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ABSTRACT
Betweenness, a widely employed centrality measure in network science, is a decent

proxy for investigating network loads and rankings. However, its extremely high

computational cost greatly hinders its applicability in large networks. Although

several parallel algorithms have been presented to reduce its calculation cost for

unweighted networks, a fast solution for weighted networks, which are commonly

encountered in many realistic applications, is still lacking. In this study, we develop

an efficient parallel GPU-based approach to boost the calculation of the betweenness

centrality (BC) for large weighted networks. We parallelize the traditional Dijkstra

algorithm by selecting more than one frontier vertex each time and then inspecting

the frontier vertices simultaneously. By combining the parallel SSSP algorithm

with the parallel BC framework, our GPU-based betweenness algorithm achieves

much better performance than its CPU counterparts. Moreover, to further improve

performance, we integrate the work-efficient strategy, and to address the load-

imbalance problem, we introduce a warp-centric technique, which assigns many

threads rather than one to a single frontier vertex. Experiments on both realistic

and synthetic networks demonstrate the efficiency of our solution, which

achieves 2.9� to 8.44� speedups over the parallel CPU implementation. Our

algorithm is open-source and free to the community; it is publicly available through

https://dx.doi.org/10.6084/m9.figshare.4542405. Considering the pervasive

deployment and declining price of GPUs in personal computers and servers, our

solution will offer unprecedented opportunities for exploring betweenness-related

problems and will motivate follow-up efforts in network science.

Subjects Distributed and Parallel Computing, Network Science and Online Social Networks

Keywords Parallel computing, GPU computing, Betweenness centrality, Weighted networks

INTRODUCTION
As an emerging multidisciplinary research area, network science has attracted much

attention from researchers of various backgrounds, such as computer science, biology

and physics, in recent decades. In these contributions, the betweenness centrality (BC)

is often applied as a critical metric for measuring the significance of nodes or edges (Ma &

Sayama, 2015; Freeman, 1977; Barthélemy, 2004; Abedi & Gheisari, 2015; Goh et al., 2003).

For example, Girvan and Newman developed a community detection algorithm based on

edge BC (Girvan & Newman, 2002), Leydesdorff (2007) used centrality as an indicator

of the interdisciplinarity of scientific journals andMotter & Lai (2002) established a model
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of cascading failures in which the load on a node is represented by its betweenness.

However, the extremely high temporal and spatial complexity of the BC calculation

greatly limits its applicability in large networks. Before the landmark work of Brandes

(2001), the complexity of the algorithm for computing the BC was O(n3) in time and

O(n2) in space. Brandes (2001) reduced the complexity to O(n + m) in space and O(nm)

and O(nm + n2log n) in time for unweighted and weighted networks, respectively, where n

is the number of vertices andm is the number of edges. However, this improved algorithm

still cannot satisfy the requirements for scientific computations in the present era of

information explosion, as an increasing number of unexpectedly large networks emerge,

such as online social networks, gene networks and collaboration networks. For example,

Twitter has hundreds of millions of active users, who form an enormous online social

network. However, calculating the BC of a weighted network with one million nodes may

take approximately one year, which is an unsupportable time cost. Existing parallel CPU

algorithms may reduce this time to several months; however, this is still too expensive.

Because of this problem, there is a pressing need to develop faster BC algorithms for the

exploration of diverse domains.

General-purpose GPU (GPGPU) computing, which has high parallelization, provides

an opportunity to employ parallel algorithms implemented on GPUs to achieve better

performance. For network-related problems, researchers have devoted efforts to

conquering irregular graph structures using GPGPU techniques and have achieved higher

performance than is possible with traditional sequential CPU algorithms (Mitchell &

Frank, 2017; Merrill, Garland & Grimshaw, 2015; Wang et al., 2015; Harish & Narayanan,

2007; Cong & Bader, 2005). CUDA, developed by Nvidia Corporation, is the most popular

GPU computing framework, and some researchers have even used this framework to

parallelize the Brandes algorithm (Shi & Zhang, 2011; Sariyüce et al., 2013;McLaughlin &

Bader, 2014, 2015). However, previous works have concentrated on unweighted networks

for simplicity, although to the best of our knowledge, many realistic networks are

weighted ones. The most significant difference in the BC algorithm between unweighted

and weighted networks is the shortest-path calculation. In weighted networks, the

Dijkstra algorithm should be used to solve the single-source shortest path (SSSP) problem

rather than the breadth-first search (BFS) algorithm. In previous work, many efforts have

been devoted to developing a GPU version of the SSSP problem using the well-known

Dijkstra algorithm (Martin, Torres & Gavilanes, 2009; Ortega-Arranz et al., 2013;

Delling et al., 2011; Davidson et al., 2014). Although such algorithms have been

successfully developed and presented, establishing a parallel version of the BC algorithm

for weighted networks is nontrivial because the original SSSP algorithm must be modified

in many critical aspects for this task, and to the best of our knowledge, a suitable fast

solution is still lacking. With the aim of filling this vital gap, we propose a fast solution

using CUDA for calculating the BC in large weighted networks based on previous GPU BC

algorithms and SSSP algorithms.

To make our algorithm more efficient, we make efforts to optimize it by employing

several novel techniques to overcome the influence of irregular network structures.

Real-world networks have many characteristics that can degrade the performance of
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GPU parallelization algorithms. For example, the frontier set of nodes is always small

compared with the total number of vertices, especially for networks with large diameters.

At the same time, the majority of the nodes do not need to be inspected in each step;

hence, processing all vertices simultaneously, as is done in traditional algorithms, is

wasteful.McLaughlin & Bader (2014) proposed a work-efficient strategy to overcome this

problem. Another well-known issue is that the power-law degree distribution in realistic

networks induces severe load imbalance. Several methods have been proposed in previous

studies to overcome this problem; e.g., Jia et al. (2011) employed an edge parallel strategy

to avoid load imbalance, and Hong et al. (2011) addressed this problem by using a

warp technique. In this paper, we systematically investigate the advantages and

disadvantages of these previous methods and incorporate them into our algorithm to

solve the above two problems. Experiments on both real-world and synthetic networks

demonstrate that our algorithm significantly outperforms the baseline GPU algorithm.

Our main contributions are as follows:

� Based on previous GPU-based parallel SSSP and BC algorithms, we propose an efficient

algorithm for calculating the BC for weighted networks, which achieves 2.9� to

8.44� speedups over the parallel CPU algorithm on realistic networks.

� We compare the traditional node-parallel method with the work-efficient version and

the warp-centric method. Experiments on realistic networks and synthetic networks

demonstrate that the combination of these two strategies performs better than either

the basic node-parallel method or the individual strategies; it achieves an average

speedup of 2.34� over the baseline method on realistic networks.

� We package our algorithm as a useful tool that can be used to calculate both node

and edge BC on weighted networks. Researchers can apply this tool to quickly and

conveniently calculate BC values for weighted networks, especially large networks. The

source code is publicly available through https://dx.doi.org/10.6084/m9.figshare.4542405.

BACKGROUND
First, we briefly introduce the well-known Brandes algorithm and Dijkstra algorithm

based on preliminary definitions of a network and the BC.

Brandes algorithm
A graph can be denoted by G(V, E), where V is the set of vertices and E is the set of edges.

An edge can be denoted by (u, v, w), which means that there is a link of weight w

connecting nodes u and v. If edge (u, v) exists, it can be traversed either from u to v or

from v to u because we focus only on undirected graphs in this paper. For directed graphs,

if only an edge (u, v) exists, then the algorithm will store only the edge (u, v) and will

process only this edge when inspecting vertex u; it will ignore (v, u) when inspecting

vertex v. Thus, our algorithm can easily be extended to directed graphs. A path P = (s, : : : , t)

is defined as a sequence of vertices connected by edges, where s is the starting node

and t is the ending node. The length of P is the sum of the weights of the edges contained

in P. d(s, t) is the distance between s and t, which is the length of the shortest path
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connecting s and t. sst denotes the number of shortest paths from s to t. In accordance

with these definitions, we have d(s, s) = 0, sss = 1, d(s, t) = d(t, s) and sst = sts for

an undirected graph. sst(v) denotes the number of shortest paths from s to t that

include v. Based on these definitions, the BC can be defined as:

CBðvÞ ¼
X

s 6¼v 6¼t2V

�stðvÞ
�st

: (1)

From the above definitions, the calculation of the BC can be naturally separated into the

following two steps:

1. Compute d(s, t) and sst for all node pairs (s, t).

2. Sum all pair dependencies.

Here, a pair dependency is defined as �stðvÞ ¼ �st ðvÞ
�st

. The time complexity of the first

step is O(mn) or O(mn + n2log n) for an unweighted graph or a weighted graph,

respectively; therefore, the bottleneck of this algorithm is the second step, which has a time

complexity of O(n3). Brandes developed a more efficient BC algorithm with a time

complexity of O(mn) for unweighted graphs and O(mn + n2log n) for weighted

graphs. The critical point is that the dependency of a node v for a source node s is

�sðvÞ ¼
P

u:v2PsðuÞ
�sv
�su
ð1þ �sðuÞÞ. By applying this equation, we can accumulate the

dependencies after computing the distances and numbers of shortest paths only

from the source vertex s to all other vertices, rather than after computing the shortest

paths for all pairs.

We can easily develop a parallel version of the Brandes algorithm for unweighted

graphs because the graph is always traversed as a tree using the BFS algorithm. Given a

source node s, the root of the tree is s, and the tree is produced using the BFS method in

the first step. In the second step, dependencies related to the source node s are calculated

from the leaves to the root of the tree, and nodes at the same level are isolated and

have no influence on each other. As a result, the parallel version of the algorithm can

simultaneously explore all nodes at the same level in both steps, thereby fundamentally

accelerating the BC calculation.

Dijkstra algorithm
The Dijkstra algorithm (Dijkstra, 1959) and the Floyd–Warshall algorithm (Floyd, 1962)

are commonly employed to solve shortest-path problems. The Dijkstra algorithm is more

easily adaptable to the BC problem because the Brandes algorithm accumulates

dependencies after computing SSSPs rather than after finding and storing the shortest

paths for all pairs. The Dijkstra algorithm applies a greedy strategy to solve the SSSP

problem. In this algorithm, the source node is s, and once the shortest path from s to

another node u is found, u will be settled. As seen in Algorithm 1, all nodes in graph G are

separated into two sets: the settled vertices and the unsettled verticesQ. An array D is used

to store tentative distances from s to all nodes. Initially, Q stores all nodes, D(s) = 0,

and D(u) = ∞ for all other nodes (lines 1–5). During iteration (lines 6–9), the node u with
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the shortest tentative distance D[u] (denoted by Extract_Min(Q)) is selected and

settled, which means that the shortest path to node u is found and D[u] is set to the

corresponding value. Then, for each node v ∈ neighbors(u), if D[u] + w(u, v) < D[v], D[v]

will be updated to D[u] + w(u, v). The above procedures, in which one node is settled and

the tentative distances of its neighbors are then updated, are repeated until Q is empty,

i.e., until all nodes in graph G have been settled. According to the above description, the

Dijkstra algorithm has no parallel characteristics because it selects one frontier node in

each iteration. However, this restriction can be loosened to allow several frontier vertices

to be explored simultaneously, in a manner similar to the BFS parallel approach.

RELATED WORK
Graph traversal strategies
For unweighted networks, the Brandes algorithm applies the traditional BFS strategy in

the shortest-path step. The BFS algorithm produces a traversal tree, which can later be

used in the dependency accumulation step. This behavior makes it easy to parallelize both

steps of the unweighted BC algorithm; i.e., threads are assigned to all vertices in the graph,

and if a vertex is in the frontier set, the relevant thread traverses all edges connected to that

vertex. Jia et al. (2011) implemented their BC algorithm based on this node-parallel

traversal strategy. However, this simple strategy induces a problem of load imbalance since

the degrees of different vertices varies, especially in scale-free networks. Threads

processing low-degree vertices must wait for threads processing high-degree vertices,

which significantly slows down the calculation. Instead of assigning threads to all vertices,

Jia et al. (2011) proposed an edge-parallel strategy in which threads are assigned to all

edges and edges that are connected to frontier vertices are then inspected. This technique

eliminates the load-imbalance problem. Jia et al. applied both coarse-grained and fine-

grained parallelism. In a modern GPU, the kernel can employ multiple blocks, and each

block contains multiple threads. In their program, the GPU employs multiple blocks, each

of which focuses on one root vertex s (coarse-grained parallelism). The threads within

each block work cooperatively to traverse the edges in both the SSSP step and the

dependency accumulation step (fine-grained parallelism). As a result, in each block,

Algorithm 1 Sequential Dijkstra Algorithm.

1: Q ) empty set

2: for v ∈ V do

3: D[v] ) ∞

4: add v to Q

5: D[s] ) 0

6: while Q is not empty do

7: u ) Extract_Min(Q)

8: for v ∈ neighbors(u) do

9: D[v] ) D[u] + weightuv
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the dependencies of all vertices related to s are covered. For a vertex w, the dependency for

the root vertex s is denoted by �s[w]. Based on the Brandes algorithm, the betweenness

of w can be calculated as
P

s 6¼w2V �s½w�.

Work-efficient technique
In the edge- and node-parallel strategies, threads are assigned to all vertices or edges,

respectively, and the algorithm then checks whether the vertices and edges need to be

inspected; this incurs a considerable unnecessary cost because the frontier nodes might

be small in size, especially for graphs of large diameters. To address this problem,

McLaughlin & Bader (2014, 2015) proposed an excellent work-efficient technique. In this

method, a queue Qcurr that stores the frontier vertices is maintained, and threads are

assigned only to vertices that are in Qcurr. In the BFS procedure, new frontier nodes are

added to Qnext. After the BFS step, the vertices in Qnext are transferred to Qcurr, and Qnext

becomes an empty queue. To implement this technique, it is necessary to know the lengths

of both queues (Qcurr_len and Qnext_len) because Qcurr and Qnext are implemented using

arrays in the GPU kernel code. For the parallel BC algorithm proposed in this paper,

we develop a work-efficient version of the algorithm based on this idea.

The issue of load-imbalance
The work-efficient algorithm still suffers from the load-imbalance problem since it is

based on the node-parallel strategy. In addition to the edge-parallel strategy, other

techniques have also been developed to solve this problem (Davidson et al., 2014;

Hong et al., 2011). Hong et al. proposed the warp-centric concept, in which a warp rather

than a thread is allocated to each node. In the modern CUDA framework, a warp

consists of 32 threads, which act as a single instruction multiple data (SIMD) unit.

Because a group of threads is assigned to a single frontier vertex, each thread processes a

subset of the edges connected to that vertex. As a result, each thread does less work for

high-degree nodes, thereby greatly reducing the waiting time. Other techniques for

addressing the load-imbalance problem include Cooperative Blocks, CTA + Warp + Scan

and load-balanced partitioning (Davidson et al., 2014; Wang et al., 2016). These methods

attempt to assign threads to edges that need to be inspected by means of the design of

several novel data structures and algorithms, which ensure excellent within-block and

interblock load balance. However, these techniques require blocks to work cooperatively;

i.e., each block must process several vertices or edges. Our BC algorithm applies both

coarse-grained and fine-grained approaches. For this reason, we apply the warp-centric

technique in our algorithm to address the load-imbalance problem.

Parallel SSSP algorithm
To compute the BC on a weighted network, a parallel SSSP algorithm is applied in the

shortest-path step. The Dijkstra algorithm, the traditional method of solving this

problem, is inherently sequential because it selects a single frontier vertex in each

iteration. The Bellman–Ford algorithm is easier to parallelize, but it suffers from rather

low efficiency compared with the Dijkstra algorithm. Martin, Torres & Gavilanes (2009)
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proposed a parallel Dijkstra algorithm, in which all vertices with the minimum tentative

distance are inserted into the frontier set and the vertices in the frontier set are then

processed simultaneously. Ortega-Arranz et al. (2013) implemented a more aggressive

algorithm. They loosened the condition for selecting frontier nodes, resulting in more

than one frontier node in each iteration, to achieve higher parallelism. d-Stepping is

another frequently employed parallel SSSP algorithm, in which vertices are grouped into

buckets and all vertices in a bucket are processed simultaneously. However, as described in

Davidson et al. (2014), there are three main characteristics that make �-stepping difficult

to implement efficiently on a GPU; e.g., it requires dynamic arrays, which are poorly

supported in the CUDA framework. Because of this, we base our SSSP algorithm on the

parallel Dijkstra algorithm. However, previous SSSP algorithms have focused only on the

values of the shortest paths, neglecting the number of shortest paths, which is also

necessary for the BC calculation. In this paper, we modify the parallel Dijkstra algorithm

presented in Ortega-Arranz et al. (2013) to combine it smoothly with our BC algorithm

for weighted graphs.

GPU-BASED ALGORITHM
Our GPU-based BC algorithm for weighted graphs applies both coarse-grained

(in which one block processes one root vertex s) and fine-grained (in which all threads

in a block compute the shortest paths and dependencies related to s) parallel strategies.

In a block, the shortest paths and dependencies corresponding to the root vertex

processed by that block are calculated using Brandes’s two-step framework. In the

shortest-path step, we build a multi-level structure from root to leaves by relaxing the

condition that a single frontier node is selected in each iteration and then calculating

the distances and numbers of shortest paths for all selected frontier nodes simultaneously.

In the dependency accumulation step, the multi-level structure built in the first step is

re-employed to calculate the dependencies of the vertices from the leaves to the root of

the multi-level structure. Calculations for vertices at the same level are performed

simultaneously.

Parallel BC algorithm
In this section, we introduce the details of our GPU version of the BC algorithm for

weighted graphs. First, we apply the compressed sparse row (CSR) format, which is widely

used in graph algorithms, to store the input graph (Bell & Garland, 2009; Davidson et al.,

2014). This format is space efficient because both a vertex and an edge consume one entry,

and it is convenient for performing the traversal task on a GPU. Moreover, edges related to

the same vertex are stored consecutively in memory, which makes the warp-centric

technique more efficient. For the storage of weighted graphs, an additional array is

required to store the weights of all edges.

We apply both coarse-grained and fine-grained parallel strategies. The pseudo-code

presented in this paper describes the parallel procedure for threads within a block.

Algorithm 2 shows the initialization of the required variables. U and F represent the

unsettled set and the frontier set, respectively. v is unsettled if U[v] = 1 and is a frontier
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node if F[v] = 1. d represents the tentative distance, and s[v] is the number of shortest

paths from s to v. d[v] stores the dependencies of v. lock stores locks for all nodes to

avoid race conditions. If lock[v] = 1, changing neither s[v] nor d[v] is permitted

(see the next section for details). Vertices at the same level are consecutively recorded in S,

and the start (or end) point of each level in S is stored in ends. In other words, S and ends

record the levels of traversal in the CSR format; they are used in the dependency

accumulation step. As seen in Algorithm 3, in the dependency accumulation step, we

obtain all nodes at the same level from S and ends and accumulate the dependencies of

these nodes simultaneously. Note that in Algorithm 3, we assign threads only to nodes that

need to be inspected rather than to all nodes, which enhances the efficiency of the

algorithm by avoiding redundant threads. We update the dependencies of edges in

line 12 of Algorithm 3 if edge betweenness is required.

Parallel Dijkstra algorithm
The parallel version of the BFS procedure that is applied in the BC algorithm for

unweighted networks can be naturally adapted from the sequential version because

vertices located on the same level in the BFS tree can be inspected simultaneously.

Moreover, in the dependency accumulation step (step two), dependencies are calculated

from low-level vertices (nodes with the greatest depths in the tree) to high-level vertices

(nodes that are close to the source node), and calculations for nodes at the same level

are again performed simultaneously. In the weighted version, a multi-level structure is

similarly necessary in the dependency accumulation step to achieve parallelization. As

seen in Fig. 1A, this structure should satisfy the condition ∀ u ∈ Pv, lu < lv, where li denotes

Algorithm 2 BC: variable initialization.

1: for v ∈ V do in parallel

2: U[v] ) 1

3: F[v] ) 0

4: d[v] ) ∞

5: s[v] ) 0

6: d[v] ) 0

7: lock[v] ) 0

8: ends[v] ) 0

9: S[v] ) 0

10: d[s] ) 0

11: s[s] ) 1

12: U[s] ) 0

13: F[s] ) 1

14: S[0] ) s; Slen ) 1

15: ends[0] ) 0; ends[1] ) 1; endslen ) 2

16: � 0
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the level of node i in the multi-level structure and Pi represents the set of predecessors

of vertex i. Previous high-performance parallel SSSP algorithms have calculated only the

shortest-path values, neglecting the number of shortest paths and the level relationships.

In this paper, we propose a variant of the parallel Dijkstra algorithm that produces both

the number of shortest paths and the multi-level structure needed in our betweenness

algorithm.

In the sequential Dijkstra algorithm, the fact that one frontier node is selected in each

iteration makes parallelization a difficult task. However, this restriction can be relaxed,

which means that several nodes can be settled at once to form the frontier set, allowing

them to be inspected simultaneously in the next step. Moreover, these settled nodes

satisfy the level condition, and because of this, they form a new level to be inspected

simultaneously in the dependency accumulation step. In this paper, we apply the method

described inOrtega-Arranz et al. (2013). In this method,�node v = min(w(v, u): (v, u) ∈ E)

is precomputed. Then, we define �i as

�i ¼ min ðDðuÞ þ�node uÞ : u 2 Uif g; (2)

where D(u) is the tentative distance of node u and Ui is the set of unsettled nodes in

iteration i. All nodes that satisfy the condition

DðvÞ � �i (3)

are settled and become frontier nodes. When the Dijkstra algorithm is applied in the

BC calculation, the number of shortest paths should be counted, and predecessor

relationships between vertices at the same level are not permitted; otherwise, the parallel

Algorithm 3 BC: Dependency Accumulation.

1: depth ) endslen - 1

2: while depth > 0 do

3: start ) ends[depth - 1]

4: end ) ends[depth] - 1

5: for 0 � i � end - start do in parallel

6: w ) S[start + i]

7: dsw ) 0

8: for v ∈ neighbors(w) do

9: if d[v] = d[w] + weightwv then

10: c ) s [w]/s[v] ∗ (1 + d[v])

11: dsw ) dsw + c

12: atomicAdd(edgeBC[w], c)

13: d[w] ) dsw

14: if w s s then

15: atomicAdd(BC[w], d[w])

16: depth ) depth - 1
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algorithm would result in incorrect dependencies. To this end, the above condition

should be modified to

DðvÞ < �i: (4)

Figure 1B illustrates an example, in which the vertex v0 is the source node. If Eq. (3)

were to be applied, v1 and v2 would become the frontier nodes after the inspection of v0

in the first iteration, and the number of shortest paths would be 1 for both v1 and v2.

Then, v1 and v2 would be inspected simultaneously in the next step. If v2 were to be

processed first, the number of shortest paths for v3 would be set to 1; however, the correct

number of shortest paths for v3 is 2. This mistake arises from the overambitious

condition defined in Eq. (3); v2 should not be settled after the first iteration. Although the

distances for all nodes would be correct with Eq. (3), the numbers of shortest paths

would be wrong. By contrast, Eq. (4) will lead to the correct number of shortest paths

for v3 because only v1 will be settled after the first iteration. This condition appears on

line 29 in Algorithm 4.

By applying Eq. (4) in the SSSP step, we achieve the correct numbers of shortest paths

and construct a multi-level structure by setting each set of frontier nodes as a new level.

Algorithm 4 presents our parallel Dijkstra algorithm in detail. The tentative distance

and number of shortest paths are calculated as shown in lines 2–13. For a frontier vertex v,

the thread inspects all edges connected to v. For an edge (v, w), if it finds a shorter path

from v, i.e., d[v] + weightvw < d[w], d[w] will be updated, and s[w] will be set to zero since

the previous number of shortest paths is invalid. Then, if d[w] = d[v] + weightwv, the

number of shortest paths for vertex w will be updated to s[w] + s[v] in accordance with

the Brandes algorithm. In this way, both the value and number of shortest paths are

calculated and stored. In this part of the calculation, a race condition problem may arise

because multiple nodes in the frontier set may connect to the same node, as seen in

Figure 1 (A) An example of a multi-level structure. It is built in the SSSP step and will later be used in

the dependency accumulation step. Nodes at the same level are inspected simultaneously in both steps.

(B) An example of the selection of a set of frontier nodes in which using Eq. (3) will cause the number of

shortest paths calculated for v3 to be incorrect. (C) An example of a race condition. v1 and v2 are both

frontier nodes in the same iteration, and both are connected to w.

Full-size DOI: 10.7717/peerj-cs.140/fig-1
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Fig. 1C. In this example, both v1 and v2 are in the frontier set and are connected to w,

which results in the classical race condition problem. The reason this is a problem is

that two or more threads may attempt to modify d[w] or s[w] simultaneously. To avoid

this, we define a lock for each node. The first thread to focus on w will be granted the

lock, and other threads will not be permitted to change d[w] and �[w]. We also adopt an

atomic operation atomicCAS and a variable needlock. For all threads, needlock is initially

true (line 4), and the threads will enter the following iteration. If a thread is granted

the lock for w, it will run the shortest-path procedure and then release the lock (line 12),

and needlock = false will be assigned (line 13) to exit the loop. If another thread owns

Algorithm 4 BC: shortest-path calculation using the Dijkstra algorithm.

1: while � < ∞ do

2: for v ∈ V and F[v] = 1 do in parallel

3: for w ∈ neighbors(v) do

4: needlock ) true

5: while needlock do

6: if 0 = atomicCAS(lock[w],0,1) then

7: if U[w] = 1 and d[v] + weightvw < d[w] then

8: d[w] ) d[v] + weightvw

9: s [w] ) 0

10: if d[w] = d[v] + weightvw then

11: s[w] ) s[w] + s[v]

12: atomicExch(lock + w,0)

13: needlock ) false

14: � ) ∞

15: for v ∈ V do in parallel

16: if U[v] = 1 and d[v] < ∞ then

17: atomicMin(�,d[v] + �node v)

18: cnt ) 0

19: for v ∈ V do in parallel

20: F[v] ) 0

21: if U[v] = 1 and d[v] < � then

22: U[v] ) 0

23: F[v] ) 1

24: t ) atomicAdd(Slen,1)

25: S[t] ) v

26: atomicAdd(cnt,1)

27: if cnt > 0 then

28: ends[endslen] ) ends[endslen - 1] + cnt

29: endslen ) endslen + 1
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the lock, the thread will run the circulation but do nothing until the other thread releases

the lock. In this way, all threads that need to inspect vertex w can perform the shortest-

path task while avoiding race conditions. The lock cannot be replaced with an atomic

operation because in the shortest-path procedure, multiple instructions related to w

(from lines 7 to 13) are executed, rather than only one, and they cannot be interrupted by

other threads that may modify d[w] and s[w]. After d and s have been computed

for all nodes, we can obtain di based on the computed results, as seen on lines 14–17.

Finally, U, F, S and ends are updated for the next iteration.

Work-efficient method
As seen on line 2 in Algorithm 4, threads will be assigned to all nodes, but calculations will

be performed only for nodes in the frontier set, which may be inefficient. McLaughlin &

Bader (2014, 2015) developed an excellent work-efficient technique for solving this

problem. In this paper, we develop a work-efficient version of our algorithm by adopting

Algorithm 5 Work-efficient BC: variable initialization.

1: for v ∈ V do in parallel

2: // initialize all variables except F

3: F[0] ) s

4: Flen = 1

5: // initialize other variables

Algorithm 6 Work-efficient BC: shortest-path calculation using the Dijkstra algorithm.

1: while � < ∞ do

2: for 0 � i < Flen do in parallel

3: v ) F[i]

4: // inspect v

5: // calculate �

6: Flen ) 0

7: for v ∈ V do in parallel

8: if U[v] = 1 and d[v] < � then

9: U[v] ) 0

10: t ) atomicAdd(Flen, 1)

11: F[t] ) v

12: if Flen > 0 then

13: ends[end slen] ) end s[end slen - 1] + Flen

14: end slen ) end slen + 1

15: for 0 � i < Flen do in parallel

16: S[Slen + i] ) F[i]

17: Slen ) Slen + Flen
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this idea. F is replaced with a queue that stores all frontier nodes, and a variable Flen is

defined to recode the length of F, as seen in Algorithm 5. Then, at line 2 in Algorithm 6,

threads can be assigned to F[0] ∼ F[Flen - 1], which may be much smaller than the

total number of nodes. At the same time, the method used to update F should also be

modified as shown in Algorithm 6.

Warp-centric method
Many real-world networks are scale-free in nature, which means that their degree

distributions follow a power law. When parallel graph algorithms are implemented using

the node-parallel strategy, this feature gives rise to a severe load-imbalance problem. Most

nodes have low degrees, while some nodes have extremely high degrees. Threads that are

assigned to high-degree nodes will run slowly, and other threads will have to wait. The

edge-parallel strategy can be used to solve this problem (Jia et al., 2011), but it

simultaneously introduces other problems of underutilization. In this paper, we apply the

novel warp-centric method (Hong et al., 2011), in which a warp rather than a thread is

allocated to a single node. Then, each thread within a warp focuses on a subset of the edges

connected to the corresponding node. As a result, each thread does less work for nodes

with high degrees, and the wait time will be greatly decreased. Moreover, memory access

patterns can be more tightly grouped compared with conventional thread-level task

allocation, and consequently, the efficiency of memory access can also be fundamentally

improved.

Nevertheless, the warp-centric method also has some disadvantages. First, the degree

of a node may be smaller than the warp size, which is always 32 in modern GPUs. To

solve this problem, Hong et al. (2011) proposed virtual warps. Second, the number of

required threads will be increased overall because each node needs WARP_SIZE threads

Figure 2 Examples of thread allocation using (A) the node-parallel method and (B) the work-

efficient method. Red nodes and white nodes are frontier and non-frontier nodes, respectively, and

each arrow represents a warp, which contains multiple threads that are all assigned to the same node. In

the warp-centric method, more threads will be wasted on non-frontier nodes that do not need to be

inspected. However, this problem can be solved by combining the warp-centric and work-efficient

methods, as shown in (B). Full-size DOI: 10.7717/peerj-cs.140/fig-2

Fan et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.140 13/23

http://dx.doi.org/10.7717/peerj-cs.140/fig-2
http://dx.doi.org/10.7717/peerj-cs.140
https://peerj.com/computer-science/


rather than one thread in this approach (here, WARP_SIZE denotes the number of

threads in each warp). However, the number of threads per block is fixed; hence, each

thread will be iteratively assigned to additional nodes, which may result in low

performance. We find that the work-efficient technique can effectively relieve this problem

because it requires fewer threads compared with the conventional node-parallel method,

as seen in Fig. 2. In this paper, we apply the warp-centric method in combination with

both the node-parallel and work-efficient methods, resulting in four algorithms with

different thread allocation strategies, and we compare these algorithms on both real-world

and synthetic networks.

EXPERIMENTS
Networks and settings
We collected ten weighted real-world networks from the Internet. These networks are of a

broad variety of types, including collaboration networks, biological networks and social

networks. We also downloaded a large synthetic network with 220 vertices and more than

44 million edges. These networks are publicly available on the Internet and have been

analyzed extensively in previous studies (Rossi & Ahmed, 2015; Bansal et al., 2007; Palla

et al., 2008; Barabási & Albert, 1999; Leskovec & Krevl, 2014; De Domenico et al., 2013;

Leskovec, Adamic & Huberman, 2007; Bader et al., 2012, 2014). The details of these

networks are listed in Table 1. We developed a parallel CPU algorithm based on graph-tool

(https://graph-tool.skewed.de), which is an efficient network analysis tool whose core data

and algorithms are implemented in C++, making it efficient for various graph-related

algorithms, including betweenness calculations (https://graph-tool.skewed.de/performance).

The BC calculation performed by this tool relies on the Boost Graph Library (Siek, Lee &

Lumsdaine, 2001), and it supports the execution of parallel betweenness algorithms on

weighted networks (Gregor & Lumsdaine, 2005) (http://www.boost.org/doc/libs/1_65_1/libs/

graph_parallel/doc/html/index.html). We ran our four GPU implementations on a GeForce

GTX 1080 using the CUDA 8.0 Toolkit. The GeForce GTX 1080 is a compute-capable 6.1

GPU designed using the Pascal architecture that has 20 multiprocessors, 8 GB of device

memory, and a clock frequency of 1,772 MHz. The CPU we used is an Intel Core i7-7700K

processor. The Core i7-7700K has a frequency of 4.2 GHz, an 8 MB cache and eight physical

processor cores. We used four threads since hyperthreading does not improve performance,

and we also ran a sequential version because such implementations are still widely applied by

network researchers.

To further investigate the effects of network structures on the algorithms’

performance, we generated two types of networks: Erdös–Rényi (ER) random graphs (Erdös

& Rényi, 1959) and Kronecker graphs (Leskovec et al., 2010). The degree distribution of an

ER random graph is a Poisson distribution, meaning that its node degrees are relatively

balanced. Meanwhile, a Kronecker graph possesses scale-free and small-world

characteristics, making it appropriate for studying the load-imbalance problem. We

uniformly assigned random edge weights ranging from 1 to 10, as done in previous studies

(Martin, Torres & Gavilanes, 2009; Ortega-Arranz et al., 2013). We used these synthetic

networks to study the relationship between the graph structure and the traversal strategy.
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Results
Overall performance
From Table 2, we can see that all of the GPU programs achieve better performance than

both the sequential and parallel CPU versions on the real-world networks. The best GPU

algorithm for each network achieves speedups of 2.9� to 8.44� compared with the

parallel CPU method and of 10� to 20� compared with the sequential CPU algorithm,

and the performance can be markedly improved by assigning an appropriateWARP_SIZE.

Even on the two large networks with more than one million vertices, our algorithm

can produce results within 2 or 3 days. Note that the performance of previous GPU-based

BC algorithms for unweighted networks might be superior to ours on networks of similar

sizes because the complexity of the weighted BC algorithm is higher than that of its

unweighted counterparts.

As seen from Table 2, the work-efficient method is more efficient than the node-parallel

method on all networks, whereas the warp-centric method performs better on high-degree

networks, such as the three biological networks. However, combining the warp-centric

method and the work-efficient method always results in superior or approximately equal

performance compared with the work-efficient method alone because it causes fewer

threads to be required in each step, which, in turn, alleviates the second disadvantage

of the warp-centric method. For networks with low average degrees, such as

ca-MathSciNet-dir, rt-higgs and mt-higgs, applying the warp-centric method with the

real WARP_SIZE (32) is always inefficient because the nodes’ degrees are always smaller

than WARP_SIZE. Using a smaller virtual WARP_SIZE enables better performance on

Table 1 Details of networks from public datasets.

Network Vertices Edges Max degree Average degree Description

bio-human-gene1 (Rossi & Ahmed, 2015;

Bansal et al., 2007)

22,283 12,345,963 7,940 1,108.11 Human gene regulatory network

bio-human-gene2 (Rossi & Ahmed, 2015;

Bansal et al., 2007)

14,340 9,041,364 7,230 1,261.00 Human gene regulatory network

bio-mouse-gene (Rossi & Ahmed, 2015;

Bansal et al., 2007)

45,101 14,506,196 8,033 643.28 Mouse gene regulatory network

ca-MathSciNet-dir (Rossi & Ahmed, 2015;

Palla et al., 2008)

391,529 873,775 496 4.46 Co-authorship network

actors (Barabási & Albert, 1999) 382,219 15,038,094 3,956 78.69 Actor collaboration network

rt-higgs (Leskovec & Krevl, 2014; De

Domenico et al., 2013)

425,008 732,827 31,558 3.45 Twitter retweeting network

mt-higgs (Leskovec & Krevl, 2014; De

Domenico et al., 2013)

116,408 145,774 11,957 2.50 Twitter mention network

rec-amazon (Rossi & Ahmed, 2015; Leskovec,

Adamic & Huberman, 2007)

91,813 125,704 5 2.74 Product copurchase network

sc-shipsec1 (Rossi & Ahmed, 2015; Bader

et al., 2012)

140,385 1,707,759 67 24.33 Scientific computing network

soc-pokec (Leskovec & Krevl, 2014) 1,632,803 30,622,564 14,854 27.32 Pokec social network

kron_g500 (Bader et al., 2014) 1,048,576 44,619,402 131,503 112.22 Large Kronecker network
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these networks, as shown in Table 2, and we will also further demonstrate this later.

With an appropriate adjustment of WARP_SIZE for low-degree networks, the best-

performing program achieves average speedups of 5.2� compared with the parallel

CPU implementation and 2.34� compared with the baseline node-parallel strategy.

For the rec-amazon graph, which has the lowest maximum degree, the load-imbalance

problem does not exist, and for this reason, the warp-centric method cannot improve

the performance; instead, the algorithm in which the work-efficient strategy alone is

applied performs the best.

Influence of network structure

To deeply investigate the relationship between network structure and performance for

the four GPU implementations, we further ran these algorithms on two types of

synthetic graphs, with the results shown in Fig. 3. From Figs. 3A to 3D, we find that the

work-efficient algorithm performs better than the node-parallel algorithm on all networks

since it always reduces the required number of threads. As seen in Figs. 3A and 3B,

Table 2 Benchmark results of various BC algorithms on weighted graphs, including a sequential CPU algorithm, a four-thread CPU

algorithm, and node-parallel (NP), work-efficient (WE) and warp-centric (warpx denotes that the WARP_SIZE is x) algorithms.

Algorithm bio-human-gene1 bio-human-gene2 bio-mouse-gene ca-MathSciNet-dir actors

CPU (sequential) 7,494.09 3,505.49 18,300.83 49,184.05 –

CPU (4 threads) 2,245.61 1,023.48 5,460.26 21,169.81 89,196.19

NP 1,585.69 697.51 4,407.42 6,154.18 44,137.50

WE 1,398.47 612.14 3,742.69 4,796.71 37,803.60

NP+warp32 511.73 196.67 1,497.56 13,883.50 32,567.60

WE+warp32 403.51 159.68 1,214.86 4,969.10 25,382.20

WE+warp4 784.86 327.93 1,901.29 4,593.97 28,315.70

WE+warp8 562.48 229.53 1,365.80 4,579.23 25,469.50

WE+warp16 439.58 174.51 1,170.26 4,706.05 24,715.40

best speedup (over sequential CPU) 18.57� 21.95� 15.64� 10.74� –

best speedup (over parallel CPU) 5.57� 6.41� 4.67� 4.62� 3.61�
Algorithm rt-higgs mt-higgs rec-amazon sc-shipsec1 soc-pokec kron_g500

CPU (sequential) 54,717.96 1,829.63 2,116.82 9,763.16 – –

CPU (4 threads) 21,522.20 746.84 656.59 4,046.30 – –

NP 4,681.37 222.60 309.49 889.72 – –

WE 4,197.30 197.24 226.55 776.21 – 317,922.00 (88.3 h)

NP+warp32 6,205.65 337.89 1,115.83 1,478.78 – 245,450.82 (68.2 h)

WE+warp32 4,757.07 215.46 282.98 527.08 284,498.82 (79 h) –

WE+warp4 3,574.16 166.88 229.46 502.52 – –

WE+warp8 3,641.77 169.14 238.03 479.26 – –

WE+warp16 4,008.30 184.45 255.84 484.18 – –

best speedup (over sequential CPU) 15.31� 10.96� 9.34� 20.37� – –

best speedup (over parallel CPU) 6.02� 4.48� 2.90� 8.44� – –

Notes:
The times are expressed in seconds. The last two rows report speedups. The result of the CPU sequential algorithm on the actors network cannot be provided because this
program consumed too much time on this network. For the same reason, we also ran only selected GPU algorithms on the two very large networks. Bold entries display
running times of the fastest algorithms for specific networks.
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the warp-centric method works well on networks of high degrees, which is consistent

with the findings for the real-world networks. Note that for Kronecker graphs, the

warp-centric method works better than it does for random graphs since Kronecker graphs

have a severe load-imbalance problem, which the warp-centric technique can

appropriately address. By contrast, for ER random graphs, as shown in Fig. 3A, the only

advantage of the warp-centric method is its efficient memory access. For low-degree

graphs, the warp-centric method results in even worse performance than the node-parallel

strategy, as can be seen in Figs. 3C and 3D, because the degrees are always smaller than

WARP_SIZE. For random graphs, the performance of the warp-centric method is
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Figure 3 Performance of the four implementations on ER random and Kronecker graphs.

Here, WARP_SIZE is fixed to 32 in the two warp-centric methods. (A) and (B) show the results of

varying the number of nodes from 214 to 218 for ER random and Kronecker graphs, respectively, with a

fixed average degree of 32 for both types of networks. (C) and (D) show the results of varying the average

degree for random and Kronecker networks, respectively, where the random networks contain 20,000

vertices and the Kronecker networks contain 215 nodes. (E) Illustrates the average depths of the search

trees used for the random graphs in (C) and the Kronecker graphs in (D). Networks with greater depths

have smaller average frontier sets, resulting in poor parallel performance.

Full-size DOI: 10.7717/peerj-cs.140/fig-3
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extremely poor when the average degree is smaller than 8, and Fig. 3E illustrates the

reason. The low average degree results in a large average depth, which means that the

average size of the frontier sets is small. In this case, the warp-centric method assigns more

useless threads to nodes that do not need inspection. However, as the degree grows and

approaches WARP_SIZE, the depth simultaneously drops sharply, which makes the

warp-centric method perform much better. Meanwhile, low-degree Kronecker graphs

have power-law degree distributions and small average depths; consequently, the

warp-centric method does not perform as poorly as on random graphs. However, the

combination of these two methods always results in faster performance than the work-

efficient method alone because it avoids the second disadvantage of the warp-centric

method, as discussed in the previous section. In conclusion, the work-efficient method

always achieves better performance, whereas the performance of the warp-centric method

depends on the network structure; however, an algorithm that combines the two always

achieves the best performance.

Analysis of warp size
As seen from the above analysis, using a smaller WARP_SIZE may accelerate both the

node-parallel and work-efficient implementations combined with the warp-centric

method when the average degree of the network is small. This hypothesis is verified in

Table 3. We applied smaller WARP_SIZE values on the rt-higgs network, the mt-higgs

network and two synthetic graphs with an average degree of four. We find that

implementations with smallerWARP_SIZE values perform better than either the baseline

node-parallel algorithm or the algorithm with the largest WARP_SIZE on both of the

low-degree real-world networks, rt-higgs and mt-higgs. Moreover, when coupled with the

work-efficient method, algorithms with smaller WARP_SIZE values also perform better

than either the work-efficient strategy alone or the combination of the work-efficient

strategy and the largest WARP_SIZE. The reason is that a small WARP_SIZE reduces the

required number of threads, thereby eliminating the waste incurred when the number

Table 3 The results of using different values of WARP_SIZE on several low-degree networks.

Network rt-higgs mt-higgs ER Kronecker

node-parallel 4681.37 222.60 550.86 197.54

warp4 4182.84 205.47 578.09 159.74

warp8 4446.10 222.39 629.71 162.92

warp16 5088.25 260.28 805.60 179.60

warp32 6205.65 337.89 1294.71 250.16

WE 4197.30 197.24 435.93 133.84

WE+warp4 3574.16 166.88 413.36 118.90

WE+warp8 3641.77 169.14 420.20 115.25

WE+warp16 4008.30 184.45 449.54 115.12

WE+warp32 4757.07 215.46 501.69 118.61

Notes:
WE is short for work-efficient algorithm. Both the ER network and the Kronecker network have 217 nodes, and the
average node degree of each is four. The times are expressed in seconds. For these low-degree networks, implementations
with smaller WARP_SIZE values achieve better performance.
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of threads assigned to a node is greater than its degree. The implementations with small

WARP_SIZE values coupled with the work-efficient method achieve the best performance

because they avoid both disadvantages of the warp-centric method while utilizing its

advantages. The results obtained on the low-degree Kronecker graph are similar to those

obtained on realistic networks for the same reason. For ER random graphs, algorithms

with smaller WARP_SIZE values do not achieve better performance compared with the

node-parallel version because of the large average tree depth, as discussed in the previous

section. However, when the work-efficient method is applied, implementations with

smaller WARP_SIZE values perform slightly better than the work-efficient algorithm

alone, thereby further demonstrating the excellent performance and stability of the joint

algorithm. In summary, the joint algorithm is the most efficient and the most insensitive

to the network structure. Moreover, if we choose an appropriate WARP_SIZE for the

graph of interest, the performance of the joint algorithm can be even further improved

(see Tables 2 and 3).

CONCLUSION
Existing GPU versions of BC algorithms have concentrated only on unweighted networks

for simplicity. Our work offers an algorithm for computing BC in large weighted

networks, bridging this gap and enabling a marked efficiency enhancement compared

with CPU implementations. Moreover, we incorporate two excellent techniques into our

algorithm: the work-efficient and warp-centric methods. The work-efficient method

allocates threads more efficiently, and the warp-centric method solves the load-imbalance

problem while simultaneously optimizing memory access. We have compared these

implementations with sequential and parallel CPU algorithms on realistic networks.

The results show that the GPU parallel algorithms perform much better than the CPU

algorithms and that the algorithm that combines both the work-efficient and warp-centric

techniques is the best, achieving 2.9� to 8.44� speedups over the parallel CPU version

and 10� to 20� speedups over the sequential CPU version. Results obtained on synthetic

random graphs and Kronecker graphs further demonstrate the superior performance

of our solution.

In our future work, we will consider other techniques for addressing the load-

imbalance problem to further improve the performance of our algorithm (Davidson et al.,

2014; Wang et al., 2016). In addition, Solomonik et al. (2017) have proposed a parallel

BC algorithm for weighted graphs based on novel sparse matrix multiplication routines

that has achieved impressive performance, which may provide further inspiration for

accelerating our algorithm. We may also consider implementing a GPU algorithm for

processing dynamic networks. When networks change only slightly (e.g., a few new nodes

are added or a few links vanish), recalculating the BC for all nodes is unnecessary because

the BC of most nodes and edges will not change. Several previous works have explored

sequential algorithms for addressing this issue (Lee, Choi & Chung, 2016; Singh et al., 2015;

Nasre, Pontecorvi & Ramachandran, 2014). We plan to develop a GPU version of these

algorithms to achieve better performance.
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