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1 Department of Mathematics, Universidad de los Andes, Bogotá
2 Institute of Cognitive Science, University of Osnabrück, Osnabrück

3 School of Informatics, University of Edinburgh, Edinburgh
4 Computer Science Division, Faculty of Science, Ain Shams University, Cairo

5 School of Computing, University of Dundee, Dundee

Abstract. In Cognitive Science, conceptual blending has been proposed as an
important cognitive mechanism that facilitates the creation of new concepts and
ideas by constrained combination of available knowledge. It thereby provides a
possible theoretical foundation for modeling high-level cognitive faculties such as
the ability to understand, learn, and create new concepts and theories. This paper
describes a logic-based framework which allows a formal treatment of theory
blending, discusses algorithmic aspects of blending within the framework, and
provides an illustrating worked out example from mathematics.

1 Introduction

Since its introduction, the theoretical framework of Conceptual Blending (CB) has
gained popularity as alleged submechanism of several complex high-level cognitive
capacities, such as counterfactual reasoning, analogy, and metaphor [2]. While there is
a growing body of work trying to conceptually relate CB to several facilities at the core
of cognition, there currently are very few (if any) fully worked out formal or algorithmic
accounts. Still, if only some of the assumptions made about the importance of blending
mechanisms within human cognition and intelligence turn out to be reliable, a complete
and implementable formalization of CB and its defining characteristics would promise
to trigger significant development in artificial intelligence.

An early formal account on CB, especially influential to our approach, is the classi-
cal work by Goguen using notions from algebraic specification and category theory [3].
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Fig. 1. Goguen’s version of concept blending (cf. [3])

This version of CB is depicted in Figure 1, where a blend of two inputs I1 and I2 is
shown. Each node in the figure stands for a representation of a concept or conceptual
domain as a theory (set of axioms) in a formal language. We’ll call the nodes “spaces”,
so to avoid terms with strong semantical load such as “concept” or “conceptual do-
main”. Each arrow in the figure stands for a morphism, that is, a change-of-language



partial function that translates at least part of the axioms from its domain into axioms
in its codomain, preserving their structure. Now, while in practice all formal languages
of interest have a established semantics and the morphisms are therefore intended to act
as partial interpretations of one theory into another, Goguen’s presentation of CB stays
at the syntactic level, which more directly lends itself to computational treatment. The
same will apply to our own approach. Given input spaces I1 and I2 and a generalization
space G that encodes some (ideally all) of the structural commonalities of I1 and I2,
a blend diagram is completed by a blend space B and morphisms from I1 and I2 to B
such that the diagram (weakly!) commutes. This means that if two parts of I1 and I2 are
translated into B and in addition are identified as ‘common’ by G, then they must be
translated into exactly the same part of B (whence the term ‘blend’).

A standard example of CB, discussed in [3] and linked to earlier work on computa-
tional aspects of blending in cognitive linguistics (see, e.g., [11]), is that of the possible
blends of HOUSE and BOAT into both BOATHOUSE and HOUSEBOAT (as well as other
less-obvious blends). Parts of the spaces of HOUSE and BOAT can be structurally aligned
(e.g. a RESIDENT LIVES-IN a HOUSE; a PASSENGER RIDES-ON a BOAT). Conceptual
blends are created by combining features from the two spaces, while respecting the con-
structed alignments between them. Newly created blend spaces are supposed to coexist
with the original spaces: we still want to maintain the spaces of HOUSE and BOAT.

A still unsolved question is to find criteria to establish whether a blend is better than
other candidate blends. This question has lead to the formulation of various competing
optimality principles in cognitive linguistics (cf. [2]). While several of them involve
semantic aspects that escape Goguen’s and our own treatment of CB, other principles
can be reasonably approached even from a more syntactic framework. For example,
there is the Web Principle (maintain as tight connections as possible between the inputs
and the blend), the Unpacking Principle (one should be able to reconstruct the inputs
as much as possible, given the blend), and the Topology Principle (the components
of the blend should have similar relations to those that their counterparts hold in the
input spaces). These three principles, taken as a package, can be interpreted in terms
of Figure 1 as demanding that the morphisms should preserve as much representational
structure as possible. For example, one can notice that Figure 1 looks like the diagram
of a pushout in category theory. Goguen actually argued against forcing the diagram
of every blend to be a pushout [3], but he did claim that some forms of a pushout
construction (in a 3

2 -category) capture a notion of structural optimality for blends.

We will propose two alternative competing criteria for structural blend optimality
that also work in the spirit of the Web, Unpacking, and Topology principles, and an
algorithmic method for performing blending guided by those principles. We will use
HDTP, a framework for computational analogy making between first-order theories,
in order to obtain the generalization spaces G. Accordingly, our presentation here will
be restricted to CB over first-order theories. The paper is structured as follows: we
first introduce the formal framework we use to model blending processes, and then
propose our algorithmic description of blending. As proof of concept, along the paper
we present a worked out example from mathematics. The paper finishes with some
concluding remarks, a review of related work, and an outlook for future research.



2 Our Framework

Our approach is based on the Heuristic-Driven Theory Projection (HDTP, [10]), a
framework for computing analogical relations between two input spaces presented as
axiomatizations in some many-sorted first-order languages. HDTP proceeds in two
phases: in the mapping phase, the source and target spaces are compared to find struc-
tural commonalities and a generalized space G is created, which subsumes the matching
parts of both spaces. In the transfer phase, unmatched knowledge in the source space
can be mapped to the target space to establish new hypotheses (Figure 2). For our cur-
rent purposes we will only need the mapping mechanism and replace the transfer phase
by a new blending algorithm, so instead of talking about source and target spaces, from
now on we will refer to the input spaces as the ‘left’ and ‘right’ spaces (L and R). This
convention is meant to be merely a mnemonic relating to our diagrams and not an indi-
cation that one space has priority over the other (since we don’t need transfer anymore).

Generalization (G)

ss ++
Source (L)

analogical transfer // Target (R)

Fig. 2. HDTP’s overall approach to creating analogies (cf. [10]).

During the mapping phase in HDTP, pairs of formulae from L and R are anti-unified,
resulting in a generalization theory G that reflects common aspects of the input spaces.
Anti-unification [9] is a mechanism that finds least-general anti-unifiers of expressions
(formulae or terms). An anti-unifier of A and B is an expression E such that A and B
can be obtained from E via substitutions. E is a least-general anti-unifier of A and B if
it is an anti-unifier and the only susbtitutions on E that yield anti-unifiers of A and B
act as trivial renamings of the variables in E. As it happens, first-order anti-unification
(where only first-order substitutions are allowed) is not powerful enough to produce
the generalizations needed in HDTP, so a special form of higher-order anti-unification
is used where, under certain conditions, symbols of relation and function can also be
included in the domain of substitutions (see [10] for the details). The generalized theory
G can be projected into the original spaces by higher-order substitutions which are
computed by HDTP during anti-unification. We will say that a formula is covered by G
if it is in the image of this projection; otherwise it is uncovered.

Example 1. We will use a working example in this paper based on the theories L and
R from Table 1, which describe basic properties of the standard order and addition of
the natural numbers (starting from 1) and the non-negative rationals, respectively. All
the axioms are implicitly universally quantified, and x <i y abbreviates ¬(y ≤i x). The
table also shows a generalization theory G over the signature is {a,≤,+}. G reflects
the fact that axiom (Li) is structurally like (Ri) when 1≤ i≤ 6. Upon applying the left
and right substitutions to G, we’ll get the first six L-axioms and the first six R-axioms,
respectively, which are the covered formulas in this example.

In HDTP, any two formulae (or terms) from the input spaces that are generalized
(i.e. anti-unified) to the same expression in G are considered to be analogical. In anal-
ogy making, the analogical relations are used in the transfer phase to translate uncov-
ered facts from the source to the target space, while blending combines uncovered facts



Table 1. The two axiomatizations and the first generalization G used in the worked example. G
comes together with a left substitution {a 7→ 1,≤ 7→ ≤L,+ 7→ +L} and a right substitution
{a 7→ 0,≤ 7→ ≤R,+ 7→+R} from which L and R can be recovered.

Axiomatization L

x≤L x (L1)
x≤L y∧ y≤L z→ x≤L z (L2)
x≤L y∨ y≤L x (L3)
1≤L x (L4)
x+L y = y+L x (L5)
(x+L y)+L z = x+L (y+L z) (L6)
¬(x+L 1≤L x) (L7)
x≤L y∧ y≤L x+L 1→ y = x∨ y = x+L 1 (L8)

Axiomatization R

x≤R x (R1)
x≤R y∧ y≤R z→ x≤R z (R2)
x≤R y∨ y≤R x (R3)
0≤R x (R4)
x+R y = y+R x (R5)
(x+R y)+R z = x+R (y+R z) (R6)
x+R 0 = x (R7)
x <R y→∃z : x <R z∧ z <R y (R8)

Generalization G

x≤ x (G1)
x≤ y∧ y≤ z→ x≤ z (G2)
x≤ y∨ y≤ x (G3)
a≤ x (G4)
x+ y = y+ x (G5)
(x+ y)+ z = x+(y+ z) (G6)

from both spaces. Thus, the blending process can build on the generalization and sub-
stitutions provided by the analogy engine, and analogy can be considered a special case
of blending.

There are two extreme cases of CB, depending on the portion of the input theories
covered by G. The first case (left side of Figure 3) occurs when the input spaces are iso-
morphic, meaning that there is a bijective morphism that simply renames the signature
symbols of the language of L onto the symbols of R. In that case, all formulae of the
theories can be generalized and are completely covered by G, and the resulting blend
will be isomorphic to both of them 6. The other extreme (right side of Figure 3) occurs

G ∼=
((

∼=
vvL
∼=
((

∼= // R
∼=
vv

L∼= R

/0

((vvL
((

R
vv

L⊕R

Fig. 3. The two extreme cases of input spaces, along with their generalizations and blends.

when no formulae can be aligned and therefore the generalized theory G is empty, so no
formulae of the input theories are covered. In this case, a blend can always be obtained
by taking the (possibly inconsistent) disjoint union of the input theories. In practice,
neither of the two extreme cases is of real interest. The interesting proper blends arise
when only parts of the input theories are covered by G. In fact, one can adjust the blend
by changing the generalization, either by removing formulae from G and so reducing
its coverage, or by choosing altogether another G which associates different formulae.

Given G, the theories L and R can be split into their (non-empty) covered parts L+

and R+ and uncovered parts L− and R−. The covered parts are fully analogical, i.e.
basically isomorphic, and make up the core of the a blend B based on G. The uncovered
parts reflect the idiosyncratic aspects of the spaces, which we would ideally want to
integrate into B. However, due to the identifications induced by G, adding all this to
B may result in an inconsistent theory. To preserve consistency, we may be forced to
consider only consistent subsets of this ideal, fully inclusive, blend. In view of this, we

6 HDTP is syntax-based, but has some “re-representation” abilities by which formulae derived
from the axioms may be used in the mapping phase if the original axiomatizations don’t yield
a good analogical relation (cf. [10, pp. 258]). Thus, in some cases, two formally different but
semantically equivalent axiomatizations may not result in an empty generalization.



propose the following two optimality principles: IP renders a version of the Web and
Topology principles formulated in the introduction, while CP supports the Unpacking
Principle.

COMPRESSION PRINCIPLE (CP): aim for blend diagrams in which B is as
compressed as possible, that is, where as many signature symbols aligned by
G as possible are actually integrated as a single symbol in B.

INFORMATIVENESS PRINCIPLE (IP): aim for blend diagrams in which B is
as informative as possible, i.e., it includes a maximally consistent subset of the
potentially merged formulae (obtained by taking the union of the input theories
and then collapsing pairs of signature symbols that have been identified by the
analogy into one unified symbol).

3 Theory Blending Algorithm

Now we tackle the problem of algorithmically finding a list of optimal blends, given
two input theories L and R over first-order signatures ΣL, ΣR, respectively. A blend is
optimal if it is consistent and as maximally compressed and informative as possible. An
unconstrained way to do this leads to an explosion of possibilities to be tried, so good
heuristics are needed in order to choose which possibilities to test first. We propose to
proceed according to the following general steps:

1. Generalization: Using the HDTP mapping phase, compute a generalization G
that is as strong as possible (i.e identifies as many symbols as possible) together with
its associated substitutions7. As an example, see Table 1 and Example 1.

2. Identification: Build the blend signature ΣB by taking the ‘union’ of ΣL and ΣR
and collapsing each pair of symbols aligned by G to only one of them. Regardless of
how the collapsing is done, at the end the algorithm will produce the same blends, mod-
ulo partial renamings of identified symbols8. In what follows, we will simply choose the
symbol from ΣR when collapsing a pair. Thus, for the case of Table 1, ΣB will coincide
with ΣR, since no symbol in ΣL is uncovered by the left substitution.

3. Blending: Construct the set of all formulae over ΣB that might be part of a blend.
This will consist of every formula in R+, the covered part of R, plus every formula in
the uncovered parts of R and L, Ax = Tr(L−)∪R−. Here Tr is the (partial) translation
function that maps symbols from ΣL to corresponding symbols from ΣR according to
the generalization G, so ensuring that all formulas of Ax are build over signature ΣB.
The set Ax corresponding to the example in Table 1 is listed in the leftmost column of
Table 2, which also shows all the candidate blends for this particular generalization G.

Back to the general setting, the set R+ ∪Ax would be the ideal blend, but it might
be inconsistent. So in this step we also compute the set MaxCon of maximal consistent
blends B such that R+ ⊆ B⊆ R+∪Ax. For the running example, this involves exploring
the lattice of theories depicted in Figure 4.

7 A simplified version of HDTP is used, where substitutions must preserve the arity of symbols.
8 The algorithm might in principle be extended by producing for each discovered optimal blend

all of its “mirror” blends, obtained by renamings.



The user of the algorithm decides now if the produced blends are good enough or
the search must continue. In the first case we stop. If not, go to the next step which will
need the set MinInc of minimally inconsistent subsets of R+∪Ax that extend R+.

4. Relaxation: Reduce the set of symbols covered by the generalization by shrink-
ing G (some simple heuristics for this step are given below). Return to step 2.

Now we discuss how steps 3 and 4 can be implemented (steps 1 and 2 are obtained
from HDTP). We use a simple procedure COMPUTEBLENDS which, besides the sets R+

and Ax introduced above, needs a list Init of initial blend candidates (so each element
of Init extends R+). Init must have the property that every possible blend based on the
current generalization is either a superset or a subset of one of the elements of Init. This,
plus the way in which Init will be changed in the relaxation phase (more on this below)
guarantees that the algorithm will find all the optimal blends if never asked to stop the
search (at the end of step 3). At the very beginning of the process (step 1 above) Init can
be initialized, for example, to be the set of theories that extend R+ (a different choice
will be used later in our worked example). When a relaxation is needed (step 4 above)
a new set Init is computed from MaxCon and MinInc (more on this later). There is a
fourth parameter (‘direction’) which is used to direct the search as explained soon.

proc COMPUTEBLENDS(R+, Ax, Init, direction)
global MaxCon := /0; global MinInc := /0

foreach T ∈ Init do EXPLORE(R+, Ax, T , direction) end foreach
end proc

The first thing to do is to initialize as empty two global sets MaxCon and MinInc that
will keep at all times during the search the largest consistent theories and the smallest
inconsistent theories that have been found up to the moment. After this initialization,
the procedure enters into a loop in which for each initial theory T in Init, the procedure
EXPLORE will populate MaxCon and MinInc. After execution, all blends that contain
T or are contained in T , will be “classified correctly” by MaxCon and MinInc, i.e.
they will be subsumed by some theory in MaxCon if they are consistent, and they will
subsume some theory from MinInc if they are inconsistent (cf. Lemma 1 below). When
the loop ends, MaxCon determines precisely the optimal blends.

proc EXPLORE(R+, Ax, T , direction)
if T 6∈ ↓MaxCon ∪ ↑MinInc then

if T is consistent then MaxCon := {T}∪{M ∈MaxCon |M 6⊆ T}
else MinInc := {T}∪{M ∈MinInc | T 6⊆M} endif

endif
if T ∈ ↓MaxCon and (direction ∈ {up,both}) then

foreach Axiom ∈ (Ax\T ) do EXPLORE(R+, Ax, T ∪{Axiom}, up) end foreach
else if T ∈ ↑MinInc and (direction ∈ {down,both}) then

foreach Axiom ∈ T \R+ do EXPLORE(R+, Ax, T \{Axiom}, down) end foreach
endif

end proc

Here, ↑C denotes the set of theories that contain some theory from C and ↓C denotes
the set of theories that are contained in some theory from C; lC is ↑C∪ ↓C. As first
step in EXPLORE, if T is not yet classified by MaxCon or MinInc, consistency of T is



checked and MaxCon or MinInc are updated accordingly. In any case, if T is consistent
(inconsistent), a recursive upwards (downwards) search towards extensions (subsets) of
T is initiated. These upward and downward searches are performed unless the direction
parameter prohibits them. The calls to EXPLORE made when working with the first,
strongest generalization use always the direction both, with the effect that upwards and
downwards searches are allowed. In the case of calls to EXPLORE after a ‘relaxation’
has been made, the direction is set to up (the reasons for this will be explained later)9.

The above claims about EXPLORE follow from the next result, in which R+ and Ax
are fixed and the words ”theory blend” refer to sets T such that R+⊆ T ⊆R+∪Ax. Also,
we will say that MaxCon and MinInc classify correctly if all the elements of MaxCon
are consistent theory blends and all elements of MinInc are inconsistent theory blends.

Proposition 1. The following pre- and post conditions hold true of the operation of
EXPLORE (R+, Ax, T , direction), for all theory blends T :
(1) If all consistency checks can be accomplished, the procedure will terminate.
(2) If MaxCon and MinInc classify correctly before executing EXPLORE, then the same
holds afterwards.
(3) If a theory blend B is classified correctly by MaxCon and MinInc before executing
EXPLORE, then the same holds after calling EXPLORE.
(4) If direction = up and MaxCon and MinInc classify correctly before executing EX-
PLORE, then ↑T is classified correctly by MaxCon and MinInc after calling EXPLORE.
(5) If direction = up and MaxCon and MinInc classify correctly before executing EX-
PLORE, then ↓T is classified correctly by MaxCon and MinInc after calling EXPLORE.
(6) If direction = both and MaxCon and MinInc classify correctly before executing EX-
PLORE, then lT is classified correctly by MaxCon and MinInc after calling EXPLORE.

Proof. To show (1) notice first that the recursion will only occur with strictly larger
(direction = up) or strictly smaller (direction = down) values for T . As the size of T is
limited by R+ and R+ ∪Ax the claim follows. (2) follows directly, as MaxCon is only
changed when a consistent blend T is added. The case for MinInc is analogous. (3)
Let B be a consistent blend. By assumption B ∈↓MaxCon before executing EXPLORE.
MaxCon is only changed if T is consistent but T 6∈ MaxCon, in which case it will
become {T}∪ {M ∈ MaxCon|M 6⊂ T}. Now either B ⊆ T or B ⊆ M ∈ MaxCon with
M 6⊆ T . In both cases B is classified correctly by the new MaxCon. (4) We proceed by
induction on the cardinality of Ax\T . If T is inconsistent, no recursive call to EXPLORE
is made. If T ∈↑MinInc there is nothing to prove. If T /∈↑MinInc, observe that T will
be added to MinInc, so at the end of the procedure ↑T will be classified correctly by
MaxCon and MinInc. Now, if T is consistent and T /∈↓MaxCon, then T will be added to
MaxCon. Then, for each element A of Ax\T , a call EXPLORE(R+,Ax,T ∪{A},up) will
be made. By inductive hypothesis, after all these calls, every ↑ (T ∪{A}) is classified
correctly by MaxCon and MinInc, and so (since T is also classified correctly) ↑T is
classified correctly. (5) The argument is analogous to that for (4), now using induction
on the cardinality of T \R+. (6) If T is consistent, an argument very close to that of (4)

9 There are standard ways to improve the efficiency of the above procedure (using ordered lists,
for example), but such discussion would lead us away from the main focus of this paper.



shows that ↑T is classified correctly, so T ⊆ T ′ for some T ′ ∈ MaxCon. Then ↓T is
classified correctly as well. A similar argument applies if T is inconsistent.

As our framework stands, the evaluation of blends in Step 3 and the decision to stop
or continue with a relaxation, is a mandatory interactive step where the user decides.
As for the relaxation step, if needed, it is important to find a good weakening of G a
good set Init with which to continue to step 2. In principle, the framework allows for
an interactive implementation where the user decides which weakened generalization
to use next, or for an implementation that uses automated heuristics, such as building a
weakened generalizations for which: (1) only one old symbol mapping is dropped, and
(2) the fewest number of axioms become uncovered under the new generalization.

In any case, once a weakened generalization Ĝ has been fixed, the previously found
MaxCon and MinInc sets are used to compute an appropriate new Init set, as follows.
Let Tr and T̂r be the old and new translation functions. To form the set Init, for each
T in MinInc (and optionally for every minimal extension of MaxCon) add to Init the
theory that results from replacing in T every formula of the form Tr(φ) in R− by T̂r(φ).
This new Init is good in that every optimal blend for the weakened generalization will be
an extension of one the Init elements. This is why the exploration, after some relaxation
has been made, can be constrained to be upwards only.

Our algorithm involves testing theories in first-order logic with equality for incon-
sistency; this is well-known to be undecidable in general. In our examples the incon-
sistencies will be discovered quickly10, but in more elaborate situations, a resource-
bounded check for inconsistency may model reasonably well the experience of math-
ematicians who can work productively with theories that are believed to be consistent
and later revise their results in case an inconsistency is found. Research on Nelson
Oppen methods (see [7] for a survey) reveals conditions under which the satisfiability
and decidability of two theories is preserved when taking their union. The basic case
requires the signatures of the two theories to be disjoint, but this can sometimes be
relaxed. Some of these technical results might end up being useful to our work.

4 Worked Example

To illustrate the algorithm and suggest at least one improvement to it, we come back to
take the theories shown in Table 1. Remember that L is based on the additive natural
numbers (starting from 1) and L on the non-negative rational numbers. Thus, the notion
of ‘number’ in L is discrete with least element 1, whereas in R it is dense with least
element 0 (as the neutral element for addition). We will find all the optimal blends of L
and R. The example shows that our approach isolates just a few optimal blends among
many candidates, and that the short list includes (although not exclusively) the ones that
one would expect a mathematician to judge as most interesting.

The first stage of the procedure was already partially described in the previous sec-
tion. It explores the potential blends based on the generalization G of Table 1. Figure 4
shows a lattice of the blends and Table 1 lists the axioms of each candidate blend. Our
10 HDTP and an a beta implementation of the blending phase module are available on request.

The blending module uses prover9 to check for consistency.



Table 2. Formulae L7t and L8t result from transferring the uncovered formulae of axiomatization
L, according to generalization G. The table shows some of the theories in the search space of
possible blends. Maximal consistent theories are starred.

T R T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T L
x≤R x (R1) X X X X X X X X X X X
x≤R y∧ y≤R z→ x≤R z (R2) X X X X X X X X X X X
x≤R y∨ y≤R x (R3) X X X X X X X X X X X
0≤R x (R4) X X X X X X X X X X X
x+R y = y+R x (R5) X X X X X X X X X X X
(x+R y)+R z = x+R (y+R z) (R6) X X X X X X X X X X X
x+R 0 = x (R7) X X X X X X X
x <R y→∃z : (x <R z∧ z <R y) (R8) X X X X X X X
¬(x+R 0≤R x) (L7t) X X X X X X X
x≤R y∧ y≤R x+0→ y = x∨ y = x+R 0 (L8t) X X X X X X X
Consistent: Y N Y∗ N Y∗ N N N Y Y Y∗

set of initial theories will be formed by the minimal extensions of theory R and the mini-
mal extensions of (the transferred version of) theory L. That is, Init:= {T 1,T 3,T 7,T 4}.
The sets MaxCon and MinInc are initialized as empty and we start to explore the initial
theories. The first is T 1, which is inconsistent:

x+R 0 = x (R7)

¬(x+R 0≤R x) (L7t)

¬(x≤R x) (Substitution)

x≤R x (R1)

The two last lines are clearly contradictory. The algorithm orders to add T 1 to MinInc.
However, knowing that the inconsistency arises from only the axioms R1,R7, and L7t,
it is better to add the smaller T 5 to MinInc than adding T 1 itself. Thus, MinInc:= {T 5}.

Now, as the algorithm prescribes, we recursively explore (downwards) every theory
obtained from T 1 by deleting one axiom. These theories are T R,T 2, and T 5: T R is
consistent and T 5 6⊆ T R, so MaxCon := {T R}; T 2 is consistent, not contained in T R,
and does not extend T 5, then we update MaxCon := {T R,T 2}; and T 5 extends the only
member of MinInc, so we do nothing. This ends the analysis of T 1.

T 6

T 7 T 3 T 1 T 4

T L T 5 T 2 T 8 T 9 T R

{L7t} {L8t} {R7} {R8}

/0

T x = consistent

T x = maximal
consistent

T x = inconsistent

T x = mininal
inconsistent

Fig. 4. A lattice of the ‘blends’ that appear in the given example.

The second initial theory is T 3. This theory is not a subset of T R or T 2, and does
not extend T 5. In addition it is inconsistent, as shown by the third and last lines of the



following proof, which uses all the axioms of T 3 not covered by the generalization.

¬(x+R 0≤ x) (L7t)

¬(x+R 0≤ x)→∃z : (x <R z∧ z <R x+R 0) (R8)

x <R z∧ z <R x+R 0 (FOL)

¬(z≤R x)∧¬(x+0≤R z) (Def. ≤R)

x≤R z∧ z≤R x+R 0 (FOL + R3)

z = x∨ z = x+R 0 (MP with L8t)

z≤R x∨ x+R 0≤R x (FOL + R1 + Def. ≤R)

We update MinInc:= {T 5,T 3}, and recursively explore (downwards!) every theory
obtained from T 3 by erasing one axiom, namely T L,T 2, and T 8:
1. T L is consistent and does not extend T R nor T 2, then MaxCon := {T R,T 2,T L}.

We are in the “downwards” mode, so we stop.
2. T 2 is a member of MaxCon, so we stop.
3. T 8 is consistent and not contained in a member of MaxCon. We set MaxCon :=
{T R,T 2,T L,T 8}. Again, we are in the “downwards” mode, so this branch stops.

This ends the analysis of T 3, the second initial theory.
The third initial theory is T 7, but the analysis of it stops immediately as it extends

T 5 ∈ MinInc. We are left with the initial theory T 4, which is consistent and not con-
tained in Maxcon. Then Maxcon is updated by deleting the subsets of T 4 (T R and T 8)
and adding T 4: MaxCon := {T 4,T 2,T L}. Then we recursively explore (upwards) for
possible consistent extensions of T 4. The only proper extension of T 4 is T 6, which
extends elements of MinInc. The first stage of the algorithm ends thus::
Solutions: T 2, T 4, and T L. Minimally inconsistent theories: T 5 and T 3.

Note that T L is just a signature renaming of theory L, T 4 a case of analogical trans-
fer but not a proper blend, and T 2 a proper blend intuitively describing the rationals
larger than some nonzero number, which is not more interesting than the rationals start-
ing with zero, to which L corresponds. It is then fair to assume that the user will decide
to continue the search. In the second search stage, some of the contradictions found in
stage 1 will be avoided by weakening the signature of the generalization in the relax-
ation step. The weakening heuristics described in the previous section suggest dropping
the identification between 0 and 1, as this is the dropping that would diminish coverage
the least. The new generalized theory changes only in that (G4) is not an axiom of it
anymore. The result of transferring all of the axioms of axiomatization L to the R side
involves the introduction of a new symbol of constant (1) to the R-side; cf. Table 3.

The set of initial theories will consist of the smallest versions, under the new signa-
ture, of the theories associated with the elements of MinInc from stage 1. More in de-
tail, under the new signature there are four versions of each old theory T j from the first
stage. We call them T j0, T j1, T j2, or T j3 depending on which subset of {R4,L4tt}
they contain: T j0 includes no element from {R4,L4tt}, R j1 includes only L4tt, R j2
includes only R4, and R j3 includes the two axioms. Only some of these theories are
shown in Table 3. Our set of initial theories in this stage will then be Init:= {T 30,T 50}.
The sets MaxCon and MinInc are reset to the empty set.

Every maximally compressed solution blend with respect to the new generalization
must extend one of the initial theories. We explore each one of these initial theories in



Table 3. Formulae Lxxx result from transferring the uncovered formulae of L according to the
weakened generalization that does not identify 0 and 1. Maximal consistent theories are starred.

T 30 T 50 T 51 T 52 T 53 T 10 T 11 T 12 T 13 T 62 T 72
(R1)− (R3),(R5),(R6) X X X X X X X X X X X
0≤R x (R4) X X X X X X
x+R 0 = x (R7) X X X X X X X X X X
x <R y→∃z : (x <R z∧ z <R y) (R8) X X X X X X
1≤R x (L4tt) X X X X
¬(x+R 1≤R x) (L7tt) X X X X X X X X X X X
x≤R y∧ y≤R x+1→ y = x∨ y = x+R 1 (L8tt) X X X X
Consistent: N Y N Y N Y N Y∗ N N Y∗

the “upwards” mode. We start with T 30. This theory is inconsistent because the proof
used in stage 1 to see that T 3 is inconsistent still goes through when using 1 instead of
0 throughout, and L7tt instead of L7t. We update MinInc := {T 30}.

Then we test the second and last initial theory, T 50. The theory is consistent but may
not be maximal. We update MaxCon:= {T 50}, and explore T 50’s minimal extensions:

1. T 51 is inconsistent and does not extend T 30, therefore MinInc := {T 30,T 51}.
2. T 10 is consistent and extends T 50. Set MaxCon:= {T 10} and explore the three

minimal extensions of T 10, thus: T 60 and T 11 extend the elements T 30 and T 51
of MinInc, so nothing is done in these cases; and T 12 is consistent and properly
extends T 10. Thus, we update MaxCon:= {T 12} and test the minimal extensions
of T 12. There are only two cases of such a minimal extension: Adding L4tt to T 12
yields a theory that extends the element T 51 of MinInc; and Adding L8tt yields the
theory T 62, which is inconsistent because it extends T 30 ∈MinInc.

3. T 70 = T 50∪{L8tt} is consistent. So we update MaxCon:= {T 12,T 70}, and ex-
plore the minimal extensions of T 70. They are: T 60 (which extends T 30∈MinInc),
T 71 (which extends T 51∈MinInc), and T 72 (maximal consistent). After these ex-
plorations, MaxCon:= {T 12,T 72}, and MinInc:= {T 30,T 51}.

4. T 52 is a subset of T 12 ∈MaxCon, so we stop.

The second stage ends with new solutions T 12 and T 72, which, we claim, are the two
mathematically interesting blends of the given theories: there are distinguished numbers
0 and 1, with 0 the unit for addition, and 1 strictly greater than 0; T 72 is discrete, with a
zero element immediately below 1, while T 12 is dense, with a distinguished unit size.

5 Concluding Discussion

We presented a new algorithmic way of performing theory blending, based on the HDTP
framework. Our approach is inspired by Goguen’s treatment of CB, but differs from his
in various aspects. First, our system generally outputs fewer blends focusing on max-
imal informativeness and compression as optimality criteria. By this we capture some
aspects from [2]’s “optimality principles” for blends. Second, our algorithm uses only
the weakenings of a fixed generalization, while Goguen seems to require the explo-
ration of many (possibly mutually incompatible) starting generalizations. Our account
also differs from that of [8], as there mappings “do not have to rely on similarity: they
can present conflicts that are striking, surprising or even incongruous” [8, p. 90].



Our approach performs CB as theory blending. It therefore is especially appealing
for applications in mathematics (such as the automated creation of mathematical con-
cepts and conjectures) and logic-based AI. We demonstrated how traditional optimality
criteria for CB can be spelled out in this setting. Also, we can add consistency as a
further criterion to judge the quality of blends. As discussed, some relaxations of our
algorithms (e.g. using bounded checks) may yield a better fit with human performance.
We will also need to study more heuristics for the generalization relaxation stage, since
they will affect the order in which optimal blends will be detected, and so the time
needed to make the mathematically-oriented user satisfied by the produced blends.

Other algorithmic accounts are given, for instance, in [8], where the CB mechanism
uses a parallel search engine based on genetic algorithms, or in [4], sketching the blend-
ing of logical theories within a distributed ontology setup. Further work on CB is con-
tained in [6] where the authors present a rule-based system for counterfactual reasoning
in natural language. These examples are mostly addressing problems from linguistics
or philosophy, but our interest lies in particular in the blending of mathematical theo-
ries, as a means of understanding certain developments in the history of mathematics,
as described by [1], and as part of general mathematical cognition, as suggested by [5].
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