
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Hu, Zhenjiang and Hughes, John and Wang, Meng (2015) How functional programming mattered.
 National Science Review, 2 (3). pp. 349-370. ISSN 2095-5138.

DOI

https://doi.org/10.1093/nsr/nwv042

Link to record in KAR

http://kar.kent.ac.uk/50323/

Document Version

Publisher pdf

REVIEW
National Science Review

00: 1–22, 2015

doi: 10.1093/nsr/nwv042

Advance access publication 13 July 2015

COMPUTER SCIENCE

How functional programming mattered

Zhenjiang Hu1,2,∗, John Hughes3 and Meng Wang4

1National Institute of

Informatics, 2-1-2

Hitotsubashi,

Chiyoda-ku, Tokyo

101-8430, Japan;
2Department of

Informatics,

SOKENDAI (Graduate

University for

Advanced Studies),

2-1-2 Hitotsubashi,

Chiyoda-ku, Tokyo

101-8430, Japan;
3Department of

Computer Science and

Engineering, Chalmers

University of

Technology, SE-412 96

Gothenburg, Sweden

and 4School of

Computing, University

of Kent, Canterbury,

Kent CT2 7NZ, UK

∗Corresponding

author. E-mail:

hu@nii.ac.jp

Received 18 May

2015; Revised 26

June 2015; Accepted

1 July 2015

ABSTRACT

In 1989 when functional programming was still considered a niche topic, Hughes wrote a visionary paper
arguing convincingly ‘why functional programming maters’. More than two decades have passed. Has
functional programming really matered? Our answer is a resounding ‘Yes!’. Functional programming is
now at the forefront of a new generation of programming technologies, and enjoying increasing popularity
and inluence. In this paper, we review the impact of functional programming, focusing on how it has
changed the way we may construct programs, the way we may verify programs, and fundamentally the way
we may think about programs.

Keywords: functional programming, functional languages, equational reasoning,monad, high order
function

INTRODUCTION

Twenty-ive years ago,Hughes published apaper en-
titled ‘Why Functional Programming Maters’ [1],
which has since becomeone of themost cited papers
in the ield. Rather than discussing what functional
programming isn’t (it has no assignment, no side ef-
fects, no explicit prescription of the low of control),
the paper emphasizes what functional programming
is. In particular, it shows that two distinctive func-
tional features, namely higher order functions and
lazy evaluation, are capable of bringing considerable
improvement in modularity, resulting in crucial ad-
vantages in sotware development.

Twenty-ive years on, how has functional pro-
gramming matered? Hughes’s vision has become
more widely accepted. Mainstream languages such
as C#, C++, and Java scrambled one ater an-
other to ofer dedicated support for lambda expres-
sions, enabling programmingwith higher order func-
tions. Lazy evaluation has also risen to prominence,
with numerous papers on new ways to exploit its
strengths and to address its shortcomings.

One way to gauge the popularity of functional
programming is through its presence at conferences
both in academia and industry. he ACM Inter-
national Conference of Functional Programming
grew to 500 participants in 2014. Developer confer-
ences on functional programming abound—such as
the Erlang User Conference/Factory in Stockholm,
London and San Francisco, Scala Days and Clojure

West in San Francisco, Lambda Jam in Chicago,
Lambda Days in Krakow—all with hundreds of par-
ticipants. Functional programming is also well rep-
resented nowadays at more general industry confer-
ences such as GOTO in Aarhus, Strange Loop in St.
Louis, and YOW! in Melbourne, Brisbane and Syd-
ney, each with well over 1000 delegates.

Functional languages are also increasingly
being adopted by industry in the real world
(htps://wiki.haskell.org/Haskell in industry). To
name a few examples, Facebook uses Haskell to
make news feeds run smoothly; WhatsApp relies
on Erlang to run messaging servers, achieving up
to 2 million connected users per server; Twiter,
LinkedIn, Foursquare, Tumblr, and Klout use Scala
to build their core infrastructure for sites. And while
not using functional languages directly, Google’s
popular MapReduce model for cloud computation
was inspired by the map and reduce functions
commonly found in functional programming.

Generally speaking, functional programming is a
style of programming: the main program is a func-
tion that is deined in terms of other functions, and
the primary method of computation is the applica-
tion of functions to arguments. Unlike traditional
imperativeprogramming,where computation is a se-
quence of transitions from states to states, functional
programming has no implicit state and places its em-
phasis entirely onexpressions (or terms). Functional
programming focuses on what is being computed

C©heAuthor(s) 2015. Published by Oxford University Press on behalf of China Science Publishing &Media Ltd. All rights reserved. For Permissions, please email:

journals.permissions@oup.com

 National Science Review Advance Access published August 24, 2015

mailto:hu@nii.ac.jp
https://wiki.haskell.org/Haskell_in_industry

2 Natl Sci Rev, 2015, Vol. 00, No. 0 REVIEW

rather than how it is being computed, much like the
way we deine mathematical functions. As a simple
example, consider a mathematical deinition of the
factorial function:

0! = 1
(n + 1)! = (n + 1)n!

Its deinition in the functional language Haskell [2]
has exactly the same structure:

fac 0 = 1
fac (n + 1) = (n + 1) ∗ fac n

In contrast,with imperative programming,wewould
consider a state of (n, s) representing the current
counter and the partial result, and showhow to com-
pute the inal result by a sequence of state transitions
from the initial state of (x, 1):

n = x;

s = 1;

while (n>0) do {

s = s*n

n = n-1;

}

he contrast in style is apparent: functional pro-
grams are more declarative and oten much shorter
than their imperative counterparts. his is certainly
important. Shorter and clearer code leads to im-
proved development productivity and higher quality
(fewer bugs).

But it is probably a more subtle diference, well
hidden behind the overloaded use of the symbol
‘=’, that really sets the two apart. In the impera-
tive program, ‘=’ refers to a destructive update, as-
signing a new value to the let-hand-side variable,
whereas in the functional program ‘=’ means true
equality: fac 0 is equal to 1 in any execution con-
text, and can be used interchangeably. his charac-
teristic of functional programming (known as refer-
ential transparency or purity) has a profound inlu-
ence on the way programs are constructed and rea-
soned about—a topic that will be covered exten-
sively in the section entitled ‘Correctness of program
construction’.

What this toy example does not illustrate is the
use of higher order functions, a powerful abstraction
mechanism highlighted in Hughes’s paper [1]. We
will not repeat themessage here. Instead, we will de-
scribe the concept of monads (in the section enti-
tled ‘Structuring computation’), a design patern for
structuring computation that crucially depends on
higher order functions. We will show how monads
are used in developing domain-speciic languages
(DSLs) and taming side efects. In the section en-
titled ‘Parallel and distributed computation’, we re-
visit the ideas of purity and higher order functions
in the context of parallel and distributed comput-

ing, again showing the unparalleled advantages that
they bring. Lastly, in the section entitled ‘Functional
thinking in practice’, we briely sketch the impact of
functional programming in terms of inluence on ed-
ucation and other programming languages, and real-
world adoption. As a note to readers, this review
paper is not intended to systematically teach func-
tional programming, nor to comprehensivelydiscuss
its features and techniques.hey canbe found in var-
ious textbooks on functional programming [3–5].
Rather, we aim to give a broad and yet focused
view on how functional programming has matered
to sotware development, through showcasing ad-
vances in both academia and industry.

Since functional programming is a style, in the-
ory one could write functional programs in any
language, but of course with vastly difering levels
of efort. We call a language functional if its de-
sign encourages or to some extent enforces a func-
tional style. Prominent languages in this category in-
cludeHaskell [2], Erlang [6],ML [7,8], OCaml [9],
F# [10], Lisp [11,12], Scheme [13], Racket [14],
Scala [15], and Clojure [16]. In this paper, we
mostly use Haskell, because Haskell is not only a
dominant functional language, but also covers all the
most important features of functional programming.

CORRECTNESS OF PROGRAM
CONSTRUCTION

Today’s sotware systems are essential parts of our
everyday lives, and their correctness is becoming
ever more important; incorrect programs may not
only cause inconvenience, but also endanger life and
limb. A correct program is one that does exactly what
its designers and users intend it to do.

Obvious as it sounds, guaranteeing the correct-
ness of programs, or even deining the meaning of
correctness, is notoriously diicult. he complex-
ity of today’s sotware systems is oten to blame.
But the design of many programming languages in
use today—the fundamental tools we use to build
sotware—does not help either. Programs are ex-
pressed as sequences of commands returning a inal
result, but also at the same time updating the over-
all state of the system—causing both intended and
unintended side efects. State update is just one of
the many kinds of side efect: programs may throw
exceptions, send emails, or even launch missiles as
side efects. For ‘convenience’, most languages allow
such efects to be performed, without warning, any-
where in a program.

he result is that in order to specify the complete
correctness of any program, one has to describe the
whole state of the system, and the unlimited possi-
bilities of interactingwith the outsideworld—an im-
possible task indeed. Just consider the task of testing

REVIEW Hu et al. 3

part of a sotware system—perhaps a function called
f. Before f can be executed, the tester must bring
the system into the intended pre-state. Ater f has
inished, the tester must check the outcome, which
includes checking that the system state is as ex-
pected. But in general, the system state is only partly
observable, and even identifying theparts of the state
whichf changed is problematic.Muchof theworkof
testing imperative sotware consists of seting up the
right state beforehand, and observing the inal state
aterwards.

Functional programming departs dramatically
from this state of impediment by promoting purity:
the result value of an execution depends on noth-
ing other than the argument values, and no state
may change as program execution proceeds. Con-
sequently, it becomes possible to specify program
behaviours independently of the rest of the system.
For example, given a function that reverses a list
(where [] represents the empty list and++ appends
two lists), we can state the following set of proper-
ties governing the function’s correctness. (As a no-
tational convention, we use ‘≡’ to denote semantic
equality to avoid confusionwith the use of ‘=’ (func-
tiondeinition) and ‘==’ (comparison for structural
equality) in Haskell.)

reverse [] ≡ []
reverse [x] ≡ [x]
reverse (y s ++ xs) ≡ reverse xs ++ reverse y s
reverse (reverse xs) ≡ xs

As there are neither side efects nor outside inlu-
ence, these laws (the irst three) completely charac-
terize the function reverse. Drawing an analogy with
sworn testimony, the laws specify ‘the behaviour, the
whole behaviour, and nothing but the behaviour’!
he signiicance of this ability to claim that two
expressions are equal (in any semantically observ-
able way) is that one can now freely replace vari-
ables by their values, and in general any expres-
sions by their equals—that is, programs are refer-
entially transparent. his freedom makes functional
programs more tractable mathematically than their
conventional counterparts, allowing the use of equa-
tional reasoning in the design, construction, and
veriication of programs.

his is just a toy example, but the underlying idea
is far-reaching. Readers who are Linux users may
have come across xmonad (htp://xmonad.org/),
a tiling window manager for X11, known for its
stability. xmonad is implemented in Haskell and
relies on heavy use of semi-formal methods and
program derivation for reliability; window manager
properties (such as the behaviour of window fo-
cus) are speciied as equational laws, similar to

the ones above, and exploited for testing using
QuickCheck [17].

he holy grail of program correctness is to prove
the absence of bugs. A landmark achievement in
this respect is Leroy’s CompCert [18], an optimiz-
ing C compiler which is almost entirely proven cor-
rect with the Coq proof assistant. Tellingly, when
John Regehr tested many C compilers using his ran-
dom C program generator CSmith, he found 79
bugs in gcc, 202 in LLVM and so on, but only 6
in Compcert [19]. he middle-end bugs found in
all other compilers were entirely absent from Com-
pCert, and as of early 2011, CompCert is the only
compiler testedwithCsmithwhich lackswrong code
errors. As in the case of xmonad, the use of purely
functional immutable data structures played a cru-
cial role in this unprecedented achievement. his
idea of immutability is also appearing in application
areas where people might least expect it. Datomic
(htp://www.datomic.com), a fully transactional,
cloud-ready and distributed database, presents the
entire database as an immutable value, leveraging im-
mutability to achieve strong consistency combined
with horizontal read scalability.

In the rest of this section, we will see equational
reasoning at work—in formal proofs of program
correctness, in program testing, and in program
optimization—how to associate algebraic proper-
ties to functional forms for program reasoning, how
to automatically verify type properties, and how to
structure and develop algebraic properties and laws
for program derivation.

Equational reasoning

We have already seen the use of equational proper-
ties as speciications in the reverse example.hanks to
referential transparency,we arenotonly able towrite
the speciications, but also to reason with them.

Correctness proofs
Oneway tomake use of these equations is in correct-
ness proofs, just as in mathematics. Functional pro-
grams are oten recursively deined over datatypes,
lending themselves well to proofs by structural in-
duction. For example, the reverse function we have
already speciied via equations can be deined in
Haskell as follows:

reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

he second equation says that, to reverse a list with
the irst element as x and the rest of the list as xs, we
reverse xs and append x to the end of it. In fact, this
equation is derivable from the third law for reverse by
replacing ys by [x] and simplifying.

http://xmonad.org/
http://www.datomic.com

4 Natl Sci Rev, 2015, Vol. 00, No. 0 REVIEW

Now suppose we wish to prove that the def-
inition actually satisies its speciication, say the
property that reverse is its own inverse: for any inite
list xs,

reverse (reverse xs) ≡ xs

holds. In order to prove this property for any inite
list xs, it is suicient to show that (1) it holds when
xs is the empty list [], and (2) if it holds for xs, then it
also holds for x: xs—this is the induction step. (1) is
easy to show, and (2) can be conirmed as follows:

reverse (reverse (x : xs))
≡ {def. of reverse }

reverse (reverse xs ++ [x])
≡ { law: reverse (xs ++ y s) = reverse y s

++ reverse xs }

reverse [x]++ reverse reverse xs
≡ { def. of reverse and inductive hypothesis }

(reverse []++ [x])++ xs
≡ { def. of reverse and simpliication }

x : xs

Here, the law used in the above calculation can also
be formally proven by induction.

Inductive proof is very commonly used in the
functional seting as an efective way to verify critical
sotware systems.he inductive proof of the inverse
property of reverse has a strong resemblance to that
of the inverse property of complex encoding and de-
coding in real practice [20]. More practical applica-
tion examples include using the Coq proof assistant
for proving the security properties of the JavaCard
platform [21], certifying an optimizing compiler for
C [18], and formally proving computational cryp-
tography [22].

Property-based testing
Equational properties can also be used for testing
functional programs. Using the QuickCheck test li-
brary [17], properties can be expressed via Haskell
function deinitions. For example, the property of
reverse stated in the previous section can be writen
as

propReverseReverse :: [Integer] → Bool
propReverseReverse xs =

reverse (reverse xs) == xs

If the property holds, then the corresponding func-
tion should always returnTrue, so QuickCheck gen-
erates a large number of random argument values
and checks that the function returns True for each
one (the type stated for the property is needed to
tell QuickCheck what kind of test data to generate,
namely lists of integers).QuickCheck deines aDSL,
embedded in Haskell, for expressing properties in a
testable subset of predicate calculus.Quantiied vari-

ables, such as xs above, range over ‘sets’ which are
represented by test data generators, with ine control
over thedistributionof the randomlygenerateddata.

When a test fails, QuickCheck ‘shrinks’ the test
case to a minimal failing example. If we test the fol-
lowing (wrong) property,

propReverse :: [Integer] → Bool
propReverse xs = reverse xs == xs

then QuickCheck reports that [0, 1] (or, occasion-
ally, [1, 0]) is a counterexample; the shrunk coun-
terexample is obtained by searching for ways to sim-
plify whatever randomly generated counterexample
is irst found. We obtain [0, 1] because at least two
elements are needed to make this property fail, and
they cannot be equal—so [0, 0] is not a counterex-
ample. Shrinking is of critical importance to make
property-based testing useful; without it, the ‘signal’
that causes a test to fail is drowned in the ‘noise’ of
randomly generated data, and debugging failures is
far more diicult.

Interestingly, this kind of testing inesses Di-
jkstra’s famous objection that testing can never
demonstrate the absence of bugs in sotware, only
their presence. If we test properties that completely
specify a function—such as the four properties of
reverse stated in the introduction—and if every pos-
sible argument is generated with a non-zero prob-
ability, then property-based testing will eventually
ind every possible bug. In practice this isn’t true,
since we usually do not have a complete speciica-
tion, and we limit the size of generated tests, but in
principlewe can ind any possible bug this way—and
in practice, this approach to testing can be very efec-
tive, since generated tests can explore scenarios that
no human tester would think to try.

QuickCheck is heavily used in the Haskell
community—it is the most heavily used testing
package, and the 10th most used package of any
kind, in the Hackage Haskell package database. he
core of xmonad, discussed above, is thoroughly
tested by simple equational properties on the state
of the window manager, just like those we have dis-
cussed. he basic idea has been ported to many
other programming languages—FsCheck for F#,
ScalaCheck for Scala, test.check for Clojure, but
even non-functional languages like Go and Java.
here is even a commercial version in Erlang, mar-
keted byQuviq AB, which adds libraries for deining
statemachinemodels of efectful sotware [23].his
versionhasbeenused toindbugs in anEricssonMe-
dia Proxy [24], to track down notorious race condi-
tions in the database sotware supplied with Erlang
[25], and to formalize the basic sotware part
of the AutoSAR automotive standard, for use in
acceptance testing of vendors’ code for Volvo Cars
[26]. In this last project, 3000 pages of standards

REVIEW Hu et al. 5

documents were formalized as 20 000 lines of
QuickCheck models, and used to ind more than
200 diferent defects—many of them defects in the
standard itself. A comparison with conventional test
suites showed that the QuickCheck code was al-
most an order of magnitude smaller—despite test-
ing more!

Automatic optimization
he ability to replace expressions with their equals
and be oblivious to the execution order is a huge
advantage in program optimization. he Glasgow
Haskell Compiler (GHC) uses equational rea-
soning extensively internally, and also supports
programmer-speciied rewrite rules (equational
transformations) as part of the source program (in
pragmas) for automatic optimization. For instance,
we could give GHC the inverse property of reverse
to eliminate unnecessary double reversals of lists,
and GHC will then apply the rule whenever it can.
(While it is unlikely that a programmer would write
a double reversal explicitly, it could well arise during
optimization as a result of inlining other function
calls.)

{-# RULES

’’reverse-inv’’ forall xs.

reverse (reverse xs) = xs

#-}

In practice, peoplemake use of this utility for serious
optimizations. For example, shortcut fusion [27,28]
is used to remove unnecessary intermediate data
structures, and tupling transformation [29] is used
to reduce multiple traversals of data.

HERMIT [30] is a powerful toolkit for devel-
oping new optimizations by enabling systematic
equational reasoning inside theGHC’s optimization
pipeline. It provides a transformationAPI that canbe
used to build higher level rewrite tools.

Functional forms

Higher order functions are not only useful for ex-
pressing programs, they can be helpful in reason-
ing and proofs as well. By associating general alge-
braic (equational) laws with higher order functions,
we can automatically infer properties from these
laws when the higher order functions are applied to
produce speciic programs.

Two of the most important higher order func-
tions are fold and unfold (also known as catamor-
phism and anamorphism). hey capture two natu-
ral paterns of computation over recursive datatypes
such as lists and trees: unfolds generate data struc-
tures and folds consume them. Here, we give them
the name ‘functional forms’—they can be used as

design paterns to solve many computational prob-
lems, and these solutions inherit their nice algebraic
properties. In this review, we focus on fold and un-
fold on lists. In fact, a single generic deinition of fold
can be given for all (algebraic) datatypes [31–33],
and dually for unfold.

Algebraic datatypes
We have seen an example of an algebraic datatype,
namely List, earlier on in the reverse example. List
is the most commonly used datatype in functional
programming—to such an extent that the irst func-
tional languagewas namedLisp [11], as in ‘LISt Pro-
cessing’.A listwhose elements have the typeα canbe
constructed by starting with the empty list Nil, and
successively addingelementsof typeα to the list, one
by one, using the data constructor Cons.

data List α = Nil | Cons α (List α)

For instance, the list [1, 2, 3, 4], of type List Int, is
represented as follows:

as = Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil)))

he notations [] and inix : that we used above are
simply shorthand for applications ofNil andCons—
Cons x xs can be writen as x : xs. We will also
use the ‘section notation’ (surrounding an operator
by parentheses) to turn a binary inix operator ⊕

into a preix function: (⊕) a b = (a⊕) b = (⊕b)
a= a⊕ b.

Fold
Foldr, which consumes a list and produces a value as
its result, is deined as follows:

foldr f e Nil = e
foldr f e (Cons x xs) = f x (foldr f e xs)

he efect of foldr f e xs is to take a list xs, and re-
turn the result of replacingNil by e and eachCons by
f. For example, foldr f e as converts the above list as
to the value of

f 1 (f 2 (f 3 (f 4 e)))

his structurally inductive computation patern
captured by foldr is reusable; by choosing diferent fs
and es, foldr can performa variety of interesting func-
tionson lists.To take a fewexamples, sum sumsupall
elements of a list, prodmultiples all elements of a list,
maxlist returns themaximumelementof a list, reverse
reverses a list , map f applies function f to every
element of a list, and inits computes all initial
preix lists of a list. In the deinitions below, we use
partial applications of foldr: deining sum as
foldr (+) 0 (with two arguments rather than three)

6 Natl Sci Rev, 2015, Vol. 00, No. 0 REVIEW

is the same as deining sum xs to be foldr (+) 0 xs.

sum = foldr (+) 0
prod = foldr (×) 1
maxlist = foldr max (−∞)
reverse = foldr f [] where f a r = r ++ [a]
map g = foldr f [] where f a r = g a : r
inits = foldr f [[]] where f a r = [] :

map (a :) r

Unfold
Unfoldr is the dual of foldr, which generates a list
from a ‘seed’. It is deined as follows:

unfoldr p f g seed =

if p seed then []
else (f seed) : unfoldr p f g (g seed)

he functional form unfoldr takes a predicate p indi-
catingwhen the seed should unfold to the empty list.
When the condition fails to hold, then function f is
used to produce a new list element as the head, and
g is used to produce a new seed from which the tail
of the new list will unfold. Like foldr, unfoldr can be
used to deine various functions on lists. For exam-
ple, we can deine the function downrom n to gen-
erate a list of numbers from n down to 1:

downrom n = unfoldr isZero f g n
where

isZero n = n == 0
f n = n
g n = n − 1

Composition of functional forms
Foldr and unfoldr can be composed to produce clear
deinitions of computations, which we think of as
speciications in this section, because of their declar-
ative nature. For example, the following gives a clear
speciication for computing themaximumof all sum-
mations of all initial segments of a list:

mis = maxlist ◦ (map sum) ◦ inits

It is deined as a composition of four functions we
deined as foldrs before.

Given the duality of unfold and fold (one gen-
erating data structures and the other consuming
them), compositions of an unfold followed by a fold
form very interesting paterns, known as hylomor-
phisms [32,34,35]. A simple example of a hylomor-
phism is the factorial function:

factorial n = prod (down rom n)

where prod is deined using foldr and downromusing
unfoldr.

General laws
Functional forms enjoy many nice laws and proper-
ties that can be used to prove properties of programs
that are in those forms. Fold has, among others, the
following three important properties [32].

First, foldr has the followinguniquenessproperty:

foldr f1 e1 ≡ foldr f2 e2 ⇔ f1 ≡ f2 ∧ e1 ≡ e2

which means that two foldrs are equivalent (exten-
sionally), if and only if their corresponding compo-
nents are equivalent. It serves as the basis for con-
structing other equational rules.

Second, foldr is equipped with a general fusion
rule to deal with composition of foldrs, saying that
composition of a function and a foldr can be fused
into a foldr, under the right conditions.

h (f a r) ≡ f ′ a (h r)

h ◦ foldr f e ≡ foldr f ′ (h e)

hird,multiple traversals of the same list by diferent
foldrs can be tupled into a single foldr, and thus a sin-
gle traversal.

h x = (foldr f1 e1 x, foldr f2 e2 x)

h = foldr f (e1, e2)
where f a (r1, r2) = (f1 a r1, f2 a r2)

Let us use a simple example to demonstrate how
fusion is useful in the derivation of eicient pro-
grams. Assume that we have an implementation of
insertion sort (into descending order) using foldr:

sort = foldr insert []
where

insert a [] = [a]
insert a (b : x) = if a ≥ b then

a : b : x else b : insert a x

Now suppose that we want to compute the maxi-
mum element of a list. his is easy to do using the
existing sorting program:

maxList = hd ◦ sort

where hd is a function to select the irst element from
anon-empty list (hd (a : x) = a) and return−∞ if
the list is empty. hough declarative and obviously
correct, this program is ineicient. It is overkill to
sort the whole list, just to get the head. Fusion, us-
ing the laws above, provides a standard way to solve
this problem.he laws tell us that if we can calculate
f ′ such that

∀a, x. hd (insert a x) ≡ f ′ a (hd x)

then we can transform hd ◦ sort to
foldr f ′ (−∞). By instantiating x as b : y and

REVIEW Hu et al. 7

performing a simple calculation, we obtain f′ as
follows:

f ′ a b ≡ hd (insert a (b : y))
≡ if a ≥ b then a else b

hus, we have derived a deinition of maxList using
a single foldr, which is exactly the same as the def-
inition in the section entitled ‘Fold’ above. his fu-
sion improves the time complexity of maxList from
quadratic in the length of the list to linear.

Aswe have seen, equational reasoning and higher
order functions (functional forms) enjoy a symbi-
otic relationship: each makes the other much more
atractive.

Types

What is the type of a function like foldr? In the ex-
amples above, we have already seen it used with sev-
eral diferent types! Its arguments are a function that
combines a list element with an accumulator, an ini-
tial value for the accumulator, and a list of elements
to be combined—but those list elements may be in-
tegers, lists themselves, or indeed any type; the ac-
cumulator can likewise be of any type. Being able
to reuse higher order functions like map and foldr
for diferent types of data is a part of what makes
them so useful: it is an essential feature of functional
programming languages. Because of this, early func-
tional languages did without a static type checker;
they were dynamically typed, but the compiler did
not atempt to discover type errors. Some, like
Erlang or Clojure, still are.

Polymorphic types
In 1978,Milner introduced polymorphic types toML,
to solve this problem. he key idea is to allow types
to include type variables, which can be instantiated
to any type at all, provided all the occurrences of the
same variable are instantiated to the same type. For
example, the type of foldr is

foldr :: (α → β → β) → β → List α → β

where α is the type of the list elements, and β is the
type of the accumulator. When foldr was used to de-
ine sum above, then it was used with the type

foldr :: (Integer → Integer → Integer) →

Integer → List Integer → Integer

(in which α and β are both instantiated to Integer);
when it was used to deine sort then its type was

foldr :: (γ → List γ → List γ)

→ List γ → List γ → List γ

(in which α is replaced by γ , the elements in the list
to be sorted and β the accumulator type is a list of
these). his allowed the lexibility of polymorphism
tobe combinedwith the security of static type check-
ing for the irst time. ML also supported type infer-
ence: the type of foldr (and indeed, every other func-
tion) could be inferred by the compiler from its def-
inition, freeing the programmer from the need to
write types in function deinitions at all so ML was
as concise and powerful as the untyped languages of
its day,with the addedbeneitof static type checking.

Both these ideas have made a tremendous
impact. Many functional programming languages
since, Haskell among them, have borrowed the
same approach to polymorphic typing that ML
pioneered. Java generics, introduced in Java 5, were
based directly on Odersky and Wadler’s adaption
of Milner’s ideas to Java [36]; similar features
appeared thereater in C#. Type inference (in a
more limited form) appeared in C# 3.0 in 2007, and
type inference is increasingly available in Java too.

In fact, ML’s polymorphic types also give us
surprisingly useful semantic information about the
functions they describe. For example, the reverse
function can be applied to lists with any type of el-
ement, and so has the polymorphic type

reverse :: List α → List α

his implies that it also satisies

∀f, xs. map f (reverse xs) = reverse (map f xs)

as, indeed, does any other function with the same
polymorphic type!hese ‘free theorems’, discovered
byWadler [37], are anapplicationofReynold’spara-
metricity[38]; they are used, among other places, to
justify the ‘short cut deforestation’ optimization in
the GHC [27].

Type classes for overloading
Haskell’s major innovation, as far as types are con-
cerned, was its treatment of overloading. (Over the
years,many innovationshavebeenmade inHaskell’s
type system; herewe refer to innovations in the early
versions of the language.) For example, the equality
operator is overloaded inHaskell, allowing program-
mers to use diferent equality tests for diferent types
of data.his is achieved by declaring an equality type
class:

class Eq α where

(==) :: α → α → Bool
which declares that the equality operator (==) can
be applied to any type α with an instance of the class
Eq; programmers can deine instances of each class,
and the compiler infers automaticallywhich instance
should be used.

8 Natl Sci Rev, 2015, Vol. 00, No. 0 REVIEW

Right from the start, Haskell allowed instances
to depend on other instances. For example, (struc-
tural) equality on lists uses equality on the list ele-
ments, expressed in Haskell by deining

instance Eq α ⇒ Eq (List α) where
xs == y s = . . .

hat is, given an equality on typeα, the compiler can
construct an equality on typeList α, using the deini-
tion of== in the instance. Or to put it another way,
the compiler can reduce a goal to ind anEq (List α)
instance, to a goal to ind an Eq α instance, for any
α. his looks a lot like logic programming! Over the
years, Haskell class and instance declarations have
become more and more powerful, incorporating
aspects of both logic programming and func-
tional programming, with the result that the type
checker is now Turing-complete (Robert Dock-
ins, he GHC typechecker is Turing-complete,
htps://mail.haskell.org/pipermail/haskell/2006-
August/018355.html). he important observa-
tion here is that Haskell’s class system gives us a
programmable type checker, which—while it does
not allow us to accept programs that will generate
runtime-type errors—does allow us to construct
type systems for DSLs embedded in Haskell with
exquisite precision. Scala’s implicits were directly
inspired by Haskell’s type classes, and allow many
of the same tricks to be played [39].

Types and logic
Finally, there is a deep connection between types
and logic. Just consider the type of the apply func-
tion:

apply :: (α → β, α) → β

If we read function arrow types as logical implica-
tions, and the pair type as a conjunction, then this
type reads as the (true) proposition

((A ⇒ B) ∧ A) ⇒ B

It turns out that this is not a coincidence: we can
soundly regard apply as a proof of this property,
and any type which is inhabited by some expression
(in a suiciently carefully designed functional lan-
guage) corresponds to a provable property. Proof as-
sistants such as Coq [40] and Agda [41] are based
on this correspondence, the Curry–Howard isomor-
phism, and enable users to prove theorems by writ-
ing programs.A key notionhere is that of a dependent
type, a type which depends on a value. For example,
if the List type is parameterized not only on the el-
ement type, but also on the length of the list, then
reverse can be given a more informative type:

reverse :: ∀k :: Nat, α :: Set. List k α → List k α

representing the fact that its result has the same
length as its argument. (Here Set is roughly speak-
ing ‘the type of types’, or more precisely, the type
of small types, i.e. excluding types such as Set itself.)
Predicates can then be represented by types that are
sometimes empty. For example, Even k might be a
type that is empty if k is odd, and non-empty if k is
even—so constructing a term of type Even k proves
that k is even. Using these ideas, it is possible to con-
struct large functional programs with formal proofs
of correctness. Perhaps themost impressive example
to date is CompCert [18], already discussed above.

Algebra of programming

In the section entitled ‘Functional forms’, we have
seen a useful set of functional forms that capture
common computation paterns while enjoying gen-
eral algebraic laws for program reasoning. his at-
tractive idea can be carried much further, lead-
ing to the development of many speciic theorems
as building blocks for more complex reasoning.
he result is the algebra of programming [42,43],
where functional programming provides an alge-
braic framework for building programming theories
for solving various computational problems by pro-
gram calculation (derivation)—a systematic way of
transforming speciication into eicient implemen-
tation through equational reasoning. his supports,
in practice, Dijsktra’s argument that programming
should be considered as a discipline of a mathemati-
cal nature [44].

In this section, we review the programming theo-
ries that have been developed for constructing pro-
grams from speciications, and demonstrate how
these theories can be used to derive programs in
various forms for eicient sequential or parallel
computation.

Programming: deriving programs

from speciications
Before addressing the solution of programming
problems, consider the following mathematical
problem known as the Chinese Chicken–Rabbit-
Cage Problem:

An unknown number of rabbits and chickens are locked in

a cage. Counting from above, we see there are 35 heads,

and counting from below, there are 94 feet. How many

rabbits and chickens are in the cage?

he degree of diiculty of this problem largely de-
pends onwhichmathematical tools one has to hand.
A preschool childmay ind it very diicult; he has no
choice but to enumerate all possibilities. However, a
middle school student equipped with knowledge of

https://mail.haskell.org/pipermail/haskell/2006-August/018355.html
https://mail.haskell.org/pipermail/haskell/2006-August/018355.html

REVIEW Hu et al. 9

equation solving should ind it easy. He would let x
be the number of chickens and y that of rabbits, and
quickly set up the following problem speciication:

x + y = 35
2x + 4y = 94

he rest is entirely straightforward.he theory of lin-
ear equations gives us a strategy for solving them sys-
tematically, to discover the values of the unknowns
(i.e., x= 23, y= 12).

Wewant to solveourprogrammingproblems this
way too! We would like to have an algebra of pro-
grams: a concise notation for problem speciication,
and a set of symbol manipulation rules with which
we may calculate (derive) programs from specii-
cations by equational reasoning. Here, by ‘speciica-
tion’, we mean two things: (1) a naive functional
program that expresses a straightforward solution
whose correctness is obvious; and (2) a program in a
speciic form of composition of functional forms. By
‘program’, we mean an eicient functional program,
which may be sequential, parallel, or distributed.

Programming theories
Just like the speciic laws developed for factorization
in solving equations, many laws (theorems) for de-
riving eicient functional programs from speciica-
tions have been developed [43,45]. hey are used
to capture programming principles by bridging the
gap between speciications and their implementing
programs. As an example, many optimization prob-
lems can be naively speciied in a generate-and-test
way: generating all the possibilities, keeping those
that satisfy the requirements, and returning one that
maximizes a certain value:

opt = maxlist ◦ map value ◦ ilter p ◦ gen

To solve this kind of optimization problems using
folds, many theorems [43,46] have been developed.
One example is: if (1) gen,p, and value canbedeined
as foldrs, and (2) value = foldr (⊕) e , where ⊕ is
associative and max is distributive over ⊕, then opt
can be solved in linear time by a functional program
in terms of a single foldr. With this theorem, solving
optimization problems become easy: one just needs
to specify the problem in the form described and the
rest will follow!

Programming theory development
Many theories for the algebra of programming
have been developed—but new ones can always be
added. here is a general procedure to develop pro-
gramming theories consisting of the following three
major steps [47,48].

(i) Deine a speciic form of programs, in terms
of functional forms and their composition,
that can be used to describe a class of inter-
esting computations.

(ii) Develop calculational rules (theorems) to
bridge the gap between the new speciic
form and the existing functional forms.

(iii) Developmore theorems that can turnmore
general programs into the speciic form to
widen the application scope.

heirst stepplays a very important role in this devel-
opment. he speciic form deined should not only
be powerful enough to describe computations of in-
terest, but alsomanipulable and suitable for the later
development of calculational laws.

Systems for program derivation
Many systems have been developed for supporting
program derivation and calculation. Examples are
KIDS [49], MAG [50], Yicho [47], and so on. In
general, such tools (1) support interactive develop-
ment of programs by equational reasoning so that
users can focus on their creative steps, (2) guarantee
correctness of the derived program by automatically
verifying each calculation step, (3) support devel-
opment of new calculation rules so that mechanical
derivation steps can be easily grouped, and (4)make
the development process easy to maintain (i.e. the
development process should be well documented).

Proof assistants and theorem provers can pro-
vide a cheapway to implement a system for program
reasoning and program calculation [51–53]. For in-
stance, with Coq [40], a popular theorem prover,
one can use Ltac, a language for programming new
tactics, to build a program calculation system [53]:
(1) Coq tactics can be used efectively for automatic
proving and automatic rewriting, so that tedious cal-
culation can be hidden with tactics; (2) new tactics
can coexist with the existing tactics, and a lot of use-
ful theories of Coq are ready to use for calculation,
and (3) tactics can be used in a trial-and-error man-
ner thanks to Coq’s interaction mechanism.

In contrast to deriving functional programs from
formal speciications, MagicHaskeller [54,55] is an
interesting tool that automatically synthesizes func-
tional programs from input/output examples. Al-
though still under development, it has demonstrated
the feasibility of the idea by synthesizingmany inter-
esting Haskell programs from just a small number of
examples.

STRUCTURING COMPUTATION

In the previous section, we have experienced the
liberating power of the absence of side efects.

10 Natl Sci Rev, 2015, Vol. 00, No. 0 REVIEW

Referential transparency is the basis of the wealth
of properties that enabled us to reason, to test, to
optimize, and ultimately to derive programs. On
the other hand, functional programmers are by no
means ascetics withdrawing from worldly pleasures.
Functional programs are real programs! hey do
perform necessary computations with side efects
such as I/Os, exceptions, non-determinism, etc.

he diference is simply a shit of perspective.
Functional programmers view side efects as costly,
which shall be used with care, and at the best
avoided. Let us suppose that we have to pay for each
pair of parentheses in a game of writing arithmetic
expressions. Associativity, which removes the need
of parenthesizing, becomes very valuable and play-
ers will be incentivized to write 3 × 0.5 × 5 instead
of (3÷2)× 5 for example. Programming is like such
writing of expressions, and the role of a program-
ming language is to encourage good practice and at
the same time discourage the opposite.

Pure functional languages do just that: side ef-
fects are encoded by a programming patern known
asmonads [56–59]. Since it is an encoding, purity is
not threatened. But monads do enjoy a clearly dis-
tinguished syntax and type to encourage thought-
ful design. We will see later in this section in more
details the idea of monadic efects, and the bene-
it of being disciplined with the uses of them. As a
mater of fact, the concept of monads as a program-
ming patern has applications far beyond handling
side efects; it is fundamentally a powerful way of
structuring computations and has been adopted in
languages with built-in side efects! To name a few,
some readers may have heard of async monad in F#,
promises in JavaScript, or future in Scala, which are
essentially imitations of amonad used to structuring
asynchronous operations. On a diferent front, Lan-
guage INtegratedQuery (LINQ) in .NET is directly
inspired by monads, and a syntax sugar for them
known as monad comprehension (following from set
comprehension) in Haskell.

In the sequel of this section, wewill briely review
monads and demonstrate their uses in structuring
computations, in the context of programming lan-
guage development, which is itself a particularly suc-
cessful application of functional programming.

Monadic composition

Originally as a concept in category theory that was
used by Moggi to modularize the structure of a de-
notational semantics [56,57], monads are soon ap-
plied by Wadler to the functional implementations
of the semantics that Moggi describes, and as a gen-
eral technique for structuring programs [58,59].

A monadM consists of a pair of functions return
and (≫=) (pronounced as ‘bind’).

return :: α → M α

(≫=) :: M α → (α → M β) → M β

One shall read Mα the type of a computation that
returns a value of typeα, andperhaps performs some
side efects.Ananalogy is to see a valueof typeMα as
a bank card and its pin; they are not the same as plain
cash a (of type α) which can be used immediately,
but contain the instruction of producing an a, and in
fact any number of as.

We cannot use a value of type Mα directly, but
we can combine it with other instructions that use
the result. For example, consider an evaluator of type
Term → Environment → M Value , whereM is a
monad. he evaluator does not give us a value di-
rectly, but we can bind its result to be used in sub-
sequent computations:

eval u e ≫= (λa →

eval v e ≫= λb →

return (Num (a + b))

his expression evaluates the two operands of an ad-
dition and add them up. he result of the irst eval-
uation is bound to the variable a and is passed to
the second evaluation, and together with the second
result (bound to b) they form parts of a new value
which is again encapsulated in the monad by return.
his patern of structuring computation is very com-
mon and has been giving special syntax support in
Haskell [58].he above expression can be rewriten
as the following equivalent form:

do a ← eval u e
b ← eval v e
return (Num (a + b))

which is seemingly similar to the following
expression:

let a = eval u e
b = eval v e

in Num (a + b)

Now, let us say we want to extend the evaluator
with error handling as in

eval :: Term → Environment → Maybe Value

data Maybe a = Just a | Nothing

where failures are represented by Nothing and suc-
cessful computations return values wrapped in Just.
Without giving up on purity and resorting to a lan-
guage with side efects, the non-monadic deinitions
which structure computations with let have to be te-
diously rewriten: every let binding now has to be
made toperformacase analysis, separating successes

REVIEW Hu et al. 11

from failures, and then decides the next step accord-
ingly.

Whereas for the monadic version, the story is
rather diferent. he structure of the evaluator is in-
dependent of the underlying computation that is
used, and if carefully designed changing one entails
minimumchanges to theother. In the above, the spe-
cializing of monad type M to Maybe links the right
instances of return and≫= (in fact monads forms a
type class).

instance Monad Maybe where
return x = Just x
Nothing ≫= f = Nothing
Just x ≫= f = f x

here is no change in the evaluator’s deinition, as
the handling of failure is captured as a patern and lo-
calized in the deinition of≫=. In a similar manner,
we can add to the evaluator real-world necessities
such as I/Os, states or non-determinism in a similar
manner—simply replacing the underlying monad.

Monads not only encapsulate side efects, but
also make them irst class. For example, the function
sequence :: [m α] → m [α], where m is a monad,
evaluates each computation in turn, and collects the
results. In the evaluator example, one may rewrite
the expression for addition as

litM sum (sequence [eval u e , eval v e])

where sum adds up a list of numbers and is lited (by
litM) to handle monadic values.

In addition to structuring programming lan-
guages semantics, monads also ofer a nice frame-
work for I/Os in a pure language.he idea is to view
I/Ooperations as computations interactingwith the
‘outside world’ before returning a value: the outside
world is the state, which (represented by a dummy
‘token’) is passed on to ensure proper sequencing of
I/O actions [60]. For example, a simple Read-Eval-
Print Loop that reverses the command line input can
be writen with recursion as a function of type IO (),
where IO is themonad and () is a singleton typewith
() as its only value.

repl :: IO ()
r e pl = do

line ← getLine
putStrLn (reverse line)
repl

Giving the stateful implementationof the IOmonad,
it is obvious that it could be used to support mutable
states and arrays [60], though a diferent approach
based on normal state monad, which encapsulates
efectful computations inside pure functions,may be
considered beter [61,62].

Further extensions of the IO include the han-
dling of concurrency [63]. he implementation of

sotware transactional memory (STM) with mon-
ads [64] is a clear demonstration of the beneit of
carefully managed side efects; twomonads are used
in the implementation: the STM monad structures
tentative memory transactions, the IOmonad com-
mits the STM actions exposing their efects to other
transactions, and a function atomic connects the
two:

atomic :: STM α → IO α

As a result of this explicit distinction of diferent type
of efects made possible by monads, only STM ac-
tions and pure computations can be performed in-
side a memory transaction ruling out irrevocable ac-
tions by construction, and no STM actions can be
performed outside a transaction efectively eliminat-
ing a class of bugs altogether. Moreover, since reads
from and writes to mutable cells are explicit as STM
actions, the largenumberof other (guaranteedpure)
computations in a transaction are not tracked by the
STM, because they are pure, and never need to be
rolled back. All these guarantees make a solution
based on monads very atractive indeed.

Monads are oten used in combination. For ex-
ample, an evaluator may need to handle errors and
at the same time performing I/O, and it will be desir-
able to reuse existingmonads insteadof creating spe-
cialized ones. he traditional way of achieving such
reuse is through moving up the abstraction level to
build monad transformers [65,66], which are similar
to regularmonads, but insteadof standing alone they
modify the behaviours of underlying monads, efec-
tively allowing diferent monads to stack up. he
downside of monad transformers is that they are dif-
icult to understand and are fragile to changes. Alter-
natives have been proposed and it is still an active
area of research [67–69].

Inspired by monads, other abstract views of
computation have emerged, notably arrows [70,71]
and applicative functors [72]. First proposed by
Hughes [70], arrows are more general than monads
allowing notions of computation that may be par-
tially static (independent of the input) or may take
multiple inputs. Applicative functors are a proper su-
perset of monads, which has weaker properties and
thusmoremembers. Similar tomonads, both arrows
and applicative functors can be used for structur-
ing the semantics of embedded domain-speciic lan-
guages (EDSLs) [73,74]. A theoretical comparison
of the three can be found in [75].

Embedded domain-speciic languages

So far, we have only discussed one way of devel-
oping languages that is to implement stand-alone

12 Natl Sci Rev, 2015, Vol. 00, No. 0 REVIEW

compilers or interpreters. Functional programming
is well suited for the task and the use of monad has
signiicant impact on modularity. However, the par-
ticular success of functional programming actually
comes from another way of language development
known as embedding [76,77].

Languages produced through embedding are
known as embedded languages, which are libraries in
host languages. Giving that such libraries usually fo-
cus on providing functionalities of a speciic prob-
lemdomain, the languages resulting from are seen as
EDSLs, while the host languages are usually general
purpose. he EDSL and its host language are one:
the API of the library speciies a set of constructs of
the newDSL, which at the same time shares the tool
chain and the generic features of the host language,
such as modules, interfaces, abstract data types, or
higher order functions. Moreover, the EDSL imple-
mentation is very ‘lightweight’—the EDSL designer
can add features just by implementing a new func-
tion in the library, and can easily move functionality
between the EDSL library and its clients. he ease
of experimentation with such an EDSL helps imple-
mentors ine-tune the design, and enables (some)
end users to customize the implementation with
domain-speciic optimizations.

SuchEDSLs have appeared in awide spectrumof
application areas, including compiler development,
database queries, web applications, GUIs,music, an-
imations, parallelism, hardware descriptions, image
processing, worklow, and more. See Fig. 1 for a few
examples and [78] for a comprehensive listing.

We have said that EDSLs are libraries. But obvi-
ously not all libraries are languages. So what is it that
elevates EDSLs from their humble origin as libraries
to the level of languages?

For a language to be worth its name, it must al-
low code fragments manipulating primitive data to
be shared through deining reusable procedures. In
an EDSL seting, the data (also known as the do-
main concepts) are themselves functions. For exam-
ple, in modelling 3D animation, the domain con-
cept of behaviour, representing time-varying reactive
values, is a function from time to a ‘normal’ value.
To have a language, we need to provide constructs
that manipulate such domain concepts. his is easy
in functional languages: we can simply deine higher
order functions called combinators, taking domain
concepts as inputs and combining them into more
complex ones, just like what procedures do to prim-
itive data. For this reason, EDSLs are also known
as combinator libraries—libraries that not just of-
fer domain-speciic operations, but alsomore impor-
tantly combinators that manipulate them. We illus-
trate this idea by developing an example EDSL.

A classic example: parser combinators
Our aim is to develop a parsing EDSL for the follow-
ing BNF grammar:

loat ::= sign? digit+ (′.′ digit+)?

Like any language, an EDSL has syntax and se-
mantics. In this embedded seting, the syntax is
simply the interface of the library containing the

query = do cust ← table customers

restrict (cust !city . == . ”London”)
project (cust !customerID)

(a) HaskellDB [121] for generating and executing SQL statements

htmlPage content =
(header ≪ ((thetitle ≪ ”Mypage”)

+++(script ! [thetype ”text/javascript”,
src ”http : //...”] ≪ ””)

)) +++ (body ≪ content)

(b) (X)HTML [119] for producing XHTML

mouseTurn g u =
turn3 xVector3 y (turn3 zVector3 (−x) g)
where

(x, y) = vector2XYCoords (π∗̂mouseMotion u)

mouseSpinningPot u =
mouseTurn (withColorG green teapot) u

(c) Fran [120] for composing interactive, multi-media animations.

Figure 1. Code fragments in three EDSLs.

REVIEW Hu et al. 13

representation of the domain concept, and the oper-
ations on it; and the semantics is the implementation
of the operations in the host language.

A parser is a program that receives a piece of
text as the input, analyses the structure of the text,
and produces an output usually in the form of trees
that can bemore convenientlymanipulated by other
parts of a compiler. A parser can be represented as a
function:

newtype Parser α = MkP (String→[(α, String)])

he type Parser is a new type, distinct but iso-
morphic to its underlying type of a function from
strings to lists of parsing results, depending on how
many ways the parse could succeed, or fail with an
empty list. he parameterized type α is the tree pro-
duced by parsing, and is paired with the remain-
ing unparsed string. In DSL terminology, Parser is
the domain concept we are trying to model and
as usual it has an underlying representation as a
function.

Primitive Parsers: With a parser representation at
hand, we can start building a library to manipulate
it. To start with, we deine some basic parsers.

item :: Parser Char
item = MkP f

where

f [] = []
f (c : cs) = [(c , cs)]

he parser item consumes a character of the input
string and returns it. And a second parser is a parser
that always fails.

zero :: Parser α

zero = MkP f where f = []

hese two are the only basic parsers that we will ever
need, and all the power of the resulting language
comes from its combinators.

Parser Combinators: For the grammar we have in
mind, our language consists of the following set of
basic combinators:

sat :: (Char → Bool) → Parser Char
plus :: Parser α → Parser α → Parser α

optional :: Parser α → Parser (Maybe α)

In the above, sat enriches item with a predi-
cate so that only characters satisfying the predi-
cate will be parsed. By providing diferent predi-
cates, it can be specialized to a number of diferent
parsers:

char x = sat (== x)
digit = sat(λx → ′0′ ≤ x ∧ x ≤ ′9′)

For example, digit succeeds with ‘123’ and produces
[(‘1’, ‘23’)] as the outcome, but fails (returning [])
with ‘A23’. Similarly, char only recognizes the char-
acter that is passed to it as input and fails on all oth-
ers.

Parser plus p q combines the outcomes of apply-
ing p and q. In the case when one of the two fails, the
outcome will be the same as using the other one:

sign :: Parser Char
sign = (char ′+′) ‘plus‘ (char ′−′)

In the above, the preix function plus is turned into
an inix one by the surrounding let single quotes.

he combinator optional corresponds to the (?)
notation in our grammar allowing an optional ield
to be parsed into Nothing when it is not illed. Note
that here Nothing represents success in parsing, not
failure which is represented by the empty list.

So far, what we have seen are combinators that
are useful for constructing parsers recognizing indi-
vidual components of a grammar. A crucial missing
part is a way to sequence the individual components,
so that individual parsers are chained together and
applied in sequence. For example, our loat grammar
is a chain of sign, digits, and fraction parsers. In an-
other words, we need a way to structure the parsing
computation. Sounds familiar? Monads introduced
in the previous subsection it the bill very well.

Just likeMaybe, Parser α is a monad with its own
bind and return:

(≫=) :: Parser α → (α → Parser β)→Parser β

return :: α → Parser α

Nowwe are ready to deine combinators that repeat-
edly apply a parser:

zeroOrMore :: Parser α → Parser [α]
zeroOrMore p =

do {x ← p;
xs ← zeroOrMore p;
return (x : xs)}

‘plus‘ return []

oneOrMore :: Parser α → Parser [α]
oneOrMore p =

do x ← p
xs ← zeroOrMore p
return (x : xs)

Parser zeroOrMore p returns each application of p
as a list. For example, applying (zeroOrMore digit)
to ′12a′ results in [(′12′,′ a′), (′1′,′ 2a′), (′′,′ 12a′)].
Parser oneOrMore p is similar to zeroOrMore p ex-
cept requiring p to apply at least once.

Just to show that the use of monad has not pre-
vented us from doing the same kind of equational
reasoning as before, we list a few arbitrarily selected

14 Natl Sci Rev, 2015, Vol. 00, No. 0 REVIEW

laws as an example:

zero ≫= p ≡ p
zero ‘plus‘ p ≡ p
p ‘plus‘ (q ‘plus‘ r) ≡ (p ‘plus‘ q) ‘plus‘ r
(p ‘plus‘ q) ≫= r ≡ (p ≫= r) ‘plus‘ (q ≫= r)

Finally, we can directly translate the BNF grammar
at the beginning of this subsection to the following
executable parser:

loat = do

sgn ← optional sign
in ← oneOrMore digit
rac ← optional (do {c har ′.′; oneOrMore digit})
return (mkFloat sgn in rac)

We stop here and look at what we have learnt from
this exercise. Readers interested in knowing more
about parser combinators may start with Huton
andMeijer’s tutorials [79,80] for more combinators
and techniques for improving eiciency, and several
more papers on the subject [81–85].

(i) Combinators are the key. he parser library
we have developed is a language. It is not
so much about what speciic operations
are provided, but the unlimited possibilities
through creative programming. As we can
see, the very small number (two in our case)
of basic parsers, which is typical in EDSLs,
can be combined in diferent ways to pro-
duce highly complex programs. his power
comes from the combinatorswhichhinge on
higher order functions.

(ii) Monads are very useful.hemonadic sequen-
tial combination is an excellent formulation
of a recurring patern: a sequence of opera-
tions are performed in turn andhave their re-
sults combined in the end.Wehave relied on
it to program parsers that goes beyond sim-
ply consuming a single character.

When the semantics of the domain concepts is ob-
vious, directly encoding the operations that can be
performed on them oten results in an elegant EDSL
implementation. his is exactly what we did for the
parser example: the set of combinators implements
whatwe cando toparsers and the set is easily extensi-
ble bydeiningnewcombinators.On theother hand,
addingnewdomain concepts usually requires a com-
plete reimplementation. Moreover, with this direct
approach, performance of the domain-speciic pro-
grams relies on the optimization of the host language
compiler, which is hard to predict and control.

An alternative embedding technique is to gener-
ate code from the EDSL programs: the domain con-
cepts are represented as an abstract syntax tree, and

a separate interpretation function provides the se-
mantics of the syntax constructs, resulting in a so
called embedded domain-speciic compiler [86]. In this
case, the host language is used only at ‘compile time’;
the EDSL programmer can use the full power of the
host language to express the program, but at run-
time, only the generated code needs be executed.
his approach is sometimes referred as deep embed-
ding in contrast to the above more direct shallow
embedding. he separation of phases in deep em-
bedding provides opportunities for domain-speciic
optimizations as part of the interpretation function
and adding new domain concepts simply means ad-
ditional interpretation functions.On the other hand,
extending the set of operations involves modify-
ing the abstract syntax and existing interpretation
functions.

he two embedding approaches are dual in the
sense that the former is extensible with regard to
adding operations while the later is extensible with
regard to adding concepts [87]. he holy grail of
embedded language implementation is to be able
to combine the advantages of the two in a single
implementation—a manifestation of the expression
problem [88]. Current research addresses the prob-
lem at two levels: exploiting suiciently expressive
host languages for a modular representation of the
abstract syntax tree [89–92], or combining the shal-
low and deep embedding techniques [93]. Notably
in [91], the technique also addresses another source
of ineiciency with embedded languages namely the
tagging and untagging required formanipulating the
abstract syntax trees represented as datatypes.

Lastly, the connection between EDSLs andmon-
ads may extend beyond the implementation level.
It has become popular to include the monadic con-
structs as part of the EDSL surface language, which
sparks interesting interactions with the underlying
type system [94–96].

PARALLEL AND DISTRIBUTED
COMPUTATION

For a long time, parallel and distributed program-
ming was seen as a specialized activity by special ex-
perts. his situation is currently changing extremely
rapidly with pervasive parallel and distributed en-
vironments such as multicore/manycore hardware
and cloud computing. With the Google’s MapRe-
duce [97], one can now easily write a program to
process and generate large data sets with a parallel,
distributed algorithm on a cluster. he MapRe-
duce model is actually inspired by the map and
reduce functions commonly used in functional
programming.

REVIEW Hu et al. 15

Functional programming languages ofer a
medium where programmers can express the fea-
tures of parallel algorithms, without having to detail
the low-level solutions [98–100]. he high level of
programming abstraction of function composition
and higher order functions simpliies the task of
programming, fosters code reuse, and facilitates
the development of substantially architecture-
independent programs. he absence of side efects
avoids the unnecessary serialization which is a
feature of most conventional programs.

Parallel functional programming

Functional languages have two key properties that
make them atractive for parallel programming: they
have powerful abstraction mechanisms (higher or-
der functions and polymorphism) for supporting ex-
plicit parallel programming known as skeleton paral-
lel programming that abstracts over both computa-
tion and coordination and achieves the architecture-
independent style of parallelism, and they have no
side efect that can eliminate unnecessary depen-
dences for easy parallelization.

Skeleton parallel programming
Parallel primitives (also called parallel skeletons
[101,102]) intend to encourage programmers to
build a parallel program from ready-made compo-
nents forwhich eicient implementations are known
to exist, making the parallelization process easier.

he higher order functions discussed in the sec-
tion entitled ‘Functional forms’ can be regarded as
parallel primitives suitable for parallel computation
over parallel lists, if we impose some properties on
the argument operators. hree known data parallel
skeletonsmap, reduce, and scan canbedeined as spe-
cial instances of foldr op e .he deinition ofmap has
been given in the section entitled ‘Functional forms’,
and the deinitions of reduce and scan are as follows:

reduce op e = foldr op e
scan op e = map (foldr op e) ◦ inits

where op is an associative operator, and scan is de-
ined as a composition ofmap (foldr op e) and inits.
Note that reduce is diferent from foldr in that the
operator op it can accept must be associative, which
restricts the type of reduce (the operator must com-
bine operands of the same type), but allows the
implementation greater freedom to choose an or-
der of combination (foldr always combines from
right to let). he deinitions above just deine the
semantics of reduce and scan, not necessarily their
implementation.

It has been shown thatmap, reduce, and scan have
nicemassively parallel implementations onmany ar-

chitectures [102,103]. If k and an associative ⊕ use
O(1) parallel time, thenmap k can be implemented
using O(1) parallel time, and both reduce op e and
scan op e canbe implementedusingO(logN)paral-
lel time (N denotes the size of the list). For example,
reduce op can be computed in parallel on a tree-like
structure with the combining operator op applied in
the nodes, whilemap k is computed in parallel with
k applied to each of the leaves.he study on eicient
parallel implementation of scan op e can be found
in [102], which plays an important role in the im-
plementation of parallel functional language NESL
[104].

Just like foldr being the most important higher
order function for manipulating lists sequentially,
reduce plays the most important role in parallel pro-
cessing of lists. If we can parallelize foldr as a parallel
program using reduce, we can parallelize any sequen-
tial function that is deined in terms of foldr (his
again shows an advantage of structuring programs
using general functional forms.). his has atracted
a lot of work in developing programming theories to
parallelize foldr [105–108]. One known theorem for
this parallelization is the so-called third homomor-
phism theorem [109], which shows that foldr op e
can be parallelized as a composition of a map and a
reduce if and only if there exists op′ such that the fol-
lowing holds:

foldr op ′ e = foldr op e ◦ reverse

In other words, this theorem says that a foldr is par-
allelizable if and only if can bewriten as a foldr on its
reverse list. With this theorem, we can see that many
of the functionsdeined in the section entitled ‘Func-
tional forms’, such as sum, sort, maxlist, and reverse,
can be parallelized as a composition of a map and a
reduce. Importantly, this parallelization is not just a
guide toprogrammers but also canbedone automat-
ically [110].

Easy parallelization
Purely functional languages have advantages when
it comes to (implicit) parallel evaluation [111,112].
hanks to the absence of side efects, it is always safe
to execute computations of subexpressions in paral-
lel.herefore, it is straightforward to identify thepar-
allel task in a program,whichwould require complex
dependency analysis when parallelizing imperative
programs.

Parallel Haskell provides two operators pseq and
par for parallelization: pseq e1 e2 evaluates e1 then
e2 in a sequential order, and par e1 e2 is a kind of
fork operation, where e1 is started in parallel with
e2 and the result of e2 is returned. Consider the

16 Natl Sci Rev, 2015, Vol. 00, No. 0 REVIEW

following normal Haskell function that implements
the well-knownQuicksort algorithm:

sort [] = []
sort (x : xs) = less++ [x]++ greater

where

less = sort [y | y ← xs , y < x]
greater = sort [y | y←xs , y ≥ x]

he following parallel version is just a litle
more complicated (with addition of the under-
lined codes); greater is computed in parallel
with less by wrapping the original expression
less++ [x]++ greaterwith par greater and pseq less.

parSort [] = []
parSort (x : xs) =

par greater (pseq less

(less++ [x]++ greater))
where

less = parSort [y | y ← xs , y < x]
greater = parSort [y | y ← xs , y ≥ x]

We can further control the granularity of the parallel
task by switching to the normal sort when the num-
ber of elements of list is shorter enough.

parSort [] = []
parSort l@(x : xs)

| shorter l = sort l
| otherwise =

par greater (pseq less

(less++ [x]++ greater))
where

less = parSort [y | y ← xs , y < x]
greater = parSort [y | y ← xs , y ≥ x]

It is worth noting that parallel functional programs
are easy to debug. Regardless of the order in which
computations are executed, the result of theprogram
will always be the same. Speciically, the result will be
identical to that obtained when the program is run
sequentially. his implies that programs can be de-
bugged sequentially, which represents a huge saving
in efort.

Distributed functional programming

Distributed systems, by deinition, do not share
memory between nodes (computers)—which
means that the imperative approach to parallel
programming, with shared mutable data structures,
is inappropriate in a distributed seting. Instead,
nodes communicate by copying messages from
sender to receiver; copying a mutable data structure
changes semantics, because mutation of one copy
is not relected in the other, but immutable data
can be copied transparently. his makes functional

qsort([]) → [];
qsort([X|Xs]) →

Parent = self (),
Less = [Y || Y ← Xs, Y < X],
Grtr = [Y || Y ← Xs, Y >= X],
spawn(fun() → Parent ! {less, qsort(Less)} end),
spawn(fun() → Parent ! {grtr , qsort(Grtr)} end),
receive {less,SortedLess} →

receive {grtr ,SortedGrtr} →
SortedLess ++ [X] ++SortedGrtr

end

end.

Figure 2. Parallel QuickSort in Erlang.

programming, with its immutable data structures,
a natural it. For systems which are designed to be
scalable, in which overall system performance can
be increased just by adding more nodes, it makes
sense to use the same share-nothing communication
between processes running on the same node, so
that they may easily be deployed across multiple
nodes as new nodes are added. Distributed systems
can also ofer high reliability, by using redundancy
to tolerate failures, and in-service upgrade, by
upgrading one node at a time while the others
continue to deliver service.

Erlang was designed at Ericsson in the late 1980s
for building systems of this kind, originally for the
telecom domain [113]. Later, Erlang proved to be
ideal for building scalable internet services, and
many start-ups have used it as their ‘secret sauce’.
heirst of thesewasBluetail AB, founded in 1998 to
develop among others an SSL accelerator in Erlang,
and sold for $140 million less than 18 months later;
the most spectacular to date is WhatsApp, whose
back-end servers arebuilt inErlang, and sold toFace-
book in 2014 for $22 billion.

Erlang is a simple functional language with a
slightly wordier syntax than Haskell; the factorial
function deined in the introduction would be writ-
ten in Erlang as follows:

fac(0) → 1;
fac(N) when N > 0 → N ∗ fac(N − 1)

Erlang provides immutable lists and tuples, and
LISP-like atoms, but no user-deined datatypes. Er-
lang lacks a static type system (Although many de-
velopers useDialyzer [114], a static analysis tool that
can detect many type errors.)—a reasonable choice
since dynamic code loading, necessary for in-service
upgrades, is diicult to type statically to this day.

To this functional core, Erlang adds features
for concurrency and message passing. For example,
Fig. 2 presents a (not very eicient) parallel version
of QuickSort in Erlang. his function uses patern
matching on lists to select between the case of an
empty list and a cons ([X|Xs] means x : xs), and

REVIEW Hu et al. 17

in the later case uses list comprehensions to select
the elements less than or greater than the pivot, then
spawns two new processes to sort each sublist re-
cursively. Spawning a process calls the function pro-
vided (as an Erlang λ-expression, fun() → . . . end)
in the new process. Each of these processes sends
the result of its recursive sort back to the parent pro-
cess (Parent ! . . .), using the parent’s process identi-
ier, which is obtained by calling self (). Each result
is tagged with an atom (less or grtr), which allows
the parent process to receive the results in the cor-
rect order—messages wait in the recipient’s ‘mail-
box’ until a matching receive removes them from
it, so it doesn’t mater in which order the messages
from the child processes actually arrive. Erlang pro-
cesses share no memory—they each have their own
heap—which means that the lists to be sorted must
be copied into the new process heaps.his is whywe
ilter Xs to extract the less and greater elements be-
fore starting the child processes: it reduces the costs
of copying lists.headvantage of giving eachprocess
its own heap is that processes can garbage collect in-
dependently while other processes continue work-
ing, which avoids long garbage collection pauses and
makes Erlang suitable for sot real-time applications.

Erlang addsmechanisms for one process tomon-
itor another, turning a crash in the monitored pro-
cess into a message delivered to themonitoring one.
hese mechanisms are used to support fault toler-
ance, with a hierarchy of supervisor processes which
are responsible for restarting subsystems that fail;
indeed, Erlang developers advocate a ‘let it crash’
approach, in which error-handling code (which is
oten complex and poorly tested) is omited from
most application code, relying on the supervisors for
fault tolerance instead. Common paterns for build-
ing fault-tolerant systems are provided in the ‘Open
Telecom Platform’ libraries—essentially higher or-
der functions that permit fault-tolerant systems to
be constructed just by instantiating the application-
dependent behaviour.

Erlang’s approach to concurrency and distribu-
tion has been very successful, and has been widely
emulated in other languages—for example, Cloud
Haskell [115] provides similar features to Haskell
developers. One of the best known ‘clones’ is the
Akka library for Scala [15],which is used amongoth-
ers to build Twiter’s back-end services.

FUNCTIONAL THINKING IN PRACTICE

Functional programming has had big inluences on
education and other language design, and seen sig-
niicant uses in industry.

Education

he style of teaching functional languages as
irst languages was pioneered by MIT in the
1980s, where functional language scheme was
taught in the irst course using the famous text-
book Structure and Interpretation of Computer
Programs [116]. Now many universities such
as Oxford (Haskell) and Cambridge (ML) fol-
low this functional-irst style. In a recent survey
(htp://www.pl-enthusiast.net/2014/09/02/who-
teaches-functional-programming/), 19 out of top
30 American universities in the US News 2014
Computer Science Ranking give their undergrad-
uate students a serious exposure to functional
languages. Compared to the other programming-
irst implementations, the functional-irst approach
has the advantages of reducing the efect of diversity
of students in background, leting students focus
on more fundamental issues, think more abstractly,
and touch ideas of recursion, data structure, func-
tions as irst class data earlier. In fact, one of the
explicit goals of Haskell’s designers was to create
a language suitable for teaching. Indeed, almost as
soon as Haskell was deined, it was being taught to
undergraduates at Oxford and Yale.

For learning the latest advanced functional pro-
gramming techniques, there has been an excellent
series of International Summer Schools on Ad-
vanced Functional Programming since 1995. Five
such summer schools have been held so far in 1995,
1996, 1998, 2002, and 2004, with all lecture notes
published in Lecture Notes in Computer Science by
Springer. For the new applications of functional pro-
gramming, there has been another series of Summer
Schools on Applied Functional Programming orga-
nized by Utrecht University since 2009. he two-
week course covers applications of functional pro-
gramming, concentrating on topics such as language
processing, building graphical user interfaces, net-
working, databases, and programming for the web.

For exchanging ideas of functional programming
in education, there is a series of International Work-
shops on Trends in Functional Programming in Ed-
ucation since 2012, where novel ideas, classroom-
tested ideas, and work in progress on the use of
functional programming in education are discussed
among researchers and teachers. hey have previ-
ously been held in St Andrews, Scotland (2012);
Provo Utah, USA (2013); and Soesterberg, the
Netherlands (2014).

Inluences on other languages

Ideas originated from functional programming
such as higher order functions, list structure, type

http://www.pl-enthusiast.net/2014/09/02/who-teaches-functional-programming/
http://www.pl-enthusiast.net/2014/09/02/who-teaches-functional-programming/

18 Natl Sci Rev, 2015, Vol. 00, No. 0 REVIEW

inference, etc. havemade their way into the design of
many modern programming languages, unleashing
inluences in an unostentatious manner. It is well
conceivable that ‘main stream’ programmers may
be using functional features in their code without
realizing.

One of the early examples of such is blocks in
Smalltalk—a way of expressing lambda expressions
and therefore higher order functions.More recently,
the development of C# is inluenced by functional
programmers working in Microsot. he LINQ fea-
tures are directly inspired by monads and functional
lists. Lambda expressions are introduced in C# 3.5,
but higher order programming had been possible
earlier on through delegates. Type inference is part
of C#’s design and generics (polymorphism) are
added in C# 2.0.

Java’s generic type system introduced in Java
5 is based on ML’s Hindley–Milner type systems.
Subsequent releases gradually introduced type in-
ference, another feature that is usually associated
with functional languages. Java 8 embraced func-
tional programming by releasing a wealth of features
that speciically aimed at facilitating such a program-
ming style. It includes dedicated support for lambda
expressions and the passing of functions as method
arguments (i.e. higher order functions), which is
further made easy by the new feature of method
references.

C++ aboards the lambda expression train in
C++11. A particular merit of this C++ feature, as
opposed to lambdas in other imperative languages,
is that it ofers ine-grained control over variable cap-
ture. Programmers are able to declare in their deini-
tions whether the lambda bodies may refer to exter-
nal variables (variables that are not formally declared
as parameters) by value, by reference, or not at all—a
step towards purity.

Modern multiparadigm languages oten have
good provision of functional features. Ruby is ad-
mited by its inventor as having Lisp as its origin
and blocks at its core. Additional lambda syntax is
added in Ruby 1.9. Python adopted the list compre-
hensionnotation andhas support for lambda expres-
sions. he Python standard library includes many
functional tools imported from Haskell and Stan-
dardML. Scala is an object-functional language that
has full support for functional programming. In addi-
tion to a strong static type system, it also features cur-
rying, type inference, immutability, lazy evaluation,
and patern matching.

Meijer’s reactive extensions (‘RX’) [117] enable
.NET developers to manipulate asynchronous data
streams as immutable collections with purely func-
tional operations deined over them. RX simpliies
the construction of event-driven reactive programs

dramatically. he design has been copied in many
other languages, perhaps most notably at Netlix,
where RxJava is heavily used in the Netlix API.

Uses in industry

It has oten proven easier to adopt functional
programming in small, new companies, rather
than in large, existing sotware development
organizations. By now, there have been many,
many start-ups using functional programming
for their sotware development. One of the irst
was Paul Graham’s Viaweb, which built a web
shop system in Lisp, and was later sold to Yahoo.
Graham’s well-known article ‘Beating the Averages’
(htp://www.paulgraham.com/avg.html) discusses
Lisp’s importance as Viaweb’s ‘secret weapon’.
He writes of studying competitors’ job adverts:
‘he safest kind were the ones that wanted Oracle
experience. You never had to worry about those.
You were also safe if they said they wanted C++

or Java developers. ...If I had ever seen a job posting
looking for Lisp hackers, I would have been really
worried.’

he irst company to useHaskell wasGalois, who
develop ‘high assurance’ sotware, primarily under
government contracts. Galois develop their code in
Haskell—which in itself helps to ensure quality—
but also use property-based testing, and the theo-
rem provers we have discussed in this paper. More
recently, Facebook boasts its spam detecting and
remediating system being the largest Haskell de-
ployment currently in existence, actively and auto-
matically ighting of vast amounts of undesirable
content from reaching its users. At the heart of the
system is aDSL forwriting the detection logic, irstly
implemented in FXL (an in-house functional lan-
guage) and is being migrated to Haskell at the
moment.

Erlang, with its roots in industry, has a strong
start-up culture. he irst Erlang start-up, Bluetail
AB, was set up ater Ericsson decided to discour-
age the use of Erlang internally. Many key members
of the Erlang team let Ericsson to found a com-
pany focussing on scalable and highly reliable inter-
net products; within 18 months Bluetail was sold to
AlteonWeb Systems for $150 million.he founders
were soon starting new companies, including Klarna
AB (providing invoicing services to web shops in
seven European countries) and Tail-f (sold to Cisco
in 2014 for $175 million). he highest proile Er-
lang start-up to date, though, is WhatsApp, bought
by Facebook in 2014 for $22 billion. A tech blog
at the time asked ‘How do you support 450 mil-
lion users with only 32 engineers? For WhatsApp,

http://www.paulgraham.com/avg.html

REVIEW Hu et al. 19

acquired earlier thisweek byFacebook, the answer is
Erlang’.his illustrates nicely the beneits of produc-
tivity, scalability, and reliability that functional pro-
gramming delivers.

Functional programming has also found many
users in the inancial sector, thanks not least to
Peyton-Jones et al’s seminal work on modelling i-
nancial contracts in Haskell [118]. Traders need to
evaluate all kinds of inancial derivatives quickly, so
they can decide at which price to buy or sell them.
But new, ingenious derivatives are being invented
constantly, forcing traders to update their evalua-
tion sotware continuously. By providing combina-
tors for modelling contracts, this task can be accel-
erated dramatically, bringing a substantial advantage
to traders who use them—the irst trader able to
evaluate a new derivative correctly stands to make a
considerable proit. Credit Suisse was the irst to use
this technology, with the help of Augustsson, who
nowplays a similar role at StandardandChartered—
but these are far from the only examples. Functional
programming is also used for automated trading at
Jane Street, whose systems are built in OCaml. he
clarity and quality of OCaml code helps Jane Street
ensure that there are no bugs, which might rapidly
lose large sums of money.

Languages such as Scala and Clojure (which run
on the JVM) and F# (which runs on .NET) aim
to be less disruptive, by integrating with an existing
platform. hey are enjoying wide adoption; for ex-
ample, Apache Spark, a popular open-source frame-
work for Big Data analytics, is largely built in Scala.
Nowadays, there are successful companies whose
business idea is to support the adoption of func-
tional programming by their customers: Erlang So-
lutions (for Erlang), Typesafe (for Scala), Cogni-
tect (forClojure),Well-typed andFPComplete (for
Haskell).

New applications of functional programming
are appearing constantly. A good way to follow
these developments is via developer conferences
such as the Erlang Factory, Scala Days and Clo-
jure/conj, and also via the annual conference on
Commercial Applications of Functional Program-
ming (htp://cufp.org) , held in association with
ICFP.

CONCLUSION

Twenty-ive years ago, functional programming was
high in the sky, favoured only by researchers in the
ivory tower. Twenty-ive years on, it has touched
down on the ground and had a wide impact on the
society as a new generation of programming. Where
will functional programming be twenty-ive years
from now?

REFERENCES

1. Hughes, J. Why functional programming matters. Comput J

1989; 32: 98–107.

2. Hudak, P, Jones, SLP and Boutel, WP et al. Report on the pro-

gramming language Haskell a non-strict purely functional lan-

guage. SIGPLAN Not 1992; 27: 1.

3. Bird, R. Introduction to Functional Programming, 2nd edn. Up-

per Saddle River, New Jersey: Pearson Education, 1998.

4. Hudak, P. The Haskell School of Expression: Learning Func-

tional Programming Through Multimedia. New York, NY, USA:

Cambridge University Press, 2000.

5. Paulson, LC. ML for the Working Programmer, 2nd edn. New

York, NY, USA: Cambridge University Press, 1996.

6. Armstrong, J. Programming Erlang: Software for a Concurrent

World. Raleigh: Pragmatic Bookshelf, 2007.

7. Milner, R, Tofte, M and Macqueen, D. The Deinition of Stan-

dard ML. Cambridge, MA, USA: MIT Press, 1997.

8. Minsky, Y,Madhavapeddy, A and Hickey, J. RealWorld OCaml:

Functional Programming for theMasses. O’Reilly Media, 2013.

9. Minsky, Y. Ocaml for the masses. Commun ACM 2011; 54: 53–

8.

10. HansenMR Rischel, H. Functional Programming Using F#. New

York, NY, USA: Cambridge University Press, 2013.

11. Steele, GL, Jr. Common LISP: The Language. Newton, MA,

USA: Digital Press, 1984.

12. Seibel, P. Practical Common Lisp, 1st edn. Berkely, CA, USA:

Apress, 2012.

13. Dybvig, RK. The Scheme Programming Language, 4th edn.

Cambridge: The MIT Press, 2009.

14. Felleisen, M, Findler, RB and Flatt, M et al. Krishnamurthi. How

to Design Programs: An Introduction to Programming and Com-

puting. Cambridge, MA, USA: MIT Press, 2001.

15. Wampler, D and Payne, A. Programming Scala: Scalabil-

ity= Functional Programming+Objects, 1st edn. O’ReillyMe-

dia, 2009.

16. Halloway, S. Programming Clojure, 1st edn. Raleigh, NC: Prag-

matic Bookshelf, 2009.

17. Claessen, K and Hughes, J. QuickCheck: a lightweight tool

for random testing of Haskell programs. In Proceedings of the

Fifth ACM SIGPLAN International Conference on Functional

Programming, ICFP ’00. New York, NY, USA: ACM, 2000, 268–

79.

18. Leroy, X. Formal certiication of a compiler back-end or: pro-

gramming a compiler with a proof assistant. In 33rd ACM sym-

posium on Principles of Programming Languages. New York,

NY, USA: ACM Press, 2006, 42–54.

19. Yang, X, Chen, Y and Eide, E et al. Finding and understanding

bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implemen-

tation, PLDI ’11. New York, NY, USA: ACM, 2011.

20. Hinze, R. Generics for the masses. J Funct Progr 2006; 16: 451–

83.

21. Chetali, B. Security testing and formal methods for high lev-

els certiication of smart cards. In Proceedings of the 3rd In-

ternational Conference on Tests and Proofs, TAP ’09. Berlin:

Springer, 2009, 1–5.

http://cufp.org

20 Natl Sci Rev, 2015, Vol. 00, No. 0 REVIEW

22. Barthe, G, Grégoire, B and Zanella Béguelin, S. Formal certiication of code-

based cryptographic proofs. In Proceedings of the 36th Annual ACMSIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’09. New

York, NY, USA: ACM, 2009, 90–101.

23. Hughes, J. QuickCheck testing for fun and proit. In Proceedings of the

9th International Conference on Practical Aspects of Declarative Languages,

PADL’07. Berlin: Springer, 2007, 1–32.

24. Arts, T, Hughes, J and Johansson, J et al. Testing telecoms software with

Quviq QuickCheck. In Proceedings of the 2006 ACM SIGPLAN Workshop on

Erlang, ERLANG ’06New York, NY, USA: ACM, 2006, 2–10.

25. Hughes JM Bolinder, H. Testing a database for race conditions with

QuickCheck: none. In Proceedings of the 10th ACM SIGPLAN Workshop on

Erlang, Erlang ’11. New York, NY, USA: ACM, 2011, 72–7.

26. Arts, T, Hughes, J and Norell, U et al. Testing autosar software with

QuickCheck. In Testing: Academic and Industrial Conference—Practice and

Research Techniques, Part of the ICST Workshop Proceedings. Graz, Austria:

IEEE Digital Library, 2015.

27. Gill, A, Launchbury, J and Peyton Jones, SL. A short cut to deforestation.

In Proceedings of the Conference on Functional Programming Languages

and Computer Architecture, FPCA ’93. New York, NY, USA: ACM, 1993,

223–32.

28. Takano, A and Meijer, E. Shortcut deforestation in calculational form. In Pro-

ceedings of the Seventh International Conference on Functional Programming

Languages and Computer Architecture, FPCA ’95. New York, NY, USA: ACM,

1995, 306–13.

29. Hu, Z, Iwasaki, H and Takeichi, M et al. Tupling calculation eliminates multiple

data traversals. In Proceedings of the Second ACM SIGPLAN International

Conference on Functional Programming, ICFP ’97. New York, NY, USA: ACM,

1997, 164–75.

30. Farmer, A, Gill, A and Komp, E et al. The hermit in the machine: a plugin for the

interactive transformation of GHC core language programs. In Proceedings of

the 2012 Haskell Symposium, Haskell ’12. New York, NY, USA: ACM, 2012,

1–12.

31. Fegaras, L and Sheard, T. Revisiting catamorphisms over datatypes with em-

bedded functions. In Proceedings of the 23rd ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, POPL ’96. New York, NY, USA:

ACM, 1996, 284–94.

32. Meijer, E, Fokkinga, M and Paterson, R. Functional programming with ba-

nanas lenses envelopes and barbed wire. In Proceddings of the 5th ACM

Conference on Functional Programming Languages and Computer Architec-

ture (LNCS 523). Cambridge, MA: ACM, 1991, 124–44.

33. Sheard, T and Fegaras, L. A fold for all seasons. In Proceedings of the Con-

ference on Functional Programming Languages and Computer Architecture,

FPCA ’93. New York, NY, USA: ACM, 1993, 233–42.

34. Hinze, R, Wu, N and Gibbons, J. Conjugate hylomorphisms—or: the mother

of all structured recursion schemes. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’15. New York, NY, USA: ACM, 2015, 527–38.

35. Hu, Z, Iwasaki, H and Takeichi, M. Deriving structural hylomorphisms from

recursive deinitions. In Proceedings of the First ACM SIGPLAN International

Conference on Functional Programming, ICFP ’96. New York, NY, USA: ACM,

1996, 73–82.

36. Odersky, M and Wadler, P. Pizza into java: translating theory into practice.

In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages, POPL ’97. ACM: New York, NY, USA, 1997,

146–59.

37. Wadler, P. Theorems for free! In Proceedings of the Fourth International Con-

ference on Functional Programming Languages and Computer Architecture,

FPCA ’89. New York, NY, USA: ACM, 1989, 347–59.

38. Reynolds, JC. Types abstraction and parametric polymorphism. In: Mason,

R.E.A (ed.). Proceedings of IFIP 9th World Computer Congress. Amsterdam:

Elsevier Science Publishers B. V. (North-Holland), 1983, 513–23.

39. Oliveira BCS Moors, A and Odersky, M. Type classes as objects and implicits.

In Proceedings of the ACM International Conference on Object Oriented Pro-

gramming Systems Languages and Applications, OOPSLA ’10. New York, NY,

USA: ACM, 2010, 341–60.

40. Bertot, Y and Castéran, P. Interactive Theorem Proving and Program Devel-

opment: Coq’Art The Calculus of Inductive Constructions, 1st edn. Springer

Publishing Company, Incorporated, 2010.

41. Norell, U. Dependently typed programming in Agda. In Proceedings of the

6th International Conference on Advanced Functional Programming, AFP’08.

Berlin: Springer, 2009, 230–66.

42. Bird, R. Constructive functional programming. In STOP Summer School

on Constructive Algorithmics. Ameland, 1989. http://www.staff.science.

uu.nl/∼swier101/STOP/.

43. Bird, R and de Moor, O. Algebra of Programming. Upper Saddle River, NJ,

USA: Prentice Hall, 1997.

44. Dijkstra, EW. Programming as a discipline of mathematical nature. AmMath-

emat Mon Comp J 1974; 81: 608–12.

45. Bird, R. Pearls of Functional Algorithm Design, 1st edn. New York, NY, USA:

Cambridge University Press, 2010.

46. Bird RS Moor, O. Solving optimisation problems with catamorphism. In Pro-

ceedings of the Second International Conference on Mathematics of Program

Construction. London, UK: Springer, 1993, 45–66.

47. Hu, Z, Yokoyama, T and Takeichi, M. Program optimizations and transforma-

tions in calculational form. In Summer School on Generative and Transfor-

mational Techniques in Software Engineering (LNCS 4043). Braga, Portugal:

Springer, 2006, 139–64.

48. Takano, A, Hu, Z and Takeichi, M. Program transformation in calculational

form. ACM Comput Surv 1998; 30.

49. Smith, DR. KIDSa knowledges-based software development system. In:

Lowry, MR and McCartney, RD (eds) Proceedings of AAAI’88 Workshop on

Automating Software Design. The MIT Press, 1991, 483–514.

50. deMoor, O and Sittampalam, G. Generic program transformation. InAdvanced

Functional Programming, Lecture Notes in Computer Science. Berlin: Springer,

1998, 116–49.

51. Mu, S, Ko, H and Jansson, P. Algebra of programming in Agda: dependent

types for relational program derivation. J Funct Progr 2009; 19: 545–79.

52. Naiman, L and Hehner, E. Netty: a prover’s assistant. In COMPUTATION

TOOLS 2011: The Second International Conference on Computational Log-

ics, Algebras, Programming, Tools, and Benchmarking, Rome, 2011 September

25–30.

53. Tesson, J, Hashimoto, H and Hu, Z et al. Program calculation in Coq. In Pro-

ceedings of the 13th International Conference on Algebraic Methodology and

Software Technology, AMAST’10. Berlin: Springer, 2011, 163–79.

54. Katayama, S. Recent improvements of MagicHaskeller. In Proceedings of

Workshop on Approaches and Applications of Inductive Programming, AAIP

’10(LNCS 5812). Berlin: Springer, 2010, 174–93.

55. Katayama, S. An analytical inductive functional programming system that

avoids unintended programs. In Proceedings of the ACMSIGPLAN 2012Work-

shop on Partial Evaluation and Program Manipulation, PEPM ’12. New York,

NY, USA: ACM, 2012, 43–52.

http://www.staff.science.uu.nl/protect $elax sim $swier101/STOP/
http://www.staff.science.uu.nl/protect $elax sim $swier101/STOP/

REVIEW Hu et al. 21

56. Moggi, E. Computational lambda-calculus and monads. In Proceedings of the

Fourth Annual Symposium on Logic in Computer Science. Piscataway, NJ,

USA: IEEE Press, 1989, 14–23.

57. Moggi, E. Notions of computation and monads. Inf Comput 1991; 93: 55–92.

58. Wadler, P. Comprehending monads. In Proceedings of the 1990 ACM Confer-

ence on LISP and Functional Programming, LFP ’90. New York, NY, USA: ACM,

1990, 61–78.

59. Wadler, P. The essence of functional programming. In Proceedings of the 19th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’92. New York, NY, USA: ACM, 1992, 1–14.

60. Peyton Jones SL Wadler, P. Imperative functional programming. In Proceed-

ings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’93. ACM: New York, NY, USA, 1993, 71–84.

61. Launchbury, J and Peyton Jones SL, . State in Haskell. Lisp Symb Comput

1995; 8: 293–341.

62. Launchbury, J and Sabry, A. Monadic state: axiomatization and type safety. In

Proceedings of the Second ACM SIGPLAN International Conference on Func-

tional Programming, ICFP ’97. New York, NY, USA: ACM, 1997, 227–38.

63. Peyton Jones, S, Gordon, A and Finne, S. Concurrent Haskell. In Proceedings

of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’96. New York, NY, USA: ACM, 1996, 295–308.

64. Harris, T, Marlow, S and Peyton-Jones, S et al. Composable memory trans-

actions. In Proceedings of the Tenth ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP ’05. New York, NY, USA: ACM,

2005, 48–60.

65. Liang, S, Hudak, P and Jones, M. Monad transformers and modular inter-

preters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’95. New York, NY, USA: ACM,

1995, 333–43.

66. Steele, GL, Jr. Building interpreters by composing monads. In Proceedings

of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’94. New York, NY, USA: ACM, 1994, 472–92.

67. Kiselyov, O, Sabry, A and Swords, C. Extensible effects: an alternative to

monad transformers. In Proceedings of the 2013 ACM SIGPLAN Symposium

on Haskell, Haskell ’13. New York, NY, USA: ACM, 2013, 59–70.

68. Schrijvers, T and Oliveira, BCS. Monads zippers and views: virtualizing the

monad stack. In Proceedings of the 16th ACM SIGPLAN International Confer-

ence on Functional Programming, ICFP ’11. New York, NY, USA: ACM, 2011,

32–44.

69. Snyder, M and Alexander, P. Monad factory: type-indexed monads. In Pro-

ceedings of the 11th International Conference on Trends in Functional Pro-

gramming, TFP’10. Berlin: Springer, 2011, 198–213.

70. Hughes, J. Generalising monads to arrows. Sci Comput Progr 2000; 37: 67–

111.

71. Paterson, R. Arrows and computation. In: Gibbons, J and deMoor, O (eds) The

Fun of Programming. Palgrave Macmillan, 2003, 201–22.

72. Mcbride, C and Paterson, R. Applicative programming with effects. J Funct

Progr 2008; 18: 1–13.

73. Hudak, P, Courtney, A and Nilsson, H et al. Arrows robots and func-

tional reactive programming. In Summer School on Advanced Functional

Programming 2002, Oxford University (LNCS 2638). Berlin: Springer, 2003,

159–87.

74. Devriese, D, Sergey, I and Clarke, D et al. Fixing idioms: a recursion primitive

for applicative DSLs. In Proceedings of the ACM SIGPLAN 2013 Workshop on

Partial Evaluation and Program Manipulation, PEPM ’13. New York, NY, USA:

ACM, 2013, 97–106.

75. Lindley, S,Wadler, P and Yallop, J. Idioms are oblivious arrows are meticulous

monads are promiscuous. Electron Notes Theor Comput Sci 2011; 229: 97–

117.

76. Hudak, P. Building domain-speciic embedded languages. ACM Comput Surv.

1996; 28, 4es, Article 196.

77. Hudak, P. Modular domain speciic languages and tools. In Proceedings of the

5th International Conference on Software Reuse, ICSR ’98. Washington, DC,

USA: IEEE Computer Society, 1998, 134–42.

78. Hudak, P, Hughes, J and Peyton Jones, S et al. A history of Haskell: being lazy

with class. In Proceedings of the Third ACM SIGPLAN Conference on History

of Programming Languages, HOPL III. New York, NY, USA: ACM, 2007, 12-1-;

12-55.

79. Hutton, G and Meijer, E. Monadic parser combinators. Technical Report

NOTTCS-TR-96-4. Department of Computer Science, University of Notting-

ham, 1996.

80. Hutton, G and Meijer, E. Monadic parsing in Haskell. J Funct Progr 1998; 8:

437–44.

81. Baars, AI, Löh, A and Swierstra, SD. Parsing permutation phrases. J Funct

Progr 2004; 14: 635–46.

82. Chakravarty, MMT. Lazy lexing is fast. In Proceedings of the 4th Fuji Interna-

tional Symposium on Functional and Logic Programming, FLOPS ’99. London,

UK: Springer, 1999, 68–84.

83. Claessen, K. Parallel parsing processes. J Funct Progr 2004; 14: 741–57.

84. Ford, B. Packrat parsing: simple powerful lazy linear time functional pearl. In

Proceedings of the Seventh ACM SIGPLAN International Conference on Func-

tional Programming, ICFP ’02. New York, NY, USA: ACM, 2002, 36–47.

85. Swierstra SD Duponcheel, L. Deterministic error-correcting combinator

parsers. In Advanced Functional Programming, Second International School-

Tutorial Text. London, UK: Springer, 1996, 184–207.

86. Elliott, C, Finne, S and De Moor, O. Compiling embedded languages. J Funct

Progr 2003; 13: 455–81.

87. Gibbons, J and Wu, N. Folding domain-speciic languages: deep and shallow

embeddings (functional pearl). In Proceedings of the 19th ACM SIGPLAN In-

ternational Conference on Functional Programming, ICFP ’14. New York, NY,

USA: ACM, 2014, 339–47.

88. Wadler, P. The expression problem. Java Genericity Mailing list 1998.

http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt (12

November 1998, date last accessed).

89. Axelsson, E. A generic abstract syntax model for embedded languages. In Pro-

ceedings of the 17th ACM SIGPLAN International Conference on Functional

Programming, ICFP ’12. New York, NY, USA: ACM, 2012, 323–34.

90. Bahr, P and Hvitved, T. Compositional data types. In Proceedings of the Sev-

enth ACM SIGPLANWorkshop on Generic Programming, WGP ’11. New York,

NY, USA: ACM, 2011, 83–94.

91. Carette, J, Kiselyov, O and Shan, C. Finally tagless partially evaluated: tag-

less staged interpreters for simpler typed languages. J Funct Progr 2009; 19:

509–43.

92. Swierstra, W. Data types à la carte la carte. J Funct Progr 2008; 18:

423–36.

93. Svenningsson, J and Axelsson, E. Combining deep and shallow embedding

for EDSL. In: Loidl, H-W and Peña, R (eds) Trends in Functional Programming

(LCNS 7829). Berlin: Springer, 2013, 21–36.

94. Persson, A, Axelsson, E and Svenningsson, J. Generic monadic constructs

for embedded languages. In: Gill, A and Hage, J (eds) Implementation and

Application of Functional Languages (LCNS 7257). Berlin: Springer, 2012,

85–99.

http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

22 Natl Sci Rev, 2015, Vol. 00, No. 0 REVIEW

95. Sculthorpe, N, Bracker, J and Giorgidze, G et al. The constrained-monad prob-

lem. In Proceedings of the 18th ACM SIGPLAN International Conference on

Functional Programming, ICFP ’13. New York, NY, USA: ACM, 2013, 287–98.

96. Svenningsson, JD and Svensson, BJ. Simple and compositional reiication of

monadic embedded languages. In Proceedings of the 18th ACM SIGPLAN In-

ternational Conference on Functional Programming, ICFP ’13. New York, NY,

USA: ACM, 2013, 299–304.

97. Dean, J and Ghemawat, S. Mapreduce: simpliied data processing on large

clusters. In Proceedings of the 6th Conference on Symposium on Operating

Systems Design and Implementation, OSDI’04. Berkeley, CA, USA: USENIX

Association, 2004, 10.

98. Backus, J. Can programming be liberated from the von neumann style?: a func-

tional style and its algebra of programs. Commun ACM 1978; 21: 613–41.

99. Jones, SP. Parallel implementations of functional programming languages.

Comput J 1989; 32: 175–86.

100. Loidl HW Rubio, F and Scaife, N et al. Comparing parallel functional lan-

guages: programming and performance. Higher Order Symb Comput 2003; 16:

203–51.

101. Cole, M. Higher-order functions for parallel evaluation. In: Hall, CV, Hughes,

RJM and O’Donnell, JT (eds). Proceedings of Computing Science Department

Research Report 89/R4. Isle of Bute, Scotland: Glasgow University, 1989,

8–20.

102. Cole, M. Algorithmic skeletons : a structured approach to the management of

parallel computation. Research Monographs in Parallel and Distributed Com-

puting, Pitman, London, 1989.

103. Skillicorn DB, . Architecture-independent parallel computation. IEEE Comput

1990; 23: 38–51.

104. Blelloch, GE. NESL: a nested data parallel language. Technical Report CMU-

CS-92-103. School of Computer Science, Carnegie-Mellon University, 1992.

105. Chin,Wn, Takano, A and Hu, Z. Parallelization via context preservation. In IEEE

Computer Society International Conference on Computer Languages. Chicago,

USA: Loyola University Chicago, 1998.

106. Hu, Z, Takeichi, M and Chin, W-N. Parallelization in calculational forms. In

25th ACM Symposium on Principles of Programming Languages (POPL’98).

San Diego, CA, USA: ACM Press, 1998, 316–28.

107. Hu, Z, Takeichi, M and Iwasaki, H. Diffusion: calculating eficient parallel pro-

grams. In 1999 ACMSIGPLANWorkshop on Partial Evaluation and Semantics-

Based ProgramManipulation (BRICS Notes Series NS-99-1). San Antonio, TX,

1999, 85–94.

108. Matsuzaki, K, Hu, Z and Takeichi, M. Towards automatic parallelization of

tree reductions in dynamic programming. In 18th ACM Symposium on Par-

allelism in Algorithms and Architectures (SPAA 2006). Cambridge, MA, USA:

ACM Press, 2006, 39–48.

109. Gibbons, J. The third homomorphism theorem. J Funct Progr 1996; 6: 657–65.

110. Morita, K, Morihata, A and Matsuzaki, K et al. Automatic inversion gener-

ates divide-and-conquer parallel programs. In Proceedings of the 2007 ACM

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’07. New York, NY, USA: ACM, 2007, 146–55.

111. Chakravarty MMT Leshchinskiy, R and Jones, SP et al. Data parallel Haskell:

a status report. In Proceedings of the 2007 Workshop on Declarative As-

pects of Multicore Programming, DAMP ’07. New York, NY, USA: ACM, 2007,

10–8.

112. Hammond, K. Why parallel functional programming matters: panel state-

ment. In Proceedings of the 16th Ada-Europe International Conference

on Reliable Software Technologies, Ada-Europe’11 Berlin: Springer, 2011,

201–5.

113. Armstrong, J. A history of Erlang. In Proceedings of the Third ACM SIGPLAN

Conference on History of Programming Languages, HOPL III. New York, NY,

USA: ACM, 2007, 6–1–6–26.

114. Sagonas, K. Detecting defects in Erlang programs using static analysis. In

Proceedings of the 9th ACM SIGPLAN International Conference on Principles

and Practice of Declarative Programming, PPDP ’07. NewYork, NY, USA: ACM,

2007, 37.

115. Epstein, J, Black, AP and Peyton-Jones, S. Towards Haskell in the cloud. In

Proceedings of the 4th ACM Symposium on Haskell, Haskell ’11. New York,

NY, USA: ACM, 2011, 118–29.

116. Abelson, H, Sussman, GJ and Sussman, J. Structure and Interpre-

tation of Computer Programs. Cambridge, MA, USA: MIT Press,

1985.

117. Meijer, E. Reactive extensions (rx): curing your asynchronous programming

blues. In ACM SIGPLAN Commercial Users of Functional Programming, CUFP

’10. New York, NY, USA: ACM, 2010, 11: 1.

118. Peyton Jones, S, Eber, J-M and Seward, J. Composing contracts: an adventure

in inancial engineering (functional pearl). In Proceedings of the Fifth ACM

SIGPLAN International Conference on Functional Programming, ICFP ’00. New

York, NY, USA: ACM, 2000, 280–92.

119. Bringert, B. xhtml: an XHTML combinator library. https://hackage.

haskell.org/package/xhtml (9 May 2012, date last accessed).

120. Elliott, C and Hudak, P. Functional reactive animation. In Proceedings of the

Second ACM SIGPLAN International Conference on Functional Programming,

ICFP ’97. New York, NY, USA: ACM, 1997, 263–73.

121. Leijen, D, Andersson, C and Andersson, M et al. haskelldb: a library of combi-

nators for generating and executing SQL statements. https://hackage.haskell.

org/package/haskelldb (29 September 2014, date last accessed).

122. Blelloch, GE. Scans as primitive operations. IEEE Trans Comp 1989; 38: 1526–

38.

https://hackage.haskell.org/package/xhtml
https://hackage.haskell.org/package/xhtml
https://hackage.haskell.org/package/haskelldb
https://hackage.haskell.org/package/haskelldb

