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Abstract Here we report detections of Fe/Mg phyllosilicates and hydrated silica in discrete stratigraphic
units within the knobby terrains of Acidalia Planitia made using data acquired by Compact Reconnaissance
Imaging Spectrometer for Mars. Fe/Mg phyllosilicates are detected in knobs that were eroded during
southward retreat of the dichotomy boundary. A second later unit, now eroded to steep-sided platforms
embaying the knobs, contains hydrated silica, which may have formed via localized vapor weathering,
thin-film leaching, or transient water that resulted in surface alteration. These are then overlain by smooth
plains with small cones, hypothesized to be mud volcanoes which previous studies have shown to have no
hydrated minerals. In spite of Acidalia’s location within the putative northern ocean, collectively, the data
record a history of aqueous processes much like that in the southern highlands with progressively less
intensive aqueous chemical alteration from the Noachian to Amazonian.

1. Introduction

In contrast to the southern highlands, the northern plains have been topographically low throughout most of the
history of Mars and have served as a depositional center that preserves a geologic record from the Noachian to
present. The dichotomy between the southern highlands and northern plains formed in the pre-Noachian [Frey
et al, 2002], and the heavily cratered Noachian basement was subsequently overlain by Hesperian and Amazonian
lavas [Head et al., 2002] and sediments [Tanaka, 1997]. Presently, the northern plains are largely covered by the
Vastitas Borealis Formation generally thought to be sediments derived from highland rocks [Tanaka et al,, 2003;
Kreslavsky and Head, 2002]. An outstanding question is the prevalence of water in the lowlands, i.e, whether they
hosted an ancient ocean for long periods of Mars history [Parker et al., 1993; Head et al., 1999] or were only
intermittently flooded by discharge from outflow channels [Tanaka et al., 2001; Carr and Head, 2003]. Inspection
of hydrated minerals in the northern plains may help resolve the nature of aqueous processes experienced and
improve our understanding of the timing and prevalence of liquid water throughout Mars history.

Previous missions have characterized northern plains composition. Data from the Thermal Emission
Spectrometer onboard Mars Global Surveyor showed a relatively silica-rich surface compared to basalts found
in the southern highlands [Bandfield et al., 2000; Christensen et al., 2001], which was first proposed to originate
from andesitic volcanism [Bandfield et al., 2000] but later suggested to result from aqueous alteration of basalt,
ranging from intensive alteration to form phyllosilicates [Wyatt and McSween, 2002] to high-silica coatings on
basalt [Kraft et al.,, 2003; Michalski et al., 2005] or basaltic glass [Horgan and Bell, 2012]. In contrast to the southern
highlands, later visible/shortwave infrared OMEGA data showed no evidence for widespread hydrated silicates
in the north. Instead, the plains were characterized by a spectral signature typical of coated materials, which is
downward sloping to longer wavelengths [Mustard et al,, 2005]. Higher spatial resolution data from the
Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard Mars Reconnaissance Orbiter
enabled recent discoveries of mafic minerals (olivine and pyroxene) associated with crater walls and ejecta
[Salvatore et al., 2010] and hydrated silicate detections in large craters [Carter et al., 2010]. These observations
collectively suggested a stratigraphy of altered Noachian basement, covered by unaltered Hesperian lavas,
covered by later mantling materials; however, the association of all these materials with craters led to some
ambiguity in formation history, e.g., with regard to the timing of aqueous alteration. Here we examine the
composition and morphology of in-place stratigraphy in the Acidalia Planitia region to better understand the
history of geologic processes and aqueous alteration in Mars' northern plains.
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Figure 1. Geological context of the knobby terrains in Acidalia. Background image is a 38-image mosaic with data from
Context Camera (CTX); colored boxes show the CRISM image footprints with stars representing hydrated mineral detec-
tions. Red dots show the geographical distribution of cones. The knobby features are larger and are located both within and
to the north of the cones.

2. Geologic Context and Study Area

Acidalia Planitia terrains include small conical features and mound-shaped knobs with intriguing origins. The
knobs and cones (Figure 1) of Acidalia/Chryse Planitia were first recognized in Viking imagery [Frey et al.,
1979] and show diverse sizes and morphology. Here we refer to “knobs” as mound-like features that are
1-5 km across, while “cones” are subkilometer features usually with a summit pit (annotated in Figure 1). At
least five hypotheses have been proposed for the origin of the cones found within Amazonian terrains,
including cinder cones of volcanic origin [Frey and Jarosewich, 1982], rootless cones (or pseudocraters) formed
by lava flows interacting with groundwater [Frey et al., 1979; Frey and Jarosewich, 1981], pingos which are ice-
cored mounds formed due to freeze-thaw changes [Lucchitta, 1981], mud volcanoes formed by pressurized
release of a liquid slurry of fine-grained materials [Farrand et al., 2005; Oehler and Allen, 2010], or geysers and
springs [Farrand et al., 2005]. Possibly more than one process is involved in the formation of these features
[McGill, 2005]. Larger mounds were previously suggested to be eroded remnants from the southern highlands
[Tanaka, 1997; Nimmo and Tanaka, 2005; McGill, 2005], but recent studies using High-Resolution Imaging
Science Experiment (HiRISE) images gave rise to the hypothesis that they form as tuyas in close relationship to
chains of small cones within the plains, during volcano-ice interaction [Martinez-Alonso et al., 2011].

Previous works that looked at conical features using CRISM data showed ferrous and ferric variations and
hints of olivine and augite features but did not find hydrated minerals [Oehler and Allen, 2010; Farrand et al.,
2011]. Here we report hydrated mineral detections, including Fe/Mg phyllosilicates and hydrated silica that
are related to the knobby terrains near the eastern margin of the Acidalia Planitia. We also discuss the
formation mechanisms for these hydrated minerals and their implications for the geological processes the
northern plains have undergone.

3. Methods

Mineral detections are made using near-infrared spectra of wavelengths 1 pm to 2.6 um from data (Figure 1)
acquired by the CRISM imaging spectrometer. Image cubes, converted to CRISM I/F [Murchie et al., 2009],
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Figure 2. Representative spectra of the hydrated mineral detections in Acidalia knobby terrains. (a) top: Representative Fe/Mg phyllosilicate spectra in the scene.
bottom: Fe and Mg smectite laboratory spectra. (b) top: Two hydrated silica for each image. Pink one is the doublet material. bottom: Laboratory spectra of
minerals with 2.2 um absorption band. Light gray band shows the width of the 2.2 um band in the detections. (c) CRISM image FRT0000979D with colored parameter
[R: OLINDEX2, G: BD2200, B: D2300] showing composition overlain on a gray scale background. Note the different occurrences of the Fe/Mg phyllosilicates and the
hydrated silica and the linear, high-standing morphology of largest olivine exposure.

were processed using atmospheric correction and noise removal procedures described in Ehimann et al.
[2009]. Spectra derived from pixels in processed CRISM images were averaged over a small area and ratioed
to the average spectra of a spectrally “bland” region to highlight the different mineral phases within the
target region. High-resolution images taken by the Context Camera (CTX) [Malin et al., 2007], the High-
Resolution Imaging Science Experiment (HiRISE) [McEwen et al., 2007], and digital elevation models derived
from these using NASA Ames Stereo Pipeline [Moratto et al., 2010] were coregistered and overlain with CRISM
detections to better understand the geological settings.

4, Minerals Identified

Using the ratioed spectra, mafic minerals and hydrated silicates were identified by electronic transition
absorptions caused by Fe in octahedral sites and vibrational absorptions caused by overtones and
combinations related to H,O and OH in the mineral structure. Three distinct spectral classes were initially
identified using parameter maps [Pelkey et al., 2007] in the region near Acidalia/Chryse dichotomy: olivine
with a ~1 um broad band, Fe/Mg phyllosilicates with a ~2.3 pm absorption band, and hydrated silica with a
broad 2.2 pm absorption (Figure 2).

Olivine is identified by the broad absorption around 1 um due to electronic transitions. There are three
distinctive occurrences of olivine in the study area, and they are confined to local topographically high units
with a close relationship to Fe/Mg phyllosilicates.

Fe/Mg phyllosilicates are detected by the 2.3 um absorption, caused by Fe-OH or Mg-OH vibrations, along with
absorption features at 1.4 um due to the first overtone of OH vibration and 1.9 pm due to H,O combination
modes. They most likely fall into the smectite group, where the Fe end-member of the smectite group
(nontronite) has a band centered at 2.29 pm, while the Mg end-member (saponite) is centered at 2.31-2.32 um
(Figure 2a) [Hunt, 1977; Bishop et al., 2002a; Clark et al., 1990; Frost et al., 2002]. The CRISM data reported here
fall in between those two end-members. Materials with similar spectral properties are widespread in the
southern highlands [Ehlmann et al., 2009, 2011; Poulet et al., 2007; Carter et al., 2013], including elsewhere in
Arabia Terra near the dichotomy boundary [Noe Dobrea et al., 2010]. There are also strong variations in the
depth of 1.9 um absorption band, indicating variability in H,O content. Differences in the slope of the spectra
shortward of 1.9 um are possibly due to mixture with a ferrous component, e.g., ferrous olivine that is found
in the vicinity, or another Fe-bearing alteration mineral [Bishop et al., 2008; McKeown et al., 2009].
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Figure 3. Unit relationship shown on HiRISE imagery. (a, b) Stereo anaglyph images from HiRISE PSP_009985_2205 and
PSP_009708_2205 over the same region as CRISM image FRT0000979D. (c) Zoomed-in HiRISE stereo showing the embayment
relationship between the surrounding plains unit (left) and the knobs (right). (d) Occurrences of hydrated silica in HiRISE
image PSP_002166_2205 with mineral identified from CRISM FRTO0017F45. (e, f) The occurrences of Fe/Mg phyllosilicates
on the slope of knobs. Hydrated silica detections are found at some locations within the surrounding plains unit, occurring
(g) near an impact crater, (h) on local topographical high, and on inflection points of slopes in the plain unit (Figure 3d).

Hydrated silica is detected in three images in the Acidalia region (Figure 1) identified by a characteristic
vibrational absorption band at ~2.21 um (Figure 2b), caused by overlapping bands at 2.21 and 2.26 pm from
Si-OH and H-bound Si-OH, respectively [Anderson and Wickersheim, 1964; Milliken et al., 2008; Skok et al., 2010;
Ehlmann et al., 2009]. Absorptions at 1.4 and 1.9 um due to H,O are also present. The CRISM data all show
a characteristic wide 2.2 um absorption extending from 2.16 to 2.41 um, distinct from Al-OH vibrational
absorptions (e.g., in montmorillonite), which are much narrower (Figure 2b). Studies of laboratory reflectance
spectra [Anderson and Wickersheim, 1964; Rice et al., 2013] of silica-rich materials show that the H,0 content
and form of H,O/OH present in silica-rich materials can significantly affect the band center (e.g., 1.41 to 1.38 um)
and band ratios (e.g., 2.21/2.26 um) of major absorption features, for example, allowing hydrated glass to be
distinguished from opal. We observe shifts in the absorption near 1.4 pm in the CRISM spectra, possibly related
to differences in the form of H,O/OH in the high-silica phase (Figure 2b). However, in Acidalia, CO,
atmospheric bands obscure the details of the 1.9 um absorptions, and the 1.4 and 2.2 um band centers
occur at wavelengths found in multiple types of high-silica phases, so we are not able to make unique
interpretation of hydrated silica phase from the spectral analysis.

In one location, among the hydrated minerals mapped with the band depth at 2.2 pm (Figure 2b), is a
spectrum similar to “doublet material” found in Valles Marineris [Roach et al., 2010] with absorption features
at ~1.42 um, ~1.92 pm, and a sharp doublet at 2.205-2.218um and 2.265-2.278 um. Mixtures of Fe/Mg
smectite and hydrated silica were considered as both are end-members present in our scene, but the
Fe/Mg-OH wavelength center is at longer wavelengths. Sulfates like jarosite seem to be a close match, but the
doublet is shifted to longer wavelengths in CRISM data versus terrestrial laboratory data. A plausible model
would be poorly crystalline Fe-SiO, phase due to either acid leaching or neoformation of a smectite as proposed
in Roach et al. [2010].

5. Geomorphic Setting

In the survey of Acidalia Planitia, of special interest are the three images with hydrated mineral detections.
Within the knobby terrains, three morphologically different units can be discerned on the basis of distinct
morphology and mineralogy (Figures 2¢, 3a, and 3b). The first unit consists of the knobs where Fe/Mg
phyllosilicates and olivine are detected in discontinuous patches on the slope and ridges (Figures 3e-3f; see
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Figures 3a and 3b for context) with no detections on the surrounding units. Olivine is also found within a 2.5 km
east-west linear feature (~100 m higher than surrounding unit according to Mars Orbiter Laser Altimeter and
the HiRISE digital elevation model (DEM)). Detections of both Fe/Mg phyllosilicates and olivine are patchily
distributed in the knobs rather than pervasively. There is no preferred direction on the knob for Fe/Mg
phyllosilicates or olivines to occur, and no obvious cover is being removed to reveal smectite or olivine-bearing
materials, which indicate the patchiness may be a characteristic of the bedrock itself.

The knobs are embayed by a surrounding steep-sided plains unit (Figure 3c), which forms a platform around
the knobs and within which the hydrated silica is detected (Figures 3a and 3b). There is no silica detection

related to the knobs themselves. Instead, silica is restricted to local topographic highs or inflections in slope in
the lower unit that embays the knobs. The detections themselves are discontinuous and patchy (Figures 3d,
39, and 3h), but the overall distribution extends to three CRISM images ~160 km apart. The occurrence of the
“doublet” material coexists with hydrated silica in the unit embaying the knobs.

In total there are nine discrete detections of Fe/Mg phyllosilicates and 11 detections of hydrated silica in the
high-resolution data from the 300 km? study area. The total area of Fe/Mg phyllosilicates covers about 1.041 km?
and hydrated silica ~ 0.71 km?. The third unit is the overlying smooth plains unit with subkilometer cones, which
is the youngest terrain in this region and has no hydrated mineral detections.

6. Discussion

Two hypotheses for the formation of the knobs have been proposed: terrestrial tuyas (emergent subice
volcanoes) or eroded remnants of the southern highlands-northern lowlands topographic dichotomy. Tuya
formation was recently proposed because some of the bigger mesas form in chains with small conical
features and might have been formed in a volcanic setting with glacier on top of the surface [Martinez-Alonso
et al., 2011]. Extensive alteration to hydrated minerals and pillow lavas would be expected in such a scenario
with melting of the ice sheet during eruption, as is typical for terrestrial tuyas [Bishop et al., 2002b]. The
observed patchiness of hydrated minerals and existence of apparently unaltered olivine are not consistent
with large-scale volcano-ice interaction. On the other hand, Fe/Mg phyllosilicates are the most common
hydrated mineral of Noachian southern highland materials, and patchiness of alteration is a characteristic of
the highland phyllosilicates [Mustard et al., 2008], perhaps caused by preferential alteration along fractures
during hydrothermalism or diagenesis. Consequently, the mineralogical composition is consistent with
Acidalia’s knobs being eroded Noachian highlands material, in agreement with Tanaka's [2005] geologic
mapping. The olivine-rich linear feature might be an eroded remnant of a dike.

The overlying and embaying units are more enigmatic. These units bearing hydrated silica are disconnected
with the phyllosilicate-bearing knobs and likely formed in a different aqueous geochemical environment. The
observed patchiness of the silica detections might result from the process that generated the hydrated
mineral, i.e., concentration in localized areas, or might be the result of detection bias due to mantling or
dissimilar rock textures. Here we favor that the detections are revealing the uneven distribution of hydrated
silica within the surrounding plains unit, for in HIiRISE images no mantling materials are observed, and the
surfaces next to the hydrated silica detections with spectrally neutral signatures have similar textures at the
resolution of HiRISE images.

Due to the highly mobile nature of silica [McLennan, 2003], the detected hydrated silica could form in multiple
types of environments with varying amounts of water (Table 1). These include forming as hydrated silicate glass
in volcanic ash/glass deposit [e.g., Stolper, 1982], vapor weathering from acid gases [e.g., Golden et al., 2005;
Schiffman et al., 2006; Seelos et al., 2010], thin-film leaching and coating formation [e.g., Chemtob et al., 2010;
Golden et al., 2005,], in situ silicate weathering with liquid water [e.g., McLennan, 2003; Squyres et al., 2008], and
direct precipitation from a silica-saturated water body [e.g., Rodgers et al., 2004; Preston et al., 2008]. For each of
these five scenarios, deposit characteristics would differ, in terms of type of silica, thickness, distribution, and
relation to topography (Table 1). The observed patchiness and discontinuous nature of silica detections in
Acidalia make it unlikely the materials formed as a volcanic ash deposit, or from igneous melts, in which case the
silica would be more widely distributed and definitively associated with a particular unit. The occurrence at local
topographic highs is not consistent with the hypothesis of direct precipitation in a standing body of water.
Therefore the plausible conditions for hydrated silica to form are intermediate with regard to implications for
the prevalence of water: vapor weathering, thin-film leaching, or silicate weathering by surface or subsurface
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Table 1. Formation Scenarios of Hydrated Silica

Amount
Formation Scenarios of Water Type of Silica Continuity Distribution Thickness Topography
Ash/igneous melt Low Hydrated silicate glass Continuous Regional, related m-km Fills topography
to volcanism
Vapor weathering Opal A, Opal C/CT Discontinuous Local, related pm-mm Independent
to vapor fissures of topography
Thin-film leaching Hydrated silicate glass Discontinuous Regional-local pm-mm Independent
Opal A, Opal C/CT of topography
Silicate weathering Opal A, Opal C/CT Patchy to Continuous Regional-local mm-m Follows
topographic surface
Direct precipitation Opal A, Opal C/CT Continuous Patchy, depending m-km Concentrated in
High Chalcedony on water body size topographical low

water. The presence of the “doublet” material in the same unit as the hydrated silica may indicate an acidic

environment [Roach et al., 2010].

These hydrated minerals have put further constraints on the origin of the knobs and surrounding unit and
erosional and depositional processes within the northern plains. The integrated compositional stratigraphy
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Figure 4. Schematic of the geological history of the knobby terrains
in Acidalia.

of the knobby terrains of Acidalia implies a
geological history that starts from ancient
Noachian crustal materials (Figure 4):

First, ancient Noachian (or pre-Noachian)
crust was altered into patchily distributed
phyllosilicates. As the dichotomy boundary
was modified by mass wasting, impacts,
outflow channels, and aeolian processes, the
Noachian crust was fractured, eroded into
discrete but spatially aggregated knobs, and
the overall dichotomy boundary retreated
southward. For similar knobby morphology
elsewhere, the “fretting” process can be
initiated by fractures, subsurface piping,
void collapse, or significant aeolian deflation
carving into friable sediments [Irwin et al.,
2004]. In Acidalia, however, the knobs are
likely more competent than friable
sediments and have a higher dielectric
constant than most of the rest of the
lowland materials [Mouginot et al., 2012].

Resurfacing processes including mass
wasting and volcanic activity then created
sediment and lavas that fill in the northern
plains. High-resolution HiRISE stereo images
show that the steep-sided platform unit that
surrounds the knobs has diverse texture and
undulating topography, consistent with a
complex sedimentary or volcanic history.
Localized aqueous activity resulted in the
formation of hydrated silica and the
hydrated doublet material in the platform
unit that surrounds the knobs. Thin-film
leaching, vapor weathering, or in situ
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weathering of silicates in acidic environment may be responsible for the localized aqueous events. The
geographic restriction of silica disfavors extensive water bodies (e.g., from interaction with an ocean or an ice
sheet), instead favoring environments like springs or steam vents.

Then, sediments undergo collapse and create scarps that define the platform unit that surrounds the knobs.
This boundary creates a bench-like morphology and is found to be spatially correlated with local depressions,
which are proposed to be formed by volatile-driven collapse and/or basal sapping [Tanaka et al., 2003] rather
than wave-cut erosion [Parker et al., 1993]. In this analysis and in previous studies [Farrand et al., 2011; Oehler
and Allen, 2010], the topographically lower unit with pitted cones and polygonal troughs lacks hydrated
silicate mineral detections, which suggests that the lower unit formed after a decrease in the prevalence or
longevity of near-surface liquid water. Collectively, this succession of Noachian, Fe/Mg phyllosilicate-bearing
materials, younger hydrated silica-bearing materials, and still younger terrains with no hydrated silicate
detections is similar to time succession of minerals found in the southern highlands, in spite of evidence for
more volcano-ice interaction and location of the study area within the basin of the proposed northern ocean.

7. Conclusions

Fe/Mg phyllosilicates and hydrated silica have been detected within discrete strata in the knobby terrains in
Acidalia and related to units where different morphologic features are present. Fe/Mg phyllosilicates and
olivine occur in knobs that are inferred to be eroded remnants from the southern highlands. They are
embayed by a platform of surrounding plains with hydrated silica detections, which formed later in a
different, possibly more acidic aqueous environment where the availability of water was geographically
localized. The hydrated silica detected may have formed via vapor weathering, thin-film leaching, or silicate
weathering by liquid water, while the scenarios of volcanic ash/igneous melt deposit and direct precipitation
from water bodies are excluded based on the topography and distribution. This study of Acidalia’s
compositional stratigraphy refines our understanding of the geologic history of Mars’ northern plains and
together indicates a declining prevalence of aqueous alteration within the northern lowlands through time.

References

Anderson, J. H., and K. A. Wickersheim (1964), Near infrared characterization of water and hydroxyl groups on silica surfaces, Surf. Sci., 2,
252-260, doi:10.1016/0039-6028(64)90064-0.

Bandfield, J. L., V. E. Hamilton, and P. R. Christensen (2000), A global view of Martian surface compositions from MGS-TES, Science, 287(5458),
1626-1630, doi:10.1126/science.287.5458.1626.

Bishop, J., J. Madejova, P. Komadel, and H. Froschl (2002a), The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of
dioctahedral smectites, Clay Miner., 37(4), 607-616, doi:10.1180/0009855023740063.

Bishop, J. L., P. Schiffman, and R. Southard (2002b), Geochemical and mineralogical analyses of palagonitic tuffs and altered rinds of pillow
basalts in Iceland and applications to Mars, Geol. Soc. London Spec. Publ., 202(1), 371-392, doi:10.1144/gsl.sp.2002.202.01.19.

Bishop, J. L., et al. (2008), Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars, Science, 321(5890), 830-833.

Carter, J,, F. Poulet, J. P. Bibring, and S. Murchie (2010), Detection of hydrated silicates in crustal outcrops in the northern plains of Mars,
Science, 328(5986), 1682-1686, doi:10.1126/science.1189013.

Carter, J., F. Poulet, J. P. Bibring, N. Mangold, and S. Murchie (2013), Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging
spectrometers: Updated global view, J. Geophys. Res. Planets, 118, 831-858, doi:10.1029/2012JE004145.

Carr, M. H., and J. W. Head (2003), Oceans on Mars: An assessment of the observational evidence and possible fate, J. Geophys. Res., 108(E5),
5042, doi:10.1029/2002JE001963.

Chemtob, S. M,, B. L. Jolliff, G. R. Rossman, J. M. Eiler, and R. E. Arvidson (2010), Silica coatings in the Ka'u Desert, Hawaii, a Mars analog terrain:
A micromorphological, spectral, chemical, and isotopic study, J. Geophys. Res., 115, E04001, doi:10.1029/2009JE003473.

Christensen, P. R, et al. (2001), Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface
science results, J. Geophys. Res., 106(E10), 23,823-23,871, doi:10.1029/2000JE001370.

Clark, R. N., T. V. V. King, M. Klejwa, and G. A. Swayze (1990), High spectral resolution reflectance spectroscopy of minerals, J. Geophys. Res.,
95(B8), 12,653-12,680.

Ehlmann, B. L, et al. (2009), Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and
implications for aqueous alteration, J. Geophys. Res., 114, E00d08, doi:10.1029/2009JE003339.

Ehlmann, B. L., J. F. Mustard, S. L. Murchie, J. P. Bibring, A. Meunier, A. A. Fraeman, and Y. Langevin (2011), Subsurface water and clay mineral
formation during the early history of Mars, Nature, 479(7371), 53-60, doi:10.1038/Nature10582.

Farrand, W. H,, L. R. Gaddis, and L. Keszthelyi (2005), Pitted cones and domes on Mars: Observations in Acidalia Planitia and Cydonia Mensae
using MOC, THEMIS, and TES data, J. Geophys. Res., 110, 5005, doi:10.1029/2004JE002297.

Farrand, W. H., M. D. Lane, B. R. Edwards, and R. A. Yingst (2011), Spectral evidence of volcanic cryptodomes on the northern plains of Mars,
Icarus, 211(1), 139-156, doi:10.1016/J.Icarus.2010.09.006.

Frey, H., B. L. Lowry, and S. A. Chase (1979), Pseudo-craters on Mars, J. Geophys. Res., 84, 8075-8086, doi:10.1029/Jb084ib14p08075.

Frey, H., and M. Jarosewich (1981), Martian pseudocraters: Searching the northern plains, Lunar and Planetary Institute Science XIl,
pp. 297-299. Abstract.

Frey, H., and M. Jarosewich (1982), Sub-kilometer Martian volcanos—Properties and possible terrestrial analogs, J. Geophys. Res., 87(Nb12),
9867-9879, doi:10.1029/Jb087ib12p09867.

PAN AND EHLMANN

©2014. American Geophysical Union. All Rights Reserved. 1896


http://dx.doi.org/10.1016/0039&hyphen;6028(64)90064&hyphen;0
http://dx.doi.org/10.1126/science.287.5458.1626
http://dx.doi.org/10.1180/0009855023740063
http://dx.doi.org/10.1144/gsl.sp.2002.202.01.19
http://dx.doi.org/10.1126/science.1189013
http://dx.doi.org/10.1029/2012JE004145
http://dx.doi.org/10.1029/2002JE001963
http://dx.doi.org/10.1029/2009JE003473
http://dx.doi.org/10.1029/2000JE001370
http://dx.doi.org/10.1029/2009JE003339
http://dx.doi.org/10.1038/Nature10582
http://dx.doi.org/10.1029/2004JE002297
http://dx.doi.org/10.1016/J.Icarus.2010.09.006
http://dx.doi.org/10.1029/Jb084ib14p08075
http://dx.doi.org/10.1029/Jb087ib12p09867

@AG U Geophysical Research Letters 10.1002/2014GL059423

Frey, H. V., J. H. Roark, K. M. Shockey, E. L. Frey, and S. E. H. Sakimoto (2002), Ancient lowlands on Mars, Geophys. Res. Lett., 29(10), 1384,
doi:10.1029/2001GL013832.

Frost, R. L., J. T. Kloprogge, and Z. Ding (2002), Near-infrared spectroscopic study of nontronites and ferruginous smectite, Spectrochim. Acta
A, 58(8), 1657-1668, doi:10.1016/51386-1425(01)00637-0.

Golden, D.C,, D. W. Ming, R.V. Morris, and S. A. Mertzman (2005), Laboratory-simulated acid-sulfate weathering of basaltic materials: Implications
for formation of sulfates at Meridiani Planum and Gusev Crater, Mars, J. Geophys. Res., 110, E12s07, doi:10.1029/2005JE002451.

Head, J. W, H. Hiesinger, M. A. Ivanov, M. A. Kreslavsky, S. Pratt, and T. B. J (1999), Possible ancient oceans on Mars: Evidence from Mars
Orbiter Laser Altimeter data, Science, 286(5447), 2134-2137.

Head, J. W., M. A. Kreslavsky, and S. Pratt (2002), Northern lowlands of Mars: Evidence for widespread volcanic flooding and tectonic
deformation in the Hesperian Period, J. Geophys. Res., 107(E1), 5003, doi:10.1029/2000JE001445.

Horgan, B., and J. F. Bell Il (2012), Widespread weathered glass on the surface of Mars, Geology, 40(5), 391-394, doi:10.1130/932755.1.

Hunt, G. R. (1977), Spectral signatures of particulate minerals in visible and near infrared, Geophysics, 42(3), 501-513, doi:10.1190/1.1440721.

Irwin, R. P, T. R. Watters, A. D. Howard, and J. R. Zimbelman (2004), Sedimentary resurfacing and fretted terrain development along the
crustal dichotomy boundary, Aeolis Mensae, Mars, J. Geophys. Res., 109, E09011, doi:10.1029/2004JE002248.

Kraft, M. D., J. R. Michalski, and T. G. Sharp (2003), Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations
for Martian surface mineralogy, Geophys. Res. Lett., 30(24), 2288, doi:10.1029/2003GL018848.

Kreslavsky, M. A., and J. W. Head (2002), Fate of outflow channel effluents in the northern lowlands of Mars: The Vastitas Borealis Formation as
a sublimation residue from frozen ponded bodies of water, J. Geophys. Res., 107(E12), 5121, doi:10.1029/2001JE001831.

Lucchitta, B. K. (1981), Mars and Earth—Comparison of cold-climate features, Icarus, 45(2), 264-303, doi:10.1016/0019-1035(81)90035-X.

Malin, M. C,, et al. (2007), Context Camera Investigation on board the Mars Reconnaissance Orbiter, J. Geophys. Res., 112, E05504, doi:10.1029/
2006JE002808.

McEwen, A. S., et al. (2007), Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE), J. Geophys. Res., 112, E05502,
doi:10.1029/2005JE002605.

McKeown, N. K., J. L. Bishop, E. Z. N. Dobrea, B. L. Ehimann, M. Parente, J. F. Mustard, S. L. Murchie, G. A. Swayze, J. P. Bibring, and E. A. Silver
(2009), Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and
implications for past climate, J. Geophys. Res., 114, doi:10.1029/2008JE003301.

McGill, G. E. (2005), Geologic map of Cydonia Mensae-southern Acidalia Planitia, Mars: Quadrangles 40007, 40012, 40017, 45007, 45012, and
45017, U.S. Geol. Survey, Geol. Invest. Map 1-2811.

McLennan, S. M. (2003), Sedimentary silica on Mars, Geology, 31(4), 315-318, doi:10.1130/0091-7613(2003)031 < 0315:Ssom > 2.0.Co;2.

Martinez-Alonso, S., M. T. Mellon, M. E. Banks, L. P. Keszthelyi, A. S. McEwen, and H. Team (2011), Evidence of volcanic and glacial activity in
Chryse and Acidalia Planitiae, Mars, Icarus, 212(2), 597-621, doi:10.1016/J.Icarus.2011.01.004.

Michalski, J. R., M. D. Kraft, T. G. Sharp, L. B. Williams, and P. R. Christensen (2005), Mineralogical constraints on the high-silica Martian surface
component observed by TES, Icarus, 174(1), 161-177, doi:10.1016/J.Icarus.2004.10.022.

Milliken, R. E., et al. (2008), Opaline silica in young deposits on Mars, Geology, 36(11), 847-850, doi:10.1130/G24967a.1.

Moratto, Z. M., Broxton, M. J,, Beyer, R. A, Lundy, M. and K. Husmann (2010), Ames Stereo Pipeline, NASA’s Open Source Automated
Stereogrammetry software, 41st LPSC, 2364.

Mouginot, J., A. Pommerol, P. Beck, W. Kofman, and S. M. Clifford (2012), Dielectric map of the Martian northern hemisphere and the nature
of plain filling materials, Geophys. Res. Lett., 39, L02202, doi:10.1029/2011GL050286.

Murchie, S. L., et al. (2009), Compact Reconnaissance Imaging Spectrometer for Mars investigation and data set from the Mars
Reconnaissance Orbiter’s primary science phase, J. Geophys. Res., 114, E00d07, doi:10.1029/2009JE003344.

Mustard, J. F., F. Poulet, A. Gendrin, J. P. Bibring, Y. Langevin, B. Gondet, N. Mangold, G. Bellucci, and F. Altieri (2005), Olivine and pyroxene,
diversity in the crust of Mars, Science, 307(5715), 1594-1597, doi:10.1126/science.1109098.

Mustard, J. F., et al. (2008), Hydrated silicate minerals on mars observed by the Mars reconnaissance orbiter CRISM instrument, Nature,
454(7202), 305-309, doi:10.1038/Nature07097.

Nimmo, F., and K. Tanaka (2005), Early crustal evolution of mars, Annu. Rev. Earth Planet. Sci., 33, 133-161, doi:10.1146/Annurev.
Earth.33.092203.122637.

Noe Dobrea, E. Z, et al. (2010), Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/
west Arabia Terra area: Constraints on geological origin, J. Geophys. Res., 115, EO0D19, doi:10.1029/2009JE003351.

Oehler, D. Z,, and C. C. Allen (2010), Evidence for pervasive mud volcanism in Acidalia Planitia, Mars, Icarus, 208(2), 636-657, doi:10.1016/J.
Icarus.2010.03.031.

Parker, T. J., D. S. Gorsline, R. S. Saunders, D. C. Pieri, and D. M. Schneeberger (1993), Coastal geomorphology of the Martian northern plains,
J. Geophys. Res., 98(E6), 11,061-11,078, doi:10.1029/93JE00618.

Pelkey, S. M., et al. (2007), CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance, J. Geophys.
Res., 112, E08s14, doi:10.1029/2006JE002831.

Poulet, F.,, C. Gomez, J.-P. Bibring, Y. Langevin, B. Gondet, P. Pinet, G. Belluci, and J. Mustard (2007), Martian surface mineralogy from
Observatoire pour la Minéralogie, I'Eau, les Glaces et I'Activité on board the Mars Express spacecraft (OMEGA/MEX): Global mineral maps,
J. Geophys. Res., 112, E08502, doi:10.1029/2006JE002840.

Preston, L. J,, G. K. Benedix, M. J. Genge, and M. A. Sephton (2008), A multidisciplinary study of silica sinter deposits with applications to silica
identification and detection of fossil life on Mars, Icarus, 198(2), 331-350, doi:10.1016/J.Icarus.2008.08.006.

Rice, M. S,, E. A. Cloutis, J. F. Bell, D. L. Bish, B. H. Horgan, S. A. Mertzman, M. A. Craig, R. W. Renaut, B. Gautason, and B. Mountain (2013),
Reflectance spectra diversity of silica-rich materials: Sensitivity to environment and implications for detections on Mars, Icarus, 223(1),
499-533, doi:10.1016/J.Icarus.2012.09.021.

Roach, L. H., J. F. Mustard, G. Swayze, R. E. Milliken, J. L. Bishop, S. L. Murchie, and K. Lichtenberg (2010), Hydrated mineral stratigraphy of lus
Chasma, Valles Marineris, Icarus, 206(1), 253-268, doi:10.1016/J.Icarus.2009.09.003.

Rodgers, K. A, et al. (2004), Silica phases in sinters and residues from geothermal fields of New Zealand, Earth Sci. Rev., 66(1-2), 1-61,
doi:10.1016/j.earscirev.2003.10.001.

Salvatore, M. R, J. F. Mustard, M. B. Wyatt, and S. L. Murchie (2010), Definitive evidence of Hesperian basalt in Acidalia and Chryse Planitiae,
J. Geophys. Res., 115, E07005, doi:10.1029/2009JE003519.

Seelos, K. D., R. E. Arvidson, B. L. Jolliff, S. M. Chemtob, R. V. Morris, D. W. Ming, and G. A. Swayze (2010), Silica in a Mars analog environment:
Ka'u Desert, Kilauea Volcano, Hawaii, J. Geophys. Res., 115, E00d15, doi:10.1029/2009JE003347.

Schiffman, P., R. Zierenberg, N. Marks, J. L. Bishop, and M. D. Dyar (2006), Acid-fog deposition at Kilauea Volcano: A possible mechanism for
the formation of siliceous-sulfate rock coatings on Mars, Geology, 34(11), 921-924, doi:10.1130/G22620a.1.

PAN AND EHLMANN

©2014. American Geophysical Union. All Rights Reserved. 1897


http://dx.doi.org/10.1029/2001GL013832
http://dx.doi.org/10.1016/S1386&hyphen;1425(01)00637&hyphen;0
http://dx.doi.org/10.1029/2005JE002451
http://dx.doi.org/10.1029/2000JE001445
http://dx.doi.org/10.1130/g32755.1
http://dx.doi.org/10.1190/1.1440721
http://dx.doi.org/10.1029/2004JE002248
http://dx.doi.org/10.1029/2003GL018848
http://dx.doi.org/10.1029/2001JE001831
http://dx.doi.org/10.1016/0019&hyphen;1035(81)90035&hyphen;X
http://dx.doi.org/10.1029/2006JE002808
http://dx.doi.org/10.1029/2006JE002808
http://dx.doi.org/10.1029/2005JE002605
http://dx.doi.org/10.1029/2008JE003301
http://dx.doi.org/10.1130/0091&hyphen;7613(2003)031&thinsp;<&thinsp;0315:Ssom&thinsp;>&thinsp;2.0.Co;2
http://dx.doi.org/10.1130/0091&hyphen;7613(2003)031&thinsp;<&thinsp;0315:Ssom&thinsp;>&thinsp;2.0.Co;2
http://dx.doi.org/10.1130/0091&hyphen;7613(2003)031&thinsp;<&thinsp;0315:Ssom&thinsp;>&thinsp;2.0.Co;2
http://dx.doi.org/10.1016/J.Icarus.2011.01.004
http://dx.doi.org/10.1016/J.Icarus.2004.10.022
http://dx.doi.org/10.1130/G24967a.1
http://dx.doi.org/10.1029/2011GL050286
http://dx.doi.org/10.1029/2009JE003344
http://dx.doi.org/10.1126/science.1109098
http://dx.doi.org/10.1038/Nature07097
http://dx.doi.org/10.1146/Annurev.Earth.33.092203.122637
http://dx.doi.org/10.1146/Annurev.Earth.33.092203.122637
http://dx.doi.org/10.1029/2009JE003351
http://dx.doi.org/10.1016/J.Icarus.2010.03.031
http://dx.doi.org/10.1016/J.Icarus.2010.03.031
http://dx.doi.org/10.1029/93JE00618
http://dx.doi.org/10.1029/2006JE002831
http://dx.doi.org/10.1029/2006JE002840
http://dx.doi.org/10.1016/J.Icarus.2008.08.006
http://dx.doi.org/10.1016/J.Icarus.2012.09.021
http://dx.doi.org/10.1016/J.Icarus.2009.09.003
http://dx.doi.org/10.1016/j.earscirev.2003.10.001
http://dx.doi.org/10.1029/2009JE003519
http://dx.doi.org/10.1029/2009JE003347
http://dx.doi.org/10.1130/G22620a.1

@AG U Geophysical Research Letters 10.1002/2014GL059423

Skok, J. R, J. F. Mustard, S. L. Murchie, M. B. Wyatt, and B. L. Ehlmann (2010), Spectrally distinct ejecta in Syrtis Major, Mars: Evidence for
environmental change at the Hesperian-Amazonian boundary, J. Geophys. Res., 115, EOOD14, doi:10.1029/2009JE003338.

Squyres, S. W., et al. (2008), Detection of silica-rich deposits on Mars, Science, 320(5879), 1063-1067, doi:10.1126/Science.1155429.

Stolper, E. (1982), Water in silicate glasses: An infrared spectroscopic study, Contrib. Mineral. Petrol., 81, 1-17, doi:10.1007/BF00371154.

Tanaka, K. L. (1997), Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars, J. Geophys. Res., 102(E2), 4131-4149,
doi:10.1029/96JE02862.

Tanaka, K. L., W. B. Banerdst, J. S. Kargel, and N. Hoffman (2001), Huge, CO2-charged debris-flow deposit and tectonic sagging in the northern
plains of Mars, Geology, 29(5), 427-430.

Tanaka, K. L., J. A. Skinner, T. M. Hare, T. Joyal, and A. Wenker (2003), Resurfacing history of the northern plains of Mars based on geologic
mapping of Mars Global Surveyor data, J. Geophys. Res., 108(E4), 8043, doi:10.1029/2002JE001908.

Tanaka, K. L., J. A. Skinner, and T. M. Hare (2005), Geologic Map of the northern plains of Mars, U.S. Department of Interior, U.S. Geological Survey.

Wyatt, M. B, and H. Y. McSween (2002), Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars,
Nature, 417, 263-266.

PAN AND EHLMANN ©2014. American Geophysical Union. All Rights Reserved. 1898


http://dx.doi.org/10.1029/2009JE003338
http://dx.doi.org/10.1126/Science.1155429
http://dx.doi.org/10.1007/BF00371154
http://dx.doi.org/10.1029/96JE02862
http://dx.doi.org/10.1029/2002JE001908


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


