edge. This probability controls
the density of the graph. In particular, we considered ep ∈ {0.05,0.15,0.25}. The random geometric
graphs were created as follows. First, the |V | nodes were assigned to random coordinates from the
unit square. Then, a radius (r) was fixed and each pair of nodes at a distance smaller or equal than
the radius was connected by an edge. The radius controls the density of the graph, that is, the larger
the radius the denser is the resulting graph. In order to produce graphs with densities comparable to
the ones of the random graphs we considered r ∈ {0.14,0.24,0.34}. The main difference between
random geometric graphs and random graphs is that in the former ones only nodes that are placed
close together may be connected while in the latter ones any two nodes may be connected.

Three different schemes for generating the node and edge weights were considered. In the first
scheme, both node and edge weights were drawn uniformly at random from {0, . . . ,100}. Hence-
forth, we call the resulting graphs neutral graphs. In the second scheme, node weights were drawn
uniformly at random from {0, . . . ,1000} and edge weights were drawn uniformly at random from
{0, . . . ,10}. In these graphs, henceforth called node oriented graphs, the choice of the nodes is pre-
sumably very important because of the nodes themselfs. Finally, in the third scheme node weights
were drawn uniformly at random from {0, . . . ,10} and edge-weights were drawn uniformly at ran-
dom from {0, . . . ,1000}. In these edge-oriented graphs, the choice of the nodes is important due to
edges that are made available for connecting non-chosen nodes to chosen nodes.

For each combination of a graph type, a number of nodes, an edge probability (respectively, a
radius), and a weight generation scheme, we produced 10 problem instances. This makes a total of
540 graphs: 270 random graphs (this set is henceforth called RG) and 270 random geometric graphs
(this set is henceforth called RGG). All graphs can be downloaded from https://www.iiia.csic.
es/˜christian.blum/research.html.

2Executables of GREEDY1, GREEDY2, PBIG and CMSA-PBIG, compiled for working under Ubuntu Linux, are available
from https://www.iiia.csic.es/˜christian.blum/research.html.
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5.2 Tuning Experiments

The automatic configuration tool irace [16] was used in order to find well-working values for the
parameters of PBIG and CMSA-PBIG. In this section we describe the experimental setup used for the
tuning experiments, and the tuning results.

5.2.1 Tuning of PBIG

The following five parameters were considered in the case of PBIG: psize, Dl , Du, drate and lsize. The
tuning tool was applied separately for each combination of graph type, number of nodes and the
weight generation scheme. Note that no separate tuning was performed concerning the graph density
(depending on ep in the context of random graphs, respectively r in the context of random geometric
graphs). This is because, after initial runs, it was shown that the other parameters have a higher
influence on the behavior of the algorithm. Summarizing, irace was applied 18 times with a budget of
1000 applications of PBIG per tuning run.

For each application of PBIG a time limit of |V | ·3 CPU seconds was fixed. For each run of irace,
two tuning instances were generated for each combination of graph type, number of nodes, graph
density, and weight generation scheme. This gives a total of six tuning instances per run of irace. The
following parameter value ranges were considered for each tuning run:

• psize ∈ {1,10,50,100}.

• For the lower and upper bound values of the destruction percentage, the following value com-
binations were considered: (Dl,Du) ∈ {(10,10), (20,20), (30,30), (40,40), (50,50), (60,60),
(70,70), (80,80), (90,90), (10,50), (30,70), (50,90)}. Note that in those cases in which both
bounds have the same value, the percentage of deleted nodes is always the same.

• drate ∈ {0.0,0.3,0.5,0.7,0.9}.

• lsize ∈ {1,3,5,10}.

The results of the tuning processes in the case of random graphs are presented in Table 1. The trends
are as follows: the population size (psize) should be rather high. Interestingly, the option of a dynami-
cally changing value for the destruction rate (Dl , Du) never resulted best. In most cases a fixed value
greater than 0.5 is selected. The determinism rate (drate) should be rather low, specially when large
graphs are concerned. Finally, the candidate list size (lsize) should be rather high.

In the same way, the results of the tuning processes for random geometric graphs are shown
in Table 2. Here, the trends are as follows: the chosen population sizes are rather high, with one
exception (|V |= 100, node-oriented). Interestingly, this is also the only case in which a dynamically
changing destruction rate was selected. In the other cases a fixed value greater than 0.4 is selected for
this parameter. The selected determinism rate tends to decrease with increasing graph size, and the
candidate list size should be rather high.

5.2.2 Tuning of CMSA-PBIG

In addition to the five parameters of PBIG, the tuning procedure for CMSA-PBIG must additionally
consider the six parameters of the CMSA framework of CMSA-PBIG: dcmsa

rate , lcmsa
size , agemax, na, tmax,

and optgreedy. The parameter value ranges for the five PBIG-parameters were chosen as for the tuning
procedure of the stand-alone PBIG. For the six additional parameters of CMSA-PBIG, the value ranges
considered were the following:
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Table 1: Results of tuning PBIG with irace for random graphs.
Weight scheme |V | psize (Dl,Du) drate lsize

100 50 (0.7,0.7) 0.0 5
neutral 500 100 (0.5,0.5) 0.3 10

1000 100 (0.5,0,5) 0.0 10
100 10 (0.8,0.8) 0.0 10

node-oriented 500 100 (0.6.0.6) 0.0 5
1000 100 (0.6,0.6) 0.3 10
100 100 (0.6,0.6) 0.0 10

edge-oriented 500 50 (0.6,0.6) 0.0 10
1000 100 (0.5,0.5) 0.0 10

Table 2: Results of tuning PBIG with irace for random geometrics graphs.
Weight scheme |V | psize (Dl,Du) drate lsize

100 50 (0.8,0.8) 0.3 10
neutral 500 100 (0.5,0,5) 0.5 5

1000 100 (0.4,0.4) 0.3 5
100 1 (0.5,0.9) 0.5 10

node-oriented 500 100 (0.5,0.5) 0.3 10
1000 50 (0.6,0.6) 0.3 5
100 100 (0.8,0.8) 0.9 10

edge-oriented 500 50 (0.4,0.4) 0.0 10
1000 100 (0.4,0.4) 0.0 10

• dcmsa
rate ∈ {0.0,0.3,0.5,0.7,0.9}.

• lcmsa
size ∈ {1,3,5,10,20}.

• agemax ∈ {1,3,5,10, in f}.

• na ∈ {1,10,30,50}.

• tmax ∈ {1,2,5,10,50}.

• optgreedy ∈ {0,1}, where value 0 represents the selection of GREEDY1 for the probabilistic
construction of solutions, and value 1 the selection of GREEDY2 for this purpose.

The setup of the tuning processes for CMSA-PBIG was the same as for the ones of PBIG. That
is, irace was applied 18 times with a budget of 1000 applications of CMSA-PBIG per tuning run. The
time limit of |V | ·3 CPU seconds per execution was applied, and the same tuning instances were used.

The results of the tuning processes in the case of random graphs are shown in Table 3. Note that
when referring, in the following, to PBIG, we mean the application of PBIG within CMSA-PBIG. The
following remarkable trends can be observed: the selected destruction rate of PBIG is generally lower
than the one chosen for the stand-alone version of PBIG. The determinism rate of PBIG decreases with
increasing graph size. Interestingly, the required candidate list size of PBIG is generally lower than the
one of the probabilistic solution construction mechanism of the CMSA framework. Concerning the
remaining parameters of the CMSA framework, the following can be observed: the determinism rate
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Table 3: Results of tuning CMSA-PBIG with irace for random graphs.
Weight scheme |V | psize (Dl,Du) drate lsize dcmsa

rate lcmsa
size agemax na tmax optgreedy

100 50 (0.3,0.7) 0.7 3 0.5 3 in f 30 1 1
neutral 500 50 (0.3,0.3) 0.3 5 0.3 5 in f 30 5 1

1000 10 (0.4,0.4) 0.0 5 0.3 20 5 10 5 0
100 1 (0.6,0.6) 0.7 10 0.7 10 in f 30 1 0

node-oriented 500 10 (0.3,0.3) 0.3 10 0.5 20 3 50 10 0
1000 10 (0.5,0.5) 0.0 5 0.5 20 10 30 50 1

100 1 (0.5,0.9) 0.5 5 0.5 5 in f 30 5 1
edge-oriented 500 100 (0.3,0.3) 0.0 5 0.3 20 3 50 10 0

1000 50 (0.4,0.4) 0.3 10 0.5 10 3 50 50 1

Table 4: Results of tuning CMSA-PBIG with irace for random geometrics graphs.
Weight scheme |V | psize (Dl,Du) drate lsize dcmsa

rate lcmsa
size agemax na tmax optgreedy

100 10 (0.3,0.7) 0.3 3 0.3 20 10 30 2 1
neutral 500 10 (0.3,0.7) 0.3 3 0.3 20 10 30 2 1

1000 100 (0.2,0.2) 0.3 10 0.5 20 in f 30 50 1
100 10 (0.5,0.5) 0.7 10 0.5 10 1 50 2 0

node-oriented 500 1 (0.2,0.2) 0.7 10 0.3 20 in f 30 5 0
1000 50 (0.2,0.2) 0.7 3 0.5 10 5 50 5 0

100 1 (0.3,0.3) 0.7 10 0.5 10 5 50 5 1
edge-oriented 500 1 (0.3,0.3) 0.7 10 0.5 10 5 50 5 1

1000 50 (0.3,0.7) 0.0 10 0.5 10 10 1 5 1

of the probabilistic solution construction mechanism of CMSA-PBIG tends to decrease with increasing
graph size. The number of solutions constructed per iteration (na) is around 30. The time limit for
the application of PBIG at each iteration (tmax) increases with increasing graph size, and finally, the
selection of GREEDY1 (value 0 of optgreedy) is most common for graphs generated according to the
node-oriented weight scheme, while GREEDY2 seems preferred for the remaining graphs.

In the same way, the results of the tuning processes concerning random geometric graphs are
presented in Table 4. The trends that can be observed in this case are very similar to those already
outlined for random graphs.

5.3 Numerical Results

The seven solution approaches were applied exactly once to each problem instance. The computation
time limit for the applications of CPLEX, PBIG and CMSA-PBIG was |V | ·3 seconds for each graph.
The results are presented in numerical form in two tables: Table 5 contains the results for all random
graphs and Table 6 contains the results for all random geometric graphs. The two tables have the
following format. The first three table columns indicate the number of nodes in the graph (|V |), the
weight generation scheme, and the graph density in terms of the edge probability (ep) for random
graphs and the radius (r) for random geometric graphs. The results of the seven approaches are
presented in two columns for each approach. The first one of these columns (with heading result)
provides, in all seven cases, the average result obtained for the corresponding 10 problem instances.
In the case of GREEDY1 and GREEDY2, the second column provides the average computation times
(in seconds). In the case of the application of CPLEX to the three ILP models, the second columns
provide the average optimality gaps (in %) that correspond to the results shown in the first columns.
Finally, in the case of PBIG and CMSA-PBIG, the second column shows the average time at which
the best solutions of a run were found. Note that the best result of each table row is shown with gray
background. In addition, we applied a statistical significance test to the results of each table row.
More specifically, in each table row all approaches were compared to the best-performing approach
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and the results of those approaches who are statistically equivalent to the best-performing approach are
marked by the F symbol (significance level of 0.05). The statistical differences have been assessed
using the Friedman test and the p-values have been corrected for multiple comparison using Finner’s
procedure [13].

Additionally, we aimed for detecting the differences between the algorithms (if any) for large sub-
sets of the problem instances. First, all the algorithms have been compared simultaneously using the
Friedman test. Then, given that in all the cases the test rejects the hypothesis that all the algorithms
perform equally, all the pairwise comparisons have been tested using the Nemenyi post-hoc test [13].
The corresponding results are shown in Figures 2 and 3 by means of so-called criticial difference plots.
Briefly, each approach is positioned in the segment according to its average ranking concerning the
considered subset of instances. Then, the critical difference (CD) is computed for a significance level
of 0.05 and the performance of those algorithms that have a difference lower than CD are regarded as
equal—that is, no difference of statistical significance can be detected. This is indicated in the graphic
by horizontal bars joining the respective algorithms.3

The experimental results allow us to make the following observations:

• When considering all instances together—see Figure 2a—CMSA-PBIG is the best-performing
algorithm, followed by PBIG. The next group of approaches is composed of the application
of CPLEX to the three ILP models. Concerning the order between them, ILP-2 is generally
the best-performing one, followed by ILP-3 and then ILP-1. Finally, the worst-performing
group of algorithms is composed of the two greedy algorithms, with GREEDY2 outperforming
GREEDY1. All differences are statistically significant.

• Concerning the two types of graphs that were studied—that is, random graphs vs. random ge-
ometric graphs—essentially no differences can be observed in the relative behaviour of the
algorithms. This means that the studied techniques are not affected by local structures that are
present in graphs.

• Concerning the comparison between GREEDY1 and GREEDY2 it can be observed that, while
GREEDY2 outperforms GREEDY1 when all problem instances are considered together—in the
context of node-oriented graphs, GREEDY1 has a better average ranking than GREEDY2 (not
statistically significant). Concerning computation time, both algorithms are by far the fastest
ones in the comparison. Naturally, the computation time of GREEDY2 is slightly higher than
that of GREEDY1.

• Comparing the performance of the three ILP models, we can observe that ILP-2 generally
achieves the best performance. In particular, for all considered subsets of instances (concerning
density and weight generating scheme) ILP-2 outperforms ILP-1. This was to be expected, as
the only difference in the two models is the elimination of a set of variables (also resulting in
a change of a subset of the constraints). ILP-2 generally also outperforms ILP-3, with the ex-
ception of node-oriented graphs, for which ILP-3 achieves a better ranking than ILP-2. Finally,
it can also be observed—when looking at the tables containing the numerical results—that all
three ILP models are competitive with CMSA-PBIG and PBIG in the context of instances of 100
nodes.

3Note that all the tests and the plots have been generated using R’s scmamp package [8], available at https://github.
com/b0rxa/scmamp.
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1 2 3 4 5 6

(a) All instances together.

1 2 3 4 5 6

(b) Random graph instances (set RG).

1 2 3 4 5 6 7

(c) Random geometric graph instances (set RGG).

Figure 2: Criticial difference plots for all 540 problem instances together (a), the 270 instances of set
RG (b), and the 270 instances of set RGG. The axis shows the average ranking of the seven considered
techniques concerning the considered (sub)sets of instances. Horizontal bars connect techniques for
which no statistical differences were found.

• CMSA-PBIG and PBIG are clearly (and with statistical significance) the best-performing ap-
proaches in our set of compared approaches. This holds when considering all instances together,
but also for all subsets of studied instances (see Figures 2 and 3). Concerning the comparison
between the two, it can be observered that CMSA-PBIG has—for all considered subsets of
instances—a better average ranking than PBIG. This difference is statistically signficiant when
considering all instances together, and in the case of edge-oriented graphs. This relative perfor-
mance between CMSA-PBIG and PBIG is of general interest, because it shows that by applying
a metaheuristic in a framework such as CMSA, it is possible to improve the performance of the
metaheuristic.

Summarizing, we can state that—in the context of the WID problem—the studied metaheuristics
outperform the ILP-based approaches, which in turn outperform the greedy approaches. The ILP-
based approaches can only compete with the metaheuristics in the case of instances of 100 nodes.
Moreover, we would like to point out again the fact our results have shown it to be possible to improve
the performance of a metaheuristic by repeatedly applying it to intelligently generated sub-instances
of the tackled problem instances, as it is done in the CMSA framework.

6 Conclusions and Future Work

This paper has dealt with an NP-hard problem in graphs, the so-called weighted independent dom-
ination problem. We proposed three different integer linear programming models for this problem.
Additionally, two different greedy heuristics were presented. The first one of these heuristics is an
adaptation of a known heuristic from a related problem to the weighted independent domination prob-
lem. This heuristic disregards the edge-weights during the solution construction process. The second
heuristic was especially developed for the tackled problem. Finally, we presented a population-based
iterated greedy algorithm which takes profit from the better one of the two greedy heuristics. In ad-
dition to a standalone application of the population-based iterated greedy algorithm, the algorithm

18



1 2 3 4 5 6 7

(a) All instances with neutral weighting scheme.

2 3 4 5 6

(b) All instances with node-oriented weighting scheme.

1 2 3 4 5 6 7

(c) All instances with edge-oriented weighting scheme.

2 3 4 5 6 7

(d) All low density instances.

1 2 3 4 5 6

(e) All medium density instances.

1 2 3 4 5 6

(f) All high density instances.

Figure 3: Criticial difference plots for six different subsets of problem instances concerning their
weighting scheme and their density. The axis shows the average ranking of the seven considered
techniques concerning the considered (sub)sets of instances. Horizontal bars connect techniques for
which no statistical differences were found.

was applied within the construct, merge, solve & adapt framework. The results have shown that the
population-based iterated greedy algorithm applied within the before-mentioned framework is, with
statistical significance, the best-performing approach in the comparison. This is especially interesting,
because it shows that the performance of a standard metaheuristic may be improved by the application
within a framework such as construct, merge, solve & adapt, which is based on reducing the size of
the tackled problem instances.

In the near future we plan to investigate the application of other metaheuristics within the con-
struct, merge, solve & adapt framework in the context of a diverse set of difficult combinatorial opti-
mization problems.
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