
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Faddegon, Maarten and Chitil, Olaf (2015) Algorithmic Debugging of Real-World Haskell Programs:
Deriving Dependencies from the Cost Centre Stack. In: 36th annual ACM SIGPLAN conference
on Programming Language Design and Implementation, PLDI 2015, 13-17 June 2015, Portland,
Oregon, USA.

DOI

https://doi.org/10.1145/2737924.2737985

Link to record in KAR

http://kar.kent.ac.uk/49003/

Document Version

Updated Version

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt
oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
CAlgorithmic Debugging

of Real-World Haskell Programs:
Deriving Dependencies from the Cost Centre Stack

Maarten Faddegon

University of Kent, UK

mf357@kent.ac.uk

Olaf Chitil

University of Kent, UK

oc@kent.ac.uk

Abstract

Existing algorithmic debuggers for Haskell require a transforma-
tion of all modules in a program, even libraries that the user does
not want to debug and which may use language features not sup-
ported by the debugger. This is a pity, because a promising ap-
proach to debugging is therefore not applicable to many real-world
programs. We use the cost centre stack from the Glasgow Haskell
Compiler profiling environment together with runtime value obser-
vations as provided by the Haskell Object Observation Debugger
(HOOD) to collect enough information for algorithmic debugging.
Program annotations are in suspected modules only. With this tech-
nique algorithmic debugging is applicable to a much larger set of
Haskell programs. This demonstrates that for functional languages
in general a simple stack trace extension is useful to support tasks
such as profiling and debugging.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging

Keywords tracing, algorithmic debugging, lazy evaluation, Haskell

1. Introduction

Support for debugging is essential for wider adoption of non-strict
functional languages [24, 27]. The algorithmic debugging method
is particularly suitable for pure computations (cf. [26]) and thus
non-strict functional languages. During program execution inter-
mediate computations are recorded and organised in a computa-
tion tree. Post-mortem the algorithmic debugger asks the user to
judge whether these intermediate computations agree with their in-
tentions and the debugger eventually locates a defect in the program
[21].

The construction of a computation tree is challenging for non-
strict functional languages: existing algorithmic debuggers [13, 15,
18, 25] never gained popularity, probably because they have to
specially compile or transform all modules of a program, even

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright 2015 held by Owner/Author. Publication Rights
Licensed to ACM.

PLDI’15 , June 13–17, 2015, Portland, OR, USA
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00
DOI: http://dx.doi.org/10.1145/2737924.2737985
This is the extended version of the paper presented at PLDI.

libraries that the user does not want to debug and which may use
language features not supported by the debugger. Thus they cannot
be applied to most real-world programs.

Intermediate computations can be recorded with isolated anno-
tations in the code using HOOD [7]. For algorithmic debugging,
however, these computations need to be connected and form a com-
putation tree.

In contrast to debugging, time and space profiling of lazy func-
tional programs is not only well-studied [9, 11, 19], but the Glas-
gow Haskell Compiler1 (GHC) also provides reliable profiling for
real-world Haskell programs. Trace stacks are key for it attributing
time and space costs to parts of a program. Today most Haskell li-
braries are automatically installed with a variant compiled with the
profiling flag.

Our key observation is that the information required for con-
necting individual intermediate computations to a computation tree
is closely related to the information available in trace stacks. Es-
sentially the information from trace stacks is an approximation of
the former and it is sufficient for constructing a computation tree.

Our work is of broader interest than just Haskell and GHC.
Adding a trace stack to an evaluator of a functional language is a
small extension that is useful for numerous purposes. Already when
Marlow revisited stacks [9], he was aiming to use them for time and
space profiling, coverage analysis and traditional debugging. Now
we suggest another use of trace stacks. A trace stack is particularly
useful for lazy functional language implementations, where the
need for debugging tools is most urgent. However, we agree with
Marlow that also in eagerly evaluated higher-order languages the
call stack does not give accurate information, hence implementing
a trace stack combined with our method would be useful for such
languages as well.

Based on this observation we present a novel approach to algo-
rithmic debugging of Haskell programs. We need program anno-
tations only in suspected code, where we are looking for defects,
not in any trusted modules, which we assume to be correct. We just
compile all modules of the faulty program for profiling and the exe-
cutable uses the standard runtime system for profiling. In this paper
we make the following contributions:

• We present a method for constructing a computation graph from
HOOD’s observations plus profiling information, which we use
for algorithmic debugging (Section 2).

• We define a semantics that describes how to collect the informa-
tion needed to construct a computation graph. Our semantics is
based on Launchbury’s semantics for lazy evaluation and it is
close to GHC’s profiling semantics. Like HOOD our semantics

1 http://haskell.org/ghc

collects the information in a trace that is a sequence of atomic
events. (Section 3).

• We present transformation algorithms to construct a computa-
tion tree for algorithmic debugging from the trace. From the
trace we reconstruct computations and connect them in a com-
putation graph (Section 4). In general the graph will contain cy-
cles. We simplify the graph and transform it into a computation
tree. (Section 5).

• We verify soundness for algorithmic debugging on compu-
tation trees produced by our semantics and the transforma-
tion algorithms. We test with the property-based testing tool
QuickCheck [5] that the program slice identified as defective
by our method is indeed defective. We describe how to test
fully automatically although algorithmic debugging ordinarily
requires interaction with a human user. (Section 6).

• We implemented a prototype debugger that uses our method
and applied it to real-world Haskell programs. The debug-
ger is a library for the Glasgow Haskell Compiler. The li-
brary has to be imported by the program that shall be de-
bugged. The library provides functions for annotating suspected
code. During program execution a trace is recorded and post-
mortem the actual algorithmic debugging process starts. Our
debugger is available from the Haskell package archive Hack-
age: cabal install Hoed. We introduced defects in several
Haskell programs including the game Raincat and used our de-
bugger to find the defects (Section 7).

2. Background, Observation and Idea

We use the example program of Figure 1 throughout this section.
The expected result of the program is the ordered list [3,4,5], but
when executed the program prints [3,5,4] instead. The program
uses many standard library functions such as ++ and foldr that are
trusted, that is, assumed to be correct. The defect is in the definition
of the insert function: the > operator should be replaced with <
and xs should be swapped with ys.

2.1 Algorithmic Debugging

An algorithmic debugger records information during a program ex-
ecution that shows unintended behaviour. Post-mortem the debug-
ger presents the user with questions about intermediate computa-
tion statements. The user has to judge whether these statements
agree with their intentions. After some questions and answers the
debugger locates a defect in a slice (i.e. part) of the program [21].
For our example program the interaction could look as follows,
with the answers of the user written in italics:

isort [4,3,5] = [3,5,4]? no

insert 5 [] = [5]? yes

insert 3 [5] = [3,5]? yes

main :: IO ()
main = print (isort [4,3,5])

isort :: [Int] -> [Int]
isort = foldr insert []

insert :: Int -> [Int] -> [Int]
insert n ms = let (xs,ys) = span (>n) ms

in ys ++ (n : xs)

Figure 1: A defective program for sorting integers.

main = <IO> ()

isort [4,3,5] = [3,5,4]

insert 4 [3,5] = [3,5,4]

insert 3 [5] = [3,5]

insert 5 [] = [5]

Figure 2: A computation tree for the sorting program.2

insert 4 [3,5] = [3,5,4]? no

Defect located in the definition of "insert"!

How did the algorithmic debugger generate this sequence of
questions and come to the conclusion? During execution it records
information to construct a computation tree, as shown in Figure 2.
Computation statements are the nodes of the tree. A computation
statement is a child of another computation statement, if comput-
ing the latter entails computing the former. We say that the parent
computation depends on its child computations. If a computation
statement disagrees with the user’s intentions, but all child com-
putation statements it depends on do agree with their intentions,
then there must be a defect in the program slice associated with the
parent computation statement. That is the case, because the com-
putation tree is constructed such that a parent computation is fully
determined by its child computations plus the program slice asso-
ciated with the parent.

2.2 Observing Intermediate Data with HOOD

Gill [7] developed a method for observing intermediate data struc-
tures of a Haskell program execution using compact local anno-
tations. Although side-effects are used to collect information, the
method guarantees not to change the behaviour of the lazy program.
The Haskell Object Observation Debugger (HOOD) is a library that
implements the method. For example, if we annotate our program
as follows

insert = observe "insert" insert’
insert’ n ms = let (xs, ys) = span . . .

then after termination HOOD produces the output:

-- insert
{ \ 4 [3,5] -> [3,5,4]
, \ 3 [5] -> [3,5]
, \ 5 [] -> [5] }

So we observe the value of the function insert as far as it was
demanded during the program execution. Values such as integers
and lists are given in familiar syntax, but functional values have an
extensional representation as finite maps, from observed arguments
to observed results.3 Note that only the observed expression is
annotated. Other parts of the program that actually produce the
value, in particular the definitions of helper functions such as span
and ++, are left unchanged.

2 The monadic IO value of main requires special treatment that goes beyond
the scope of this paper. Hence we omit monadic IO elsewhere in the paper.
3 Parts of values, for example list elements, that are not demanded in the
computation are just shown as underscore . Questions by the algorithmic
debugger may also contain [3], but because of limited space we do not
discuss their meaning further in this paper.

2.3 Idea A: Observing Computation Statements

Observing functions à la HOOD allows us to obtain computation
statements for the computation tree of algorithmic debugging with-
out making any changes to trusted modules of the program. An
observation contains the label written after observe and the ob-
served value. We assume that the label is the name of the observed
function, as in our example. Then a single argument-result pair of
a finite map gives rise to a computation statement. Annotating also
main and sort in our example program, we obtain all computation
statements of the tree in Figure 2.

We still need the dependencies between computation statements
to construct the tree.

2.4 GHC’s Cost Centre Stacks for Profiling

Profiling is the process of attributing time or space costs to parts of
a program, for a particular program execution. The GHC profiler
expects the user to label program slices with so-called cost centres
[19]. For example, we can label the definition of the isort func-
tion with the cost centre "isort" using the scc (set cost centre)
construct:

isort = scc "isort" isort’
isort’ = foldr insert []

By choosing which expressions we label with cost centres we
choose the granularity of assigning profiling costs. We can for ex-
ample choose not to annotate foldr and thus subsume its compu-
tation costs into the cost centre "isort".

Morgan and Jarvis [11] noticed that users of profilers often want
to change the granularity. For example, they might start with a few
cost centres, but on noticing that one cost centre has particularly
high costs, they might introduce more cost centres to break down
the costs of the conspicuous cost centre. However, re-labelling and
re-executing the program takes considerable time. Morgan’s and
Jarvis’ solution is to maintain a stack of cost centres during a com-
putation and attribute a time or space cost to a stack of cost cen-
tres. The profiling trace contains cost centre stacks that describe
lexical containment in the call-graph. For example, we may label
main, isort and insert with cost centres. The costs of the func-
tion isort without the costs of insert is attributed to the stack
〈main, isort〉, whereas the costs of the function insert as called
by isort is attributed to the stack 〈main, isort, insert〉. Many
different analyses can be performed on the augmented profiling
trace.

The cost-centre stack represents a program context that con-
structs or calls the currently evaluated expression. In contrast, in
a lazy language the run-time stack represents a program context
that demands the value of the currently evaluated expression. Hence
these two stacks differ substantially.

2.5 Idea B: Dependencies from Observed Stacks

We have to combine the two sorts of annotations, one for observing
a function à la HOOD and the other one for setting a cost cen-
tre, into a single annotation that initiates observing a function and
that also records a snapshot of the cost-centre stack with this ob-
servation. The stacks enable us to determine dependencies between
computation statements and thus construct a computation tree.

2.6 The Computation Tree

The stacks provide only an approximation of the run-time depen-
dencies: First, a stack only contains labels, not complete compu-
tations. Hence if for example our program used isort twice, we
would not know which computations of insert belonged to which
computation of isort. Second, as proposed by Morgan and Jarvis,
GHC does not record complete stacks but uses compressed stacks

expression e ::= v
| e x application
| let{xi = ei}e binding
| x variable

value v ::= c
| λx.e abstraction

constant c ::= 0|1|2| . . .

Figure 3: Syntax of the core language with constants.

that approximate the real ones, to minimise the overhead of profil-
ing. Thus some precision is lost.

Because we use approximations of the dependencies, we obtain
a computation graph with cycles, not a tree. We transform that
graph, again using safe approximations, to obtain a tree. Finally we
can perform standard algorithmic debugging with that computation
tree.

Chitil and Davie [3] make the point that there are several struc-
turally different computation trees for the same computation. They
study two choices for making a computation statement f vf = v′f
the parent of a computation statement g vg = v′g: either function
identifier g appears in the definition of function f , or the application
of g to vg appears in the definition of function f . In a higher-order
language the function identifier and the application may appear in
different program parts. The first choice requires functional values
to be represented extensionally as finite maps, whereas the second
choice requires them to be represented intensionally, usually as par-
tial applications of function identifiers and data constructors. Most
algorithmic debuggers presented in the literature [2, 13, 15, 25]
choose the second structure, but here we choose the first: observ-
ing values can represent functional values only as finite maps, not
obtain an intensional representation.

3. Tracing Semantics

We define a semantics to unambiguously describe what informa-
tion we record in a trace while evaluating an expression. We start
with Launchbury’s semantics for lazy evaluation [8] and add cost
centre stacks following Marlow [9]. Subsequently we extend the
semantics with tracing based on the HOOD implementation from
Gill [7]. We extend the semantics such that a snapshot of the stack
of labels is included in each HOOD-like observation.

3.1 Launchbury’s Semantics for Lazy Evaluation

Launchbury’s semantics assumes normalised λ-expressions as
shown in Figure 3. The argument of every application is a variable.
All bound variables are distinct such that scope becomes irrele-
vant. The bindings in a let-expression are mutually recursive. We
include numeric constants amongst values here to construct simple
examples later.

A heap is a partial function from variables to expressions. We
write Γ[x 7→ e] for the heap that is equal to the heap Γ but
additionally maps the variable x to the expression e. Figure 4
defines the computation statement Γ : e ⇓ ∆ : v, which means that
the expression e in the context of the heap Γ reduces to the value v
together with the modified heap ∆. In the Var rule the result value
is duplicated. To preserve the invariant that all bound variables are
distinct, we rename all bound variables with fresh variables in the
copy. This renaming is written as v̂.

3.2 Adding a Stack

We reformulate Marlow’s framework of stacks as implemented in
GHC for our computation statements. Marlow’s semantics is quite
different from Morgan and Jarvis’ semantics [11]; this paper and

Γ,S ⊳ l : e ⇓ ∆,S ′ : v

Γ,S : push l e ⇓ ∆,S ′ : v
Push

Γ,S : v ⇓ Γ,S : v Val

Γ,S : e ⇓ ∆,S ′ : λy.e′ ∆,S ′ : e′[x/y] ⇓ Θ,S ′′ : v

Γ,S : e x ⇓ Θ,S ′′ : v
App

Γ[xi 7→ (S, ei)],S : e ⇓ ∆,S ′ : v

Γ,S : let{xi = ei} e ⇓ ∆,S ′ : v
Let

Γ,Sh : e ⇓ ∆,S ′ : c

Γ[x 7→ (Sh, e)],S : x ⇓ ∆[x 7→ (S ′, c)],S ′ : c
VarC

Γ,S : e ⇓ ∆,Sλ : λy.e′

Γ[x 7→ (S, e)],Sapp : x ⇓ ∆[x 7→ (Sλ, λy.e′)],Sapp ⊲⊳ Sλ : λ̂y.e′
VarL

Figure 6: New and updated rules adding a stack to Launchbury’s semantics.

Γ : v ⇓ Γ : v Val

Γ : e ⇓ ∆ : λy.e′ ∆ : e′[x/y] ⇓ Θ : v

Γ : e x ⇓ Θ : v
App

Γ[xi 7→ ei] : e ⇓ ∆ : v

Γ : let{xi = ei}e ⇓ ∆ : v
Let

Γ : e ⇓ ∆ : v

Γ[x 7→ e] : x ⇓ ∆[x 7→ v] : v̂
Var

Figure 4: Launchbury’s semantics.

expression e ::= . . .
| push l e push label onto stack

Figure 5: Extending the syntax to label expressions.

the GHC implementation follow the former. First, in Figure 5 we
extend the syntax by an operation for labelling any subexpression
within a program. The nature of labels is irrelevant; in practice we
use strings.

Figure 6 shows the semantic rules. We add a stack S of labels to
the computation statements. This stack does not influence the result
value. The result stack is just a basic trace of the computation. The
statement Γ,S : e ⇓ ∆,S ′ : v means that the expression e in
the context of the heap Γ and the stack S reduces to the value
v in the context of the modified heap ∆ and modified stack S ′.
The Push rule pushes the label onto the stack using the function
⊳. The heap now stores a stack with every expression. When the
Let rule stores an expression in the heap, it includes the current
stack. When the VarC and VarL rules evaluate an expression from
the heap, they temporarily restore the stack. The VarL rule has a
stack Sλ for the λ-abstraction and a stack Sapp for the application
of this λ-abstraction. In a higher-order language these stacks can
differ substantially. The function ⊲⊳ merges the two stacks for the
result.

Figure 7 gives Marlow’s definitions of the two functions ⊳ and
⊲⊳. Our dependency generation technique is independent of the
precise definition of these stack operations. We write the stack as
a sequence of labels that grows to the right. The definition of ⊳
ensures that every label occurs at most once in a stack. Limiting
the size of stacks limits the size of (profiling and debugging) traces.
The definition of ⊲⊳ ensures that information of both stacks is used

〈l0, . . . , ln〉 ⊳ l = 〈l0, . . . , lj , l〉
where l /∈ {l0, . . . lj} and (j = n or lj+1 = l)

〈l0, . . . , lj , la, . . . , lb〉 ⊲⊳ 〈l0, . . . , lj , lc, . . . , ld〉
= 〈l0, . . . , lj〉 ⊳ lc ⊳ . . . ⊳ ld ⊳ la ⊳ . . . ⊳ lb
where la 6= lc

Figure 7: Definitions of ⊳ and ⊲⊳ as used in GHC.

trace T ::= t0, . . . , tn sequence growing right

event t ::= T l S root
| Tc p c constant value
| Tλ p abstraction
| Ta p application

identifier i ::= 0|1|2| . . .

parent p ::= P i parent is i
| Pa i argument of application i
| Pr i result of application i

Figure 8: Syntax of the events in our trace.

and that the semantics with stacks has useful properties for program
optimisation.

3.3 Adding a Value Observation Trace

Finally we reformulate HOOD’s implementation of value observa-
tions for our computation statements. Evaluation is demand driven
and hence evaluation of an observed expression does not happen
in a consecutive sequence of steps but is interleaved with other re-
duction steps. Hence during program execution we collect a list of
observation events. Post-mortem we combine these to representa-
tions of values.

Figure 8 gives the syntax of events. A trace T = t0, . . . , tn
is a list of events, where each individual event is identified by its
position in the list. Indexing starts at 0. Except for a root event
T l S, every event contains an identifier i. The identifier states the
parent event in the tree. Thus events form a forest of trees. We store
label and stack separately in the root event because pushing is not
lossless.

Consider the example trace in Figure 9. It consists of five events.
They form the single tree shown in Figure 10, which represents the
observed functional value {\9->9} with label “id” and stack 〈〉.

Γ,S ⊳ l, T ⋖ T l S : obs (P |T |) e ⇓ ∆,S ′, T ′ : v

Γ,S, T : push l e ⇓ ∆,S ′, T ′ : v
Push

Γ,S, T : e ⇓ ∆,S ′, T ′ : c

Γ,S, T : obs p e ⇓ ∆ : S ′, T ′ ⋖ Tc p c : c
ObsC

Γ,S, T : e ⇓ ∆,S ′, T ′ : λx.e′

Γ,S, T : obs p e ⇓ ∆,S ′, T ′ ⋖ Tλ p : λx.obsλ (P |T ′|) x e′
ObsL

Γ,S, T ⋖ Ta p : let{x′ = obs (Pa |T |) x}((λx.obs (Pr |T |) e) x′) ⇓ ∆,S ′, T ′ : v

Γ,S, T : obsλ p x e ⇓ ∆,S ′, T ′ : v
Obsλ

Figure 12: Modified and new rules added to the profiling semantics for tracing.

0 : T “id” 〈〉 label with empty stack
1 : Tλ (P 0) abstraction
2 : Ta (P 1) application of the abstraction
3 : Tc (Pa 2) 9 argument of this application
4 : Tc (Pr 2) 9 result of this application

Figure 9: Trace produced by evaluating the expression let{id =
push “id” (λx.x), y = 9} (id y).

T “id” 〈〉

Tλ

Ta

Tc 9 Tc 9

Pa Pr

=⇒ id 9 = 9

Figure 10: Tree of events from the trace in Figure 9. An application
event has two events as children, the argument with parent Pa and
the result with parent Pr .

expression e ::= . . .
| obs p e observe expression
| obsλ p x e observe application

Figure 11: Extended syntax to observe expressions.

To observe the values of an expression we use two pseudo-
functions obs and obsλ. Figure 11 adds them to the syntax. They
are never used in a program but appear only during program execu-
tion.

Figure 12 shows the non-trivial changes that turn the profiling
semantics into a tracing semantics. For the other rules we just add
a trace T on both left- and right-hand side of every reduction.

t0, . . . , tn ⋖ t = t0, . . . , tn, t appends an event to the trace. |T |
determines the length of trace T and thus the index of the event that
is appended next.

We modified the Push rule such that it records a root event
which includes the current stack. Furthermore it wraps the observed
expression with the pseudo-function obs. The index of the parent
event is passed to obs to enable connecting events later.

An observed expression evaluates to either a constant or an
abstraction. For constants the ObsC rule records the constant value
itself as a trace event. For abstractions the ObsL rule adds a Tλ p
event to the trace and continues observing every application of the
abstraction using the pseudo-function obsλ.

We reduce obsλ every time an observed abstraction is applied
using the Obsλ rule: an application event is recorded in the trace
and we continue observing argument and result with the pseudo-
function obs. Both argument and result of the function have the
application event as parent. If a functional value is applied several
times, then several Ta p events will share the same Tλ p′ event,
representing several applications within one finite map.

4. Processing the Trace

We defined how a trace with a forest of event trees results from
evaluating a program. Now we are ready to translate each tree into
one or several computation statements and use the snapshots of the
stack to derive dependencies between the statements and form a
computation graph.

4.1 From Trace to Computation Statements

We want to translate a forest of events. At the root of a tree we
find an event with the label given to an observed expression. We
assume this label is equal to the function or variable name used in
the program slice. Next we look at the child node of the root.

A constant node is translated into a simple computation state-
ment with the label of the root node on the left-hand-side and the
representation from the constant event on the right-hand-side. For
example, if the label is “x” and the value 2, then the resulting com-
putation statement is x = 2.

For observed functions the structure is more complicated. Con-
sider for example the tree in Figure 10. The root of the tree is again
an event with a label. The child of the root event is an abstrac-
tion event. An abstraction event has one or more application events
as children. Each application event yields at least one computation
statement. An application event can have one argument event and
one result event. In our example those are both constant events.

When the argument to a function is not used to compute the
functions result, there is also no argument event in the trace. In that
case the argument is represented by an underscore (e.g. f = 3
for a function always returning 3).

The child of an application event can be another abstraction
event. Figure 13 illustrates the two possible cases:

On the left: the observed function takes another function as ar-
gument. In the computation statement the outer argument is repre-
sented by a finite map from nested arguments to nested results.

T “h” 〈〉

Tλ

Ta

Tλ

Ta

Tc 40 Tc 40

Tc 40

Pa Pr

Pa Pr

T“g”〈〉

Tλ

Ta

Tλ

Ta

Tc 2 Tc 2

Pr

Pa Pr

Figure 13: A forest of events translating to the statements “h
{\40->40} = 40” and “g 2 = 2”.

On the right: the observed function produces another function
as result. Another way of looking at this case is saying that the
observed function takes multiple arguments. So the computation
statement has an application of the function name to several argu-
ments on the left-hand-side of =.

4.2 Constructing a Computation Graph

For each computation statement c we also have a snapshot of the
stack S and a label l from which we derive dependencies c1 →
c2 between computation statements and construct a computation
graph. We need to consider the two ways in which we manipulate
the stack of labels in our semantics: the two functions ⊳ and ⊲⊳.

4.2.1 Stack Push Function ⊳

In our semantics we push a label onto the stack after recording
the stack in the trace and before evaluating the labelled expression.
Therefore the computation graph has a dependency c1 → c2 when
S1 ⊳ l1 = S2 for statement c1 with label l1 and stack S1, and c2
with l2 and S2. Consider for example the labelled expressions in
the following program:

let {y = 3} (push “A” (λx.((push “B” (λy.y)) x)) y

Evaluation gives us the two computation statements A 3 = 3 and
B 3 = 3. Here label “A” and empty stack 〈〉 are associated with
the former statement, and label “B” and stack 〈“A”〉 with the
latter statement. Because 〈〉 ⊳ “A” = 〈“A”〉, there is a dependency
A 3 = 3 → B 3 = 3 in the computation graph.

Recursively applied functions truncate the stack, resulting in
additional edges. Consider for example a program with a function r
that is recursively applied three times, and a function m that applies
r. Assume m produces statement c1, r applied in m produces
statement c2, the first recursive application of r gives us c3 and
the second recursive application c4. Statement c1 has label m and
stack 〈〉, c2 has r and 〈m〉, c3 has r and 〈m, r〉, and c4 has r and
the truncated stack 〈m, r〉. This give us the dependencies c1 → c2,
c2 → c3, c2 → c4 and c3 ⇄ c4.

4.2.2 Stack Merge Function ⊲⊳

The computation graph has dependencies c1 → c2 → c3 when
S3 = S1 ⊳ l1 ⊲⊳ S2 ⊳ l2 for statement c1 with label l1 and
stack S1, c2 with l2 and S2, and c3 with l3 and S3. The idea is to
include dependencies on the constant part of a function definition.
Consider for example the following program where the constant

r

p q

z

Figure 14: Reducible

r

p q

z

Figure 15: Irreducible

part of function f is underlined:

let {k = 3,
f = push “f” (let {g = λx.x}

λy.(push “f in” g) y)}
push “main” (f k)

Evaluating this program gives us the three computation state-
ments below. Note how the VarL rule from Figure 6 affects the
stack of the f in statement.

main = 3 “main” 〈〉
f 3 = 3 “f” 〈〉
f in 3 = 3 “f in” 〈“f”, “main”〉

Because 〈“f”, “main”〉 = 〈“main”〉 ⊲⊳ 〈“f”〉 we have
dependencies main = 3 → f 3 = 3 → f in 3 = 3 in our
computation graph.

4.2.3 Constants

Constants are computed when needed and shared among their
users. Nilsson [13] already noted that it is difficult to define when a
computation statement depends on a constant’s subtree. He presents
two solutions: tracking references to free variables explicitly, or
sorting computation trees by evaluation order. In the free-browse
mode of our prototype debugger the user is responsible for explor-
ing constants first.

5. From Computation Graph to Tree

So from the trace we obtain a computation graph that may have
cycles. In this section we discuss how we remove the cycles to
obtain a directed acyclic graph (DAG). A directed acyclic graph
(DAG) is just a more efficient representation of a tree where equal
subtrees may be shared. Finding defective nodes in a computation
tree is an established technique [21].

A computation graph consists of nodes (the computation state-
ments) and edges (the dependencies). If there is a dependency
c → d, then d is a successor of c in the computation graph. A cycle
is formed by a set of statements for which there exists a path from
any statement to any other statement in the set. Node d dominates
node p, if every paths from the root node to p contains d. Node d is
the dominator of a set, if d dominates all other nodes in the set. A
cycle is reducible, if the set contains a dominator, irreducible other-
wise (e.g. the cycle in Figure 14 has dominator p whereas the cycle
in Figure 15 has no dominator). If node d dominates node p, then
p → d is a back edge.

5.1 Reducible Cycles

The actual computation dependencies form a tree and by definition
a tree does not have back edges. Therefore we can safely remove
the back edges from our computation graph. This will break any
reducible cycle. Consider for example the reducible cycle of p and
q in the graph of Figure 14. Without back edge q → p this is an
acyclic graph.

a

b c

da

b c

d

a

{b,c}

d

a

{b,c,d}
collapse

collapse

remove

Figure 16: Order of collapse and remove for reducible cycle
{c, d} nested in irreducible cycle {b, c, d}.

5.2 Irreducible Cycles

After removing back-edges some irreducible cycles may remain.
We collapse an irreducible cycle by replacing the statements in the
cycle with a single node in which these statements are combined.
For example, we replace the statements p and q in the irreducible
cycle of Figure 15 with node {p, q}. If any of the combined state-
ments is judged wrong, then we consider the node wrong. If the
node is defective, then the actual defect is in the union of the pro-
gram slices associated with the wrong statements in the node.

Dependencies from a statement outside an irreducible cycle to a
statement in the irreducible cycle are represented by a dependency
onto the collapsed node. Vice versa dependencies from inside the
cycle on a statement outside the cycle are represented by a depen-
dency from the collapsed node. Dependencies between two state-
ments in the same irreducible cycle are not represented. Any other
dependencies in the computation graph are left unchanged.

Consider the graph of Figure 15 again. The dependencies r → p
and r → q into the cycle are represented by the dependency
r → {p, q}. The dependency from p inside the cycle on z outside
the cycle is represented by {p, q} → z. Thus collapsing gives us
the following graph:

r

{p, q}

z

5.3 Accuracy and Order

We first remove back edges of all reducible sets, collapse any
remaining (irreducible) cycles and use the resulting DAG to find
defective nodes. Instead of both removing back edges and then
collapsing irreducible cycles we could just collapse. However, there
is a good reason not to do so: the collapsed node covers a larger
slice of the program than the individual nodes. If the collapsed node
is defective, then we can give the programmer less precise direction
to where they need to correct the program.

A reducible cycle can be nested inside an irreducible cycle.
In that case the order matters: removing back edges can reduce
the number of statements in the irreducible cycle that need to be
collapsed. Thus a smaller set of cost centres is covered by the
collapsed node. Figure 16 shows an example.

6. Soundness

We assume that any defective program slice is labelled. Algorith-
mic debugging is known to be sound for a computation tree, that is,
if the root node of the computation tree disagrees with the program-
mer’s intentions, then the algorithmic debugging process will find

a defective node in the tree [12, 21]. However, does our method,
which takes dependencies from an approximated stack, allow us to
construct a computation tree? In other words:

Is the program slice associated with an identified defective
node really defective?

A proof would be a major undertaking, because in the preced-
ing sections we formally defined only central parts of our method
and even the relatively small prototype implementation is quite
complex. Hence instead of a proof we test, following Marlow [9],
who verified properties of the stack operations ⊳ and ⊲⊳ with the
property-based testing tool QuickCheck [5]. Already during devel-
opment of our idea thorough testing proved useful: it uncovered
several mistakes in earlier versions.

6.1 How to Test an Algorithmic Debugger

QuickCheck checks for a number of randomly-generated inputs
that a property expressed in a logic holds. We can easily gener-
ate a random program expression. We can also evaluate such an
expression with a Haskell implementation of our semantics to ob-
tain a trace.4 However, to test with a QuickCheck property that our
method indeed constructs a computation tree for algorithmic de-
bugging, we need to clarify three tasks:

1. We need to declare some randomly chosen slices to be defec-
tive, so that we know where the defects are and can compare
with what our algorithmic debugger finds.

2. During evaluation a defective slice somehow has to cause an
infection such that unintended values are computed.

3. After the computation tree has been constructed from the
recorded trace, we need to judge automatically whether a given
computation statement is intended or not. Normally a human
user does this interactively.

We implement these three related tasks with the type:

b ::= , | /

6.2 Defective Slices

We extend labelling such that every program slice is declared work-
ing or defective. For example in

push “outer” , (λx.push “inner” / x)

the slice labelled “outer” is a working slice, but that labelled “inner”
is a defective slice. By default any unlabelled slice is considered
working.

6.3 Abstracting Values

Algorithmic debugging does not care about specific values, that is,
whether a value is a number 42 or a function {\2 → 4, \4 → 8},
but only whether a value has been infected and whether in conse-
quence a computation statement is intended or not. We replace in
our syntax the numeric constants by our Booleans , and /.

In a randomly-generated expression / never appears, but all
constants are ,.

4 Evaluation may not terminate. We abort evaluation after a given number
of steps. An expression may be ill-formed. We abort evaluation when a
constant is applied to some argument. QuickCheck allows us to ignore these
cases, considering them neither as counter examples nor as successful tests.

Γ,S ⊳ l, T ⋖ T l S : obs (P |T |) b e ⇓ ∆,S ′, T ′ : v

Γ,S, T : push l b e ⇓ ∆,S ′, T ′ : v
Push

Γ,S, T : e ⇓ ∆,S ′, T ′ : b′ b′′ = b ∧ b′

Γ,S, T : obs p b e ⇓ ∆ : S ′, T ′ ⋖ Tc p b′′ : b′′
ObsC

Γ,S, T : e ⇓ ∆,S ′, T ′ : λx.e′

Γ,S, T : obs p b e ⇓ ∆,S ′, T ′ ⋖ Tλ p : λx.obsλ (P |T ′|) b x e′
ObsL

Γ,S, T ⋖ Ta p : let{x′ = obs (Pa |T |) , x}((λx.obs (Pr |T |) b e) x′) ⇓ ∆,S ′, T ′ : v

Γ,S, T : obsλ p b x e ⇓ ∆,S ′, T ′ : v
Obsλ

Figure 17: Modified trace semantics for testing.

expression e ::= . . .
| push l b e push label onto stack
| obs p b e observe expression
| obsλ p b x e observe application
| b Boolean constant

Figure 18: Modified syntax for testing.

(|f v1, . . . , vn = v|) = (|v1|) ∧ . . . ∧ (|vn|) ⇒ (|v|)

(|,|) = ,

(|/|) = /

(| |) = ,

(|{m1, . . . ,mn}|) = (|m1|) ∧ . . . ∧ (|mn|)

(|\v1 . . . vn → v|) = (|v1|) ∧ . . . ∧ (|vn|) ⇒ (|v|)

Figure 19: Judging computation statements.

6.4 Defects Infect during Evaluation

Evaluation of a defective slice changes every , into a /. So any
constant becomes a /. Applying a defective function returns an
infected result value,5 irrespective of the argument.

However, we need to consider carefully how a defective slice
causes an infection. Applying a defective function should still force
evaluation of the argument, if that argument was demanded in
the standard semantics. Hence we implement infection by piggy-
backing on the observation mechanism, which was designed not to
influence computation.

Figure 18 shows our syntax for testing with the Booleans , and
/ as new constants, markers of labelled expressions and additional
parameters of observations. Figure 17 shows the changes in the
semantics. Constants are infected in the ObsC rule by taking the
conjunction of the evaluation result b′ and the correctness of the
slice b. Here conjunction regards , as true and / as false. For
abstractions we pass the slice’s correctness to the observation of
the result in the Obsλ rule.

6.5 Judging Computation Statements

From the trace we construct computation statements and their de-
pendencies and subsequently transform the graph into a computa-
tion tree. Finally algorithmic debugging requires judging whether a
computation statement is as intended or not. Usually the judgement
is given by the user. Let us consider the program:

let {i = 4; dbl = push “dbl” (λx.x)}
push “main” (dbl i)

and assume that the function dbl is intended to double its argu-
ment. With our algorithmic debugger the programmer is asked the
two questions:

main = 4 ? no
dbl 4 = 4 ? no

and the body of dbl is correctly identified as defective. The corre-
sponding program for testing is:

let {i = ,; dbl = (push “dbl” / (λx.x)}
push “main” , (dbl i)

For testing the judgement is based on the infected and normal val-
ues appearing in the computation statement. Figure 19 defines the
judgement function (| · |). Again conjunction and implication regard
, as true and / as false. If a function takes infected arguments,
then these might violate the pre-condition of the function and hence
we conservatively judge the function to meet intentions. The judge-
ments for the computation tree of our example are:

(|main = /|) = /

(|dbl , = /|) = /

which correctly identify the defective slice.
Computation statements for higher-order functions are often

hard to judge. A benefit of our approach is that higher-order func-
tions (often imported from libraries) are easy to trust. However,
when the user writes their own higher-order functions, it can be
necessary to annotate these functions for tracing. Now let us con-
sider a program with a higher-order function:

let {i = 2; f = λx.x; h = λf.λx.f x} h f i

Next we create an equivalent program for testing and mark h
as defective. We obtain the following three computation statements

5 In reality defective code does not cause an infection in every program run.
However, if it does not cause an infection, then the program behaves as
intended and no debugging will take place.

with their automatic judgements:

(|main = /|) = /

(|h {\, → ,} , = /|) = /

(|f , = ,|) = ,

From these h is correctly identified as defective.
Let us now assume that h is correct and mark f as defective.

Then the computation statements and automatic judgements that
we obtain are:

(|main = /|) = /

(|h {\, → /} , = ,|) = ,

(|f , = /|) = /

which correctly identifies f as defective.

6.6 Quickcheck Properties

We implemented the modified semantics for testing in Haskell.
Simplified our test property looks as follows:

sound :: Expr -> Property
sound e = valid result ==>
property (defects e ‘anyElem‘ algDebug tree)
where
(result, tree) = mkTree (eval e)

anyElem :: Eq a => [a] -> [[a]] -> Bool
anyElem ys = foldr ((&&) . any (‘elem‘ ys)) True

Here algDebug tree is a list of lists of labels as each node that
algorithmic debugging identifies as defective may contain several
labels because of collapsing irreducible cycles when constructing
the tree. We verified that the property holds for our semantics with
over 100000 well-formed randomly generated expressions of up to
1000 subexpressions each.

7. Implementation

GHC allows programmatic access to the cost-centre stack of the
profiling environment. Hence our implementation consists of a
tracing library based on HOOD and an algorithmic debugger. The
algorithmic debugger shows a webpage with the computation tree
and allows the programmer to judge the computation statements in
free order.

The language we present in this paper uses push to both add
a label onto the stack and to observe the value of the enclosed
expression. We implement the former with the GHC pragma Set
Cost Centre (SCC) and the latter with the combinator observe
from our tracing library. See for example the annotations of the
isort function:

isort :: [Int] -> [Int]
isort = observe "isort" ({-# SCC "isort" #-}

(foldr insert []))

Annotating a function is a straightforward and mechanical process.
A compiler pass could annotate all top-level functions in a module.

In our semantics we did not discuss data constructors and ex-
ceptions, but the actual implementation handles these as well. The
annotation functions can be derived for values of different types
using the generic framework of Faddegon and Chitil [6].

With our implementation we successfully identified the defects
in several examples programs that came with the Haskell Tracer
Hat6. We also used our debugger for more complex programs. Our
own debugger had a defect in the code that renders computation
statements. We tracked down the defect with the debugger itself.

6 http://projects.haskell.org/hat/

The game Raincat7 is a mix of IO and pure computations.
We introduced defects in Raincat and identified these with our
debugger. While our debugger is most useful on pure computations,
it proved no problem that the program also contained IO.

In all cases we were able to find the defect. In these experiments
we typically added between 3 and 15 annotations. These produced
computation graphs with 10 to several hundred computation state-
ments. The number of questions that needed to be answered varied
enormously. In almost all cases the defect could be found in less
than 10 answers. However, in some cases it was hard to tell which
questions to answer first: in the worst case hundreds of questions
were asked before the defect was found. In future work we ex-
pect to address this by providing specialised annotations and search
strategies to help the user with determining which question to an-
swer first. In our current work we use algorithmic debugging as
described by Shapiro; later variants were conceived with which we
would like to experiment [22].

8. Related Work

Building computation trees to algorithmically debug programs
written in a lazily evaluated functional language has received con-
siderable attention.

Nilsson’s Freja constructs computation trees using an instru-
mented runtime environment [13–15]. With Freja all modules are
compiled specifically for debugging. The environment supports
most of Haskell 98, but type classes and IO are missing.

Hat, its predecessor Redex Trails, and Buddha are based on
program transformation [4, 17, 18, 23]. Every function is given an
extra argument to pass information needed to connect various parts
of the trace. Laziness, classes and higher-order functions make
restricting such a transformation to a subset of the code hard.

To determine dependencies between computation statements
Freja, Hat and Buddha transfer references to a location in the trace
from one function application to another using either a transforma-
tion of the code or a specialized run-time implementation. Consider
constructing a computation tree for the sorting program we used as
example in the introduction. To add a dependency from the isort
statement onto the insert statements, the trusted library function
foldr either needs to be transformed (Hat and Buddha) or com-
piled specifically for the debugging environment (Freja). Neither
recompiling nor transforming of trusted libraries is necessary with
our approach, because we use the cost centre stack from GHC’s
standard profiling environment.

To minimise overhead of profiling, GHC does not record com-
plete stacks but compresses stacks by truncating on recursion.
Compressed stacks provide less information forcing us to ap-
proximate dependencies. Allwood et al. [1] suggest an alternative
scheme of stack compression that maintains linear space overhead
while providing greater precision by telling us where labels are
dropped.

Gill [7] gives no semantics for HOOD. Pareja et al. [16] describe
a variation of the Mark I machine from Sestoft [20]. They allow
a tracer access to the state before and after each reduction step
without changing the heap or expression, trivially ensuring that a
traced program will produce the same result as the original one.
They implement a simplified tracer based on HOOD.

An alternative to tracing is an interactive breakpoint-style de-
bugger [10]. An interactive debugger is attractive, because its im-
plementation is relative straightforward. However, exposure to
evaluation order can be confusing. Furthermore, the debugger
changes the behaviour of the program when the user requests to
see the value of an otherwise unevaluated expression.

7 http://bysusanlin.com/raincat/

9. Conclusions and Future Work

All previous work on algorithmic debuggers for Haskell required
either a specialised run-time system or a transformation of all
modules including libraries. Resulting tools are therefore of limited
use for real-world Haskell programs. This paper describes a method
to construct a computation tree for algorithmic debugging that
needs only local annotations and GHC’s profiling run-time system.

Thorough testing of our approach with randomly generated ex-
pression gives us confidence in the soundness of using our com-
putation trees for algorithmic debugging. A formal proof and fur-
ther case studies of real-world programs would reinforce this con-
fidence. The semantics presented in this paper is a good starting
point for a proof.

Recently we constructed a small higher-order program for
which our debugger constructs an unexpected computation tree.
We have to investigate this problem.

Using our debugger on real-world programs already demon-
strated its value. However there is also room for improvement. To
find defects in programs that use monads, it will be useful, if a
sense of order is expressed in the computation tree. Cases where
either a wide but shallow or a narrow but deep computation tree is
constructed will benefit from using a starting point different from
the tree root. Our prototype’s free-browse mode allows to start else-
where, but large trees can be overwhelming. In future work we plan
to investigate searching for suspicious nodes.

Acknowledgments

We thank the anonymous reviewers for their thorough reviews and
insightful comments.

References

[1] T. O. Allwood, S. Peyton Jones, and S. Eisenbach. Finding the needle:
stack traces for GHC. In Proceedings of the symposium on Haskell,
pages 129–140. ACM, 2009.

[2] O. Chitil. Source-based trace exploration. In Proceedings of Im-

plementation and Application of Functional Languages, LNCS 3474.
Springer, 2005.

[3] O. Chitil and T. Davie. Comprehending finite maps for algorithmic
debugging of higher-order functional programs. In Proceedings of the

Principles and practice of declarative programming. ACM, 2008.

[4] O. Chitil, C. Runciman, and M. Wallace. Transforming Haskell for
tracing. In Implementation of Functional Languages, LNCS 2670,
pages 165–181. Springer, 2003.

[5] K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for Ran-
dom Testing of Haskell Programs. In Proceedings of the International

Conference on Functional Programming, volume 46, pages 268–279.
ACM, 2000.

[6] M. Faddegon and O. Chitil. Type Generic Observing. In Proceedings

of Trends in Functional Programming, LNCS 8843. Springer, 2014.

[7] A. Gill. Debugging Haskell by Observing Intermediate Data Struc-
tures. Electronic Notes in Theoretical Computer Science, 41, 2000.
ACM SIGPLAN Workshop on Haskell.

[8] J. Launchbury. A natural semantics for lazy evaluation. In Principles

of programming languages, pages 144–154. ACM, 1993.

[9] S. Marlow. Solving an old problem: How do we get a
stack trace in a lazy functional language? Haskell Implemen-
tors Workshop, http://community.haskell.org/~simonmar/
Stack-traces.pdf, 2012.

[10] S. Marlow, J. Iborra, B. Pope, and A. Gill. A lightweight interactive
debugger for Haskell. In Proceedings of the Haskell workshop, pages
13–24. ACM, 2007.

[11] R. G. Morgan and S. A. Jarvis. Profiling Large-Scale Lazy Functional
Programs. Journal of Functional Programming, 8(3):201–237, 1998.

[12] L. Naish. A declarative debugging scheme. Journal of Functional and

Logic Programming, 3, 1997.

[13] H. Nilsson. Declarative debugging for lazy functional languages. PhD
thesis, Linköpings universitet, 1998.

[14] H. Nilsson and P. Fritzson. Algorithmic debugging for lazy functional
languages. In Programming Language Implementation and Logic

Programming, pp. 385–399. Springer LNCS 631, 1992.

[15] H. Nilsson and J. Sparud. The evaluation dependence tree as a basis
for lazy functional debugging. Automated Software Engineering, 4(2):
121–150, 1997.

[16] C. Pareja, R. Pena, F. Rubio, and C. Segura. Adding traces to a lazy
monadic evaluator. In Computer Aided Systems Theory—EUROCAST

2001, pages 627–641. Springer LNCS 2178, 2001.

[17] B. Pope. Declarative Debugging with Buddha. In Advanced Func-

tional Programming, pages 273–308. Springer LNCS 3622, 2005.

[18] B. Pope. A Declarative Debugger for Haskell. PhD thesis, The
University of Melbourne, Australia, 2006.

[19] P. M. Sansom and S. L. Peyton Jones. Formally based profiling for
higher-order functional languages. ACM Transactions on Program-

ming Languages and Systems (TOPLAS), 19(2):334–385, 1997.

[20] P. Sestoft. Deriving a lazy abstract machine. Journal of Functional

Programming, 7(3):231–264, 1997.

[21] E. Y. Shapiro. Algorithmic program debugging. MIT press, 1983.

[22] J. Silva. A comparative Study of Algorithmic Debugging Strategies.
In Logic-Based Program Synthesis and Transformation, pp 143-159.
Springer LNCS 4407, 2007.

[23] J. Sparud and C. Runciman. Tracing lazy functional computations
using redex trails. In Programming Languages: Implementations,

Logics and Programs, pages 291–308. Springer LNCS 1292, 1997.

[24] P. Wadler. Why No One Uses Functional Languages. ACM SIGPLAN

Notices, 33(8):23–27, 1998. ISSN 0362-1340. doi: 10.1145/286385.
286387. Functional programming column.

[25] M. Wallace, O. Chitil, T. Brehm, and C. Runciman. Multiple-view
tracing for Haskell: a new Hat. In Proceedings of the 2001 ACM

SIGPLAN Haskell Workshop, 2001.

[26] A. Zeller. Why Programs Fail, 2nd Edition. Morgan Kaufmann, 2009.

[27] T. Zielonka and the GHC Team. http://www.haskell.org/ghc/
survey2005-summary, 2005.

A. Appendix: Deriving Computation Trees for

Programs with Higher-Order Functions

In the conclusion we wrote that we constructed a small higher-
order program for which our debugger constructs an unexpected
computation tree. The implementation of our debugger is more
complex than the test set-up, after studying use-cases of programs
producing very large traces we applied several optimizations. One
of these optimizations introduced a defect in Hoed. In the version
of Hoed we published on Hackage this problem is resolved. The
semantics we present in this paper was always correct.

The program that showed the defect in Hoed is interesting in
itself. Without defect a correct computation tree is produced that
is different from the two variations of computation trees which are
known to be sound for algorithmic debugging. In this appendix we
explain why this specific tree is nonetheless sound for algorithmic
debugging; and we explain how we did further testing to reinforce
our trust that in general the computation trees derived with our
method are sound for algorithmic debugging.

A.1 Example

Consider the following faulty program that unexpectedly prints
”oops”:

not :: Bool -> Bool
not b = case b of True -> True; False -> False

app :: (Bool->Bool) -> Bool -> Bool
app f b = f b

flip :: Bool -> Bool
flip b = app not b

main :: IO ()
main = print (if (flip False == True)

then "ok!" else "oops!")

In this program the argument f of the function app is another func-
tion. The representation in a computation statement of an argument
with a functional value can be intensional or extensional. The in-
tensional representation of a functional value is a function symbol
(e.g. “not”, or a partial application of a function symbol (e.g. “and
False”). The extensional representation of a functional value is
a finite map of arguments and results (e.g. “{\True -> False;
\False -> False}”).

Previous work showed soundness for algorithmic debugging
with either representation. However, depending on representation
a computation tree should be structured differently. Assume that in
the definition of a function g a higher order function h is applied to
a function f .

• The Evaluation Dependency Tree (EDT) uses an intensional
representation. The computation statement of h depends on the
computation statement of f .

• The Function Dependency Tree (FDT) uses an extensional rep-
resentation. The computation statement of g depends on the
computation statement of f .

In both cases the computation statement of g depends on the com-
putation statement of h.

An EDT and FDT have a different structure because a compu-
tation statement of a higher order function is judged different de-
pending on the chosen representation. Try for example to judge the
statements of our example program in the following two trees.

EDT of our example program:

.

flip False = False

app not False = False

not False = False
FDT of our example program:

.

flip False = False

not False = False

app {\False -> False} False = False

Mixing the structure of an FDT with the representation of an
EDT is not sound in general. Consider for example the following
tree:

.

flip False = False

app {\False -> False} False = False

not False = False

An algorithmic debugger using this tree could incorrectly conclude
that the fault is in the definition of the function flip rather than in
the definition of not:
flip False = False ? no
app {\False -> False} False = False ? yes
Fault detected in function flip!

It is trivial to show that any graph that is an over-approximation
of either the EDT or the FDT is sound for algorithmic debugging.
A graph that over-approximates a tree at least contains all arcs from
that tree. A computation graph that we find with our method con-
tains exactly the same nodes as the computation tree it approxi-
mates.

We represent a functional value as a finite map, therefore we
know that our computation graphs are sound when they are an over-
approximation of an FDT. A computation graph derived with our
method is in most but not all cases an over-approximation of the
FDT. In both cases they are sound. Let us consider the computation
graphs for two variations of our example program. In the first
case we annotate app, not and flip for tracing and find an over-
approximation of the FDT. In the second case we only annotate app
and not for tracing and find a tree that is not an over-approximation
of an FDT but that is still sound.

Case 1: flip, app and not are annotated

Evaluating the example program with flip, app and not annotated
produces a trace from which we derive the following computation
tree:

.

flip False = False

app {\False -> False} False = False

not False = False

This is an over-approximation of the FDT and thus sound for algo-
rithmic debugging. Where does the edge flip False = False
→ not False = False come from? Let us take a closer look at
the recorded cost centre stacks. We have:
cf = flip False = False with stack Sf = 〈〉
ca = app {\False -> False} False = False with
stack Sa = 〈“flip”〉
cn = not False = False with stack Sn = 〈“flip”, “app”〉
Two of the arcs are derived from potential stack push operations:

• Sf ⊳ “flip” = Sa therefore cf → ca

• Sa ⊳ “app” = Sn therefore ca → cn

The arc cf → cn that makes it an over-approximation of an FDT is
derived from a potential call operation:

• (Sa ⊳ “app”) ⊲⊳ (Sf ⊳ “flip”) = Sn therefore ca → cf and
cf → cn

The edge ca → cf is not part of the computation tree because we
remove back edges from the initial estimated computation graph to
eliminate cycles (see Section 5.1).

Case 2: app and not are annotated

When we do not annotate flip, evaluation gives us a trace from
which we derive the following tree:

.

app {\False -> False} False = False

not False = False

This computation graph seems worrying because it does not over-
approximate the FDT of this program. However, soundness of this
specific tree is easily demonstrated.

The actual fault is in the not function definition. The app-
statement is right. The not-statement is wrong and because the
statement has no children in the computation tree, the statement

is identified as faulty. Vice versa, if we assume app to be faulty and
not to be correct then the app statement is wrong and its child is
right. In all possible cases algorithmic debugging finds the actual
faulty slice, therefore this specific tree is sound.

A.2 Testing More

The computation trees produced by our method for the example
program are correct, but is this true in the general case? Testing in-
dicates this, but after studying the trees from the example program
we developed a concern about our testing method.

Nilsson already described how free variables and constants are a
challenge for algorithmic debugging. Known solutions are to either
sort by age or to explicitly track free variables. Our testing set-up
uses age sorting. We implemented this such that first algorithmic
debugging finds a list of possible faulty statements from which we
then select the first evaluated. We only verify if this statement is
actually faulty.

In theory this is a valid method, but determining which com-
putation statement is evaluated before which other computation
statement can be difficult. Algorithmic debugging with an unsound
computation tree can find both an actual faulty slice and a slice that
is incorrectly marked as faulty. We do not have any indication that
this is the case in our implementation, but what if age sorting leads
to a bias towards only verifying the actual faulty slice?

We added a modified variation of our testing set-up that tests
if all slices that algorithmic debugging identifies are faulty are
actually faulty. This is only true for expressions without variables
that are free outside an annotated program slice. For example a
program containing the following expression cannot be used for
testing:

f = observe "f" (\x -> let k = 3
g = observe "g" (\y -> k)
h = observe "h" (\y -> y)

in (g k) + (h k))

That does not mean we cannot allow free variables at all. The
following expression can be used to test our method:

f = observe "f" (\x -> let k = 3
g = observe "g" (\y -> y)
h = observe "h" (\y -> y)

in (g k) + (h k))

We believe the testing described in this paper, and verified by the
PLDI Artifact Evaluation Committee, shows that our method is
sound. Now we additionally tested with success that for more than
100000 well-formed expressions all slices identified as defective
are indeed defective for expressions without variables that are free
outside their respective program slices.

