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Abstract. The microscopic geometry of white matter carries rich infor-
mation about brain function in health and disease. A key challenge for
medical imaging is to estimate microstructural features noninvasively.
One important parameter is the axon diameter, which correlates with
the conduction time delay of action potentials and is affected by various
neurological disorders. Diffusion magnetic resonance (MR) experiments
are the method of choice today when we aim to recover the axon diameter
distribution, although the technique requires very high gradient strengths
in order to assess nerve fibers with one micrometer or less in diameter.
In practice in-vivo brain imaging is only sensitive to the largest axons,
not least due to limitations in the human physiology which tolerates
only moderate gradient strengths. This work studies, from a theoretical
perspective, the feasibility of T2-spectroscopy to resolve submicrometer
tissue structures. Exploiting the surface relaxation effect, we formulate
a plausible biophysical model relating the axon diameter distribution to
the T2-weighted signal, which is based on a surface-to-volume ratio ap-
proximation of the Bloch–Torrey equation. Under a certain regime of
bulk and surface relaxation coefficients, our simulation results suggest
that it might be possible to reveal axons smaller than one micrometer in
diameter.

1 Introduction

The extrinsic connections, which link the cortical areas and subcortical nuclei
distributed over the brain, are established by the axons. These cellular extensions
of the neurons carry the neural signals over long distances of up to several
centimeters, thereby leaving the gray matter and forming the white matter. We
henceforth use the terms axons and (nerve) fibers interchangeably. An important
aim of human brain research is to explore the wiring scheme of the long-range
pathways, but also to characterize their biophysical properties such as the axon
diameter. Most of the fibers in the central nervous system have a diameter
between 0.2 and 20µm. For instance, axons in the human corpus callosum larger
than 1µm, 3µm, and 5µm in diameter were found to represent about 20%, 0.1%,
and 0.02% of the total axons counted (larger than 0.4µm), respectively [1]. For
other brain areas, however, the fiber density and the axon diameter distribution,
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especially their spatial variation and the differences between subjects, are less
known. These parameters are crucial markers towards the understanding of brain
function, since the conduction time delay of action potentials, hence the speed
of information transmission between remote brain areas, is largely determined
by the axon radius [2]. Moreover, the fiber microanatomy is affected by various
neurological disorders. In multiple sclerosis it is well known that during the
typical course of the disease the thin axons are preferentially damaged [3].

Nowadays diffusion MR experiments are the method of choice when we aim
to recover the axon diameter distribution in brain white matter noninvasively.
This technique allows us to encode the diffusion process of water molecules
through the external application of time-dependent magnetic fields, which are
under control of the experimenter. Considerable effort over the past few years [4]
has gone into devising biophysical models or acquisition protocols for estimating
the axon diameter from diffusion MR measurements. For instance, Stanisz et
al. [5] proposed a tissue model that provides an estimate of the mean axon
diameter and demonstrated their approach in bovine optic nerve. The AxCaliber
framework describes the restricted diffusion process within the axons and the
hindered water diffusion in the space between the nerve fibers [6, 7]. The axon
diameter distribution, which is parameterized by a Gamma density, was then
estimated in excised nerve tissue and in the corpus callosum of living rat brain,
respectively, thereby assuming parallel fibers with a single known orientation.
The ActiveAx technique [8] allows orientationally invariant estimates of the axon
diameter and shows the first in-vivo human maps of an index of axon diameter.
This method still assumes that the nerve fibers in a voxel are parallel to each
other. More recently, Zhang et al. [9] relaxed the assumption by allowing a
Watson distribution of axon orientations to describe fiber dispersion known to
exist even in the corpus callosum [10].

A key limitation of diffusion MR experiments is that the gradient strength
places a lower bound on the measurable axon diameter [8, 11]. The gradient sys-
tems available on human scanners are sensitive only to the largest nerve fibers.
Moreover, the human physiology tolerates only moderate gradient strengths,
suggesting that in-vivo diffusion imaging has fundamental limitations upon the
resolution power. Even on dedicated animal systems we cannot distinguish diam-
eters less than one or two micrometers where the bulk of the axon distribution
resides. Also unduly long gradient durations are prohibitive because of the short
T2-relaxation time of white matter tissue. Here we consider, from a theoreti-
cal viewpoint, an alternative MR modality, T2-spectroscopy, and its potential
to resolve submicrometer axon diameters. Instead of the displacement of the
diffusing water molecules, this method measures their interaction with the cel-
lular boundaries, which may contain paramagnetic impurities that give rise to
fluctuating microscopic fields. As a consequence, the water molecules close to
the axonal membranes partially loose their phase coherence and thus the T2-
weighted signal attenuates faster. This surface relaxation effect is the contrast
mechanism that gives the potential to measure axons with one micrometer or less
in diameter. Intuitively, for a tissue sample of thin nerve fibers a large volume



fraction of water molecules is located in the vicinity of the axonal membranes.
Therefore, the transverse magnetization decays faster than for nerve fibers with
a large radius because in the latter case only a small fraction of water molecules
is influenced by the cellular boundaries.

This article lays the foundations for quantitative T2-spectroscopy exploiting
the surface relaxation in the underlying tissue material. The potential advan-
tages over diffusion experiments are the possibility to map the full axon diame-
ter distribution, including the nerve fibers with a submicrometer diameter, and
independence from the directional tissue structure. In the following we start
from the Bloch–Torrey equation for the description of the surface relaxation
and present a general solution based on the eigenstructure of the pore geom-
etry. Then a plausible biophysical model is developed for nervous tissue using
a surface-to-volume ratio approximation. Under a certain regime of bulk and
surface relaxivity parameters, our simulation results suggest that it might be
possible to reveal axons smaller than one micrometer in diameter, even from
spin-echo experiments achievable on clinical scanners. We conclude with a dis-
cussion of the proposed approach, including an outlook for future work.

2 Theory & Methods

2.1 Bloch–Torrey equation

The Bloch equation [12] provides a phenomenological description for the evolu-
tion of the magnetization vector in a time-dependent magnetic field. We suppose
that the repetition time is chosen much longer than the T1-relaxation time, which
means that the spin-lattice relaxation can be ignored. Let m(x, t) be the mag-
netization perpendicular to the main magnetic field B0 at position x and time
t. Consider a large ensemble of water molecules undergoing Brownian motion
with the (bulk) diffusion coefficient D in a region Ω ⊆ Rd of dimension d. Tor-
rey [13] proposed to modify the Bloch equation to include the signal decay due
to the diffusion process. The transverse magnetization then obeys the partial
differential equation(

∂

∂t
−D∆+ iγB(x, t) +

1

T2,b

)
m(x, t) = 0 on x ∈ Ω, t ≥ 0, (1)

where ∆ denotes the Laplace operator describing the diffusive motion of the
water molecules, γ is the gyromagnetic ratio of the hydrogen proton, and B(x, t)
represents the time-dependent magnetic field. Since for a plain spin-echo ex-
periment [14] B(x, t) = B0 is constant, the magnetic field encoding gives rise
to a multiplicative factor exp(−iγB0t) in the solution of Equation (1) and
hence can be neglected. T2,b quantifies the bulk relaxation of water. The ini-
tial spin density m(x, 0) = m0(x) of the water protons is assumed to be uniform
over Ω. The observable MR signal at time t is the transverse magnetization
E(t) =

∫
Ω
m(x, t)s(x) dx weighted by the sampling function s(x) of the receiver

coil, which is here uniform over the domain Ω. In the case of free (unrestricted)



diffusion the solution of the Bloch–Torrey equation leads to the T2-weighted
signal E(t) = E0 exp(−t/T2,b), where E0 denotes the water proton density.

Since the diffusion process is confined in nervous tissue, we introduce appro-
priate boundary conditions. The Robin condition for the transverse magnetiza-
tion at sufficiently smooth boundaries ∂Ω writes(

D
∂

∂n
+K

)
m(x, t) = 0 on x ∈ ∂Ω, t ≥ 0, (2)

where ∂/∂n denotes the outward normal derivative on ∂Ω. The surface relaxivity
K ∈ [0,∞] quantifies the influence of the cellular barriers on the phase coherence
of the spin-bearing water molecules. This coefficient reflects the physicochemical
properties of the boundary and we make the assumption that K is uniform over
∂Ω. For a closed pore Ω the general solution of the Bloch–Torrey equation (1)
under condition (2) yields the T2-weighted MR signal [15]

E(t) = E0

∞∑
m=0

vm exp(−(λm + 1/T2,b) t), (3)

where λm denote the eigenvalues corresponding to the orthogonal eigenfunctions
um(x) of the eigenproblem −D∆um(x) = λmum(x) on x ∈ Ω with the boundary
condition (D∂/∂n +K)um(x) = 0 on x ∈ ∂Ω. The initial density of the water
protons is set to m0(x) = E0/V and the sampling function reads s(x) = 1,
where V denotes the volume of the pore. The coefficients vm are given by vm =
V −1(

∫
Ω
um(x) dx)2/(

∫
Ω
um(x)2 dx) and fulfill the relation

∑∞
m=0 vm = 1. In

plain words, Ω gives the size and the shape of the pore (e.g., the axon diameter).
The eigenvalues, which are sorted in increasing order 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ . . . ,
depend on the geometry Ω, the bulk diffusion coefficient D, and the surface
relaxivity K. As vm may be zero for some indices m, the observable T2-signal is
controlled by a subset of the eigenmodes, which means that we are not able to
reconstruct arbitrary shapes. The eigenspectrum for various simple geometries
like the plane, the cylinder, or the sphere may be found in the literature [16].

From the general solution (3) of the Bloch–Torrey equation we can easily
deduce the T2-spectrum

ν = E0

∞∑
m=0

vmδ1/(λm+1/T2,b),

which is a discrete measure on [0,∞]. ν is normalized with the spin density
of the water protons ν([0,∞]) = E0. The peaks can be found at 1/(λm +
1/T2,b), which are bounded from above by the bulk relaxation T2,b and are
weighted by E0vm. The (modified) Laplace transform of the spectrum, i.e.,
E(t) =

∫∞
0

exp(−t/τ) dν(τ), then yields the observable T2-weighted MR data.
For illustration purposes, Figure 1 exemplifies the discrete T2-spectrum of an
infinite cylinder with 1µm in diameter. In the left panel the magnetization of
the nuclear spins does not alter during their interaction with the boundary (i.e.,
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Fig. 1. Discrete T2-spectrum for a cylinder with various surface relaxivities K. Its
diameter is set to 1µm, the bulk diffusion coefficient is fixed at D = 2.5µm2/ms, the
bulk relaxation time is T2,b = 150ms, and the spin density reads E0 = 1.

K = 0), which gives rise to the Neumann boundary condition. The visible peak
is due to the bulk relaxation, which is here set to T2,b = 150ms, and thus the
signal does not contain any information about the tissue geometry. The mid-
dle panel depicts the spectrum under the weak surface relaxation regime, which
generally exhibits an infinite number of peaks that decay rapidly both in their
intensity and the T2-relaxation time. In practice it will be difficult to observe
any other peaks than the one for the lowest eigenvalue. Therefore, Brownstein
and Tarr [15, 16] proposed a surface-to-volume ratio model

E(t) ≈ E0 exp

(
−t

(
K

S(Ω)

V (Ω)
+

1

T2,b

))
(4)

that approximates very closely the T2-weighted signal for all closed pores Ω (not
only the cylinder shown in the figure), where S(Ω) computes the surface area of
Ω and V (Ω) the volume. The right panel depicts the eigenspectrum when the
water molecules completely loose their transverse magnetization if they collide
with the interface (i.e., K → ∞). Note that for the Dirichlet boundary regime
we obtain very short T2-relaxation times.

2.2 Biophysical model of white matter

In the following we develop a plausible biophysical model of white matter tis-
sue based on the surface-to-volume ratio approximation of the Bloch–Torrey
equation, which subsequently allows us to infer the fiber density and the axon
diameter distribution. Although T2-spectroscopy is not able to recover arbitrary
shapes, the attenuation of the transverse magnetization can be still useful when
we make some appropriate assumptions about the underlying tissue structure.
The present work considers a two-compartment model similar to those used in
diffusion MR techniques for axon diameter estimation (for a review see [4] and
the references therein). Henceforth we assume that one signal component arises
from the water pool inside the axons, while the other compartment comes from
the extraaxonal space. The T2-weighted signal may then be written as

E(t) = E0 exp(−t/T2,b)(P1Eintra(t) + (1− P1)Eextra(t)),



where E(t) is the observable transverse magnetization after time t, E0 quantifies
the water proton density, T2,b denotes the bulk T2-relaxation coefficient, Eintra(t)
is the surface relaxation signal from the intraaxonal compartment, Eextra(t) the
signal for the extraaxonal space, and P1 ∈ [0, 1] quantifies the volume fraction
occupied by the fiber population. Since the transverse relaxation encodes neither
the intra-voxel position nor the orientation of a fiber segment, we do not need
to consider the directional tissue architecture of white matter, for example, fiber
dispersion and axon undulation.

First, we model the surface relaxation for the intraaxonal domain based on
the surface-to-volume ratio approximation (4) under the weak surface relaxivity
regime (compare left and middle panel of Figure 1). A key feature of the axon
geometry is the radius, which exhibits multiple length scales in the brain white
matter. This study adopts a statistical approach to describing the diversity of
nerve fibers in terms of the axon diameter distribution µ, which is normalized
with µ([0,∞]) = 1. The shape of an axon is approximated by a cylindrical tube
with diameter φ. Integrating over the fiber population we obtain

Eintra(t) =

∫∞
0

V (φ) exp(−tKS(φ)/V (φ)) dµ(φ)∫∞
0

V (φ) dµ(φ)
,

where S(φ) = πφ quantifies the surface area of an axon and V (φ) = πφ2/4
its volume in the two-dimensional plane perpendicular to the cylinder axis. In
general the intraaxonal surface relaxation, which may be simplified to

Eintra(t) =
Eµ[φ

2 exp(−4tK/φ)]

Eµ[φ2]
,

exhibits a multiexponential decay, where Eµ[ · ] denotes the expectation with
respect to the axon diameter measure µ.

Next, we describe the surface relaxation for the extraaxonal space. The par-
ticular placement of the axons within the domain has a negligible effect because
under the weak surface relaxivity regime the observable signal largely depends
on the surface-to-volume ratio, which is invariant with respect to the fiber con-
figuration. In addition, we assume that the space between the nerve fibers is
connected or, if not, that the various components of the extraaxonal space have
a similar surface-to-volume ratio. The surface relaxation then takes the form

Eextra(t) = exp

(
−tK

∫∞
0

S(φ) dµ(φ)

(1/P1 − 1)
∫∞
0

V (φ) dµ(φ)

)
,

where S(φ) and V (φ) quantify the surface area and the volume of a cylindrical
axon with diameter φ, respectively, and P1 denotes the volume fraction of the
nerve fibers. The extraaxonal surface relaxation, which may be rewritten as

Eextra(t) = exp

(
− 4tK

1/P1 − 1

Eµ[φ]

Eµ[φ2]

)
,
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Fig. 2. The diagram plots the effective T2-relaxation time for various bulk relaxation
coefficients and different axon diameters. The surface relaxivity is chosen such that a
nerve fiber with diameter of 1µm (neglecting the extraaxonal space) has an effective
relaxation time of 75ms.

has a monoexponential behavior. Note that the expectation functionals exist if
a maximum radius can be given, which is always the case in brain white matter.

Finally, we provide two examples of specific diameter measures. In the case
when all nerve fibers have the same diameter φ within a voxel, which means that
the axon diameter distribution is described by a Dirac mass δφ, the signal writes

E(t) = E0 exp(−t/T2,b)

(
P1 exp

(
−4tK

φ

)
+ (1− P1) exp

(
− 4tK

(1/P1 − 1)φ

))
.

(5)
Alternatively, as in [6] for a Gamma distribution model of µ, with the parameters
α and β chosen such that fGa(0;α, β) = 0 holds, the T2-weighted signal takes
the form

E(t) = E0 exp(−t/T2,b)

(
P1

2
(

4tK
β

)α/2+1

Γ (α+ 2)
Kα+2

(
2

√
4tK

β

)

+ (1− P1) exp

(
− 4tK

1/P1 − 1

1

(α+ 1)β

))
, (6)

where Kα+2( · ) denotes the modified Bessel function of the second kind with the
order α + 2. Other models for the axon diameter distribution, such as a scaled
Beta density, also give closed form expressions for E(t).

2.3 Bulk and surface relaxation coefficients

The surface-to-volume ratio model (4) depends on the bulk relaxation coefficient
T2,b and the surface relaxivity parameter K. Unfortunately, neither parameter
is known for nervous tissue. Pure water has a relaxation time of about 3 s [17],
which is an upper bound. Ignoring any signal contributions from the extraax-
onal space, let us assume that a fiber with diameter of φ = 1µm gives rise



to an effective T2-relaxation time T2,eff = 75ms, which is defined by T2,eff =
1/(KS(φ)/V (φ) + 1/T2,b). This value is in the range of T2-weighted signals we
typically measure in brain white matter [17]. The surface relaxation coefficient
can then be estimated from a given bulk relaxation time T2,b. Figure 2 plots the
effective T2-relaxation time for various bulk relaxivities and different axon diam-
eters. By definition we obtain a constant effective relaxation time for the fibers
with 1µm in diameter. In the case of T2,b → ∞, the effective relaxation time of
an axon is proportional to its diameter. If the bulk relaxation is decreased, the
figure shows that the T2-spectrum gets narrower. The literature [17] suggests
that the spectrum is not very broad, which means that the bulk relaxation coef-
ficient can only be slightly larger than T2,eff = 75ms, but is much smaller than
the T2-relaxation time of pure water. This observation motivates our choice of
these two parameters in the next section.

3 Experiments

For the following simulation study we set the bulk relaxation coefficient to T2,b =
150ms. The surface relaxivity parameter K = 1.67µm/s is chosen such that an
axon of 1µm in diameter has an effective relaxation time of 75ms. Note that all
results, especially the resolution power of the axon diameter, depend on these
two model parameters. We do not need to specify any diffusion coefficients.
The T2-weighted signal is sampled at 32 echo times ranging from 10 to 320ms
with constant interecho spacing using a Carr-Purcell-Meiboom-Gill (CPMG)
experiment. The phantom signals are disturbed by Gaussian noise. This report
studies the statistical properties of the least-squares estimator which is used to
infer the water proton density E0 > 0, the intraaxonal volume fraction P1 ∈
[0, 1], and the fiber diameter distribution. The latter is constrained such that
the density at an axon radius of zero vanishes, here fGa(0;α, β) = 0. Thus, the
estimated parameters are ensured to lie within a physically meaningful range.
We run 5000 trials each to investigate the estimation error of the fiber density
and the axon diameter (distribution) under various scenarios.

The first case study generates a sample of different fiber populations where all
axons have an identical radius, which means that the axon diameter distribution
is described by a Dirac measure. Subsequently we try to recover the fiber density
and the axon diameter from the simulated data. The top row of Figure 3 depicts
the median of the estimates as well as their 0.05- and 0.95-quantiles for various
signal-to-noise ratios E0/σ, where E0 denotes the water proton density and
σ2 is the Gaussian noise variance. The discontinuity in the quantiles is due
to a second local optimum which gradually disappears as the signal-to-noise
ratio increases. The bottom row shows the estimation results for simulated axon
diameters ranging from 0.1 to 10µm. For very thin fibers the T2-signal vanishes
at long echo times, which means that only few spin echoes contribute to the
estimation of the biexponential decay. To reduce the higher estimation error,
we would have to increase the temporal resolution of the CPMG sequence. In
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Fig. 3. Estimation accuracy for various tissue samples of white matter with a single
axon diameter (Dirac measure). The four diagrams show the median of the least-squares
estimates including their 0.05- and 0.95-quantiles for various signal-to-noise ratios and
different axon diameters. The fixed model parameters are indicated in the upper right
corner of these plots.

the opposite case of very thick axons the T2-relaxation has a rather slow decay,
which suggests sampling the transverse magnetization at longer echo times.

The next case study simulates tissue samples that consist of multiple axon
diameters, which follow a Gamma density with the mean diameter φ̄ = 1µm and
the variance var[φ] = 0.5µm2. The intraaxonal volume fraction is set to 0.75 for
all experiments. We estimate the axon density and the fiber diameter using the
Dirac model (5) which assumes that the radii of the nerve fibers are constant.
The upper row of Figure 4 shows the estimated tissue parameters for various
levels of Gaussian noise. The variance decreases as expected when the signal-to-
noise ratio is improved, but we observe a significant bias in the estimation of
P1 and φ̄ due to a model mismatch, which is particularly prominent for broad
diameter distributions. In the lower row of this figure the estimation results
are depicted when the variance of the axon diameter distribution is reduced,
in which case the bias vanishes and the estimated parameters asymptotically
converge towards their true values. Note that for a broad diameter distribution
the T2-signal decay can differ considerably from the magnetization attenuation
of a narrow distribution even if the mean axon diameter is kept fixed. This
signal behavior may explain the observed bias in the estimation of the tissue
parameters. Nevertheless, the Dirac model can be used for the approximate
estimation of the mean fiber radius, which, however, might be biased for broad
diameter distributions.
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Fig. 4. Estimation accuracy of the axon density and the fiber diameter for tissue sam-
ples of white matter in which the axon diameter follows a Gamma distribution. The
mean diameter of the nerve fibers is set to 1µm and the axon density is fixed at 0.75
for all experiments.

Provided that the intraaxonal volume fraction P1 = 0.75 is known, Figure
5 demonstrates the parametric estimation of the fiber diameter distribution. In
contrast to the previous experiment, there is no model misspecification here
because we simulate and analyze the synthetic tissue samples using the same
model of axon diameter distribution. More precisely, the multiple axon diame-
ters are governed by a Gamma density with the mean φ̄ = 1µm and the variance
var[φ] = 0.5µm2. The upper row shows the mean and variance estimates (right)
and plots a sample of the estimated Gamma densities for the signal-to-noise ra-
tio of E0/σ = 200. The red square and the red line indicate the true value and
density, respectively. The bottom row of Figure 5 depicts the median including
the 0.05- and 0.95-quantiles of the mean axon diameter and the L1-norm based
distance between the estimated and the true density for various signal-to-noise
ratios E0/σ. The diagrams show that the variance of the mean diameter estima-
tor decreases and the L1-norm based error is reduced when the signal-to-noise
ratio is improved. A noteworthy result is that there is no significant bias apparent
in the mean axon diameter because the full diameter distribution is considered.
Given the axon density, we should be able to recover the fiber diameter distri-
bution, where its mean can be estimated in a quite robust manner. However, we
expect considerable variance in the estimation of the shape of the parametric
diameter density for realistic spin-echo experiments.
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Fig. 5. Estimation accuracy of the axon diameter distribution parameterized by a
Gamma density with the mean φ̄ = 1µm and the variance var[φ] = 0.5µm2, given the
fiber density P1 = 0.75 in the underlying substrate. See text for further details on this
simulation study.

4 Discussion

In the present report we have proposed a novel strategy for assessing the axon
diameter distribution including the fibers that have a diameter less than one
micrometer. Our simulation results suggest that T2-spectroscopy might be able
to detect submicrometer axon diameters, depending on the temporal resolution
of the CPMG experiment, the bulk and the surface relaxation coefficient. Figure
2 suggests that the bulk relaxivity parameter in nervous tissue is significantly
lower than for pure water because otherwise the T2-spectrum would be very
broad. A possible explanation could be specific properties of the axoplasm or
the cytoskeleton inside the nerve fibers (e.g., neurofilaments and microtubules).
The key question is whether the surface relaxation still dominates the bulk relax-
ation in the T2-weighted signal. If not, we would not be able to recover the axon
diameter distribution using the surface relaxation process. These theoretical re-
sults motivate work to evaluate the two relaxation coefficients. For example, we
may estimate the two model parameters by conducting a calibration experiment
using histological data. Knowing the fiber density and the axon diameter dis-
tribution for a small tissue sample, it should be possible to infer the bulk and
surface relaxation coefficients from the measured MR data. Further advantages
of T2-spectroscopy are that the proposed method is independent of the tangential
distribution of the axons within a voxel and that the CPMG experiments can



be performed with a standard human scanner in a clinical environment. Future
work may also consider the myelination of the axons, the presence of glial cells
in white matter tissue, and exchange processes between different water pools.
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