
23 July 2018

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An approach to refinement checking of SysML requirements / Makartetskiy D.; Sisto R.. - STAMPA. - (2011), pp. 1-4.
((Intervento presentato al convegno IEEE 16th Conference on Emerging Technologies & Factory Automation (ETFA)
tenutosi a Toulouse (France) nel 5-9 Sept. 2011.

Original

An approach to refinement checking of SysML requirements

Publisher:

Published
DOI:10.1109/ETFA.2011.6059147

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2460420 since:

IEEE

An approach to refinement checking
of SysML requirements

Denis Makartetskiy and Riccardo Sisto
Politecnico di Torino

C.so Duca degli Abruzzi 24
10129 Torino, Italy

{denis.makartetskiy, riccardo.sisto}@polito.it

Abstract

During last years, the importance of safety aspects in
industry has significantly increased. System engineering
modeling language SysML is widely used in order to man-
age increasing complexity of embedded systems. Being
just a modeling language, SysML does not provide inte-
grated means of verification and validation for its models.
Therefore, additional efforts are needed for checking con-
sistency of models.

This work shows efforts towards integrating embed-
ded systems modeling with verification measures, namely,
with refinement checking (checking whether a system de-
scription is really an implementation of another, more ab-
stract, system description) applied to statemachines linked
to SysML requirements. We show how such verification
can be done automatically with the help of externally im-
plemented tools.

1 Introduction

The popularity of modeling languages has been grow-
ing significantly over the last two decades. There is a
steady trend in factory automation and other safety critical
industries, such as aerospace, automotive and railway to a
model-driven development. Since model-driven develop-
ment is based on models, the language which system is
being modeled with becomes a subject for standardization
activities. The latter demand for Validation and Verifica-
tion (V&V) activities to be performed on these models
thus demonstrating their internal consistency. In SysML
requirements have been introduced as modeling elements.
This approach enables strong connection between system
architecture and behaviour on different abstraction lev-
els with requirements imposed on a system/sub-system.
Since in many cases requirements have complex hierar-
chical structure, i.e. some requirements are decomposed
into other low-level requirements, it is important to keep
track of adhering to some rules. For example, each low-
level requirement has to realize a high-level requirement.

Industry has been recently experiencing largely grow-
ing demand in techniques and tools facilitating V&V ac-
tivities for complex embedded systems. This is the case
especially for safety critical systems, for which it is not
only a natural demand but also a requirement of develop-
ment standards.

With SysML it is handy to define requirements and re-
lationships between them. Various model checking tools
are good at checking properties expressed in formal lan-
guages. But there is still a technological gap between
requirements and skill-oriented verification activities on
reactive systems resulting from these requirements. The
main reason for this gap is that requirements as a rule
are expressed in natural language while formal analysis
tools can normally check properties formulated in tem-
poral logic. The problem is that only specialists can write
correct temporal properties. The possibility to base formal
analysis on properties described with a simple language
could give large positive impact on workflows applied in
industries where complex systems are produced.

This paper proposes a way for lightweight introduc-
tion of formal methods and automated verification in
SysML models of safety-critical embedded systems. The
key remark is that system engineers using SysML are
likely to be skilled in writing statemachines while they
are normally not skilled in writing temporal logic proper-
ties. For this reason, earlier attempts to introducing auto-
mated formal verification in SysML, which were based on
model checking properties expressed in temporal logics,
are probably not the best way. If SysML requirements are
formalized by statemachines that describe the desired sys-
tem behaviour, refinement relationships between require-
ments with attached statemachines can be checked auto-
matically without requiring skills in temporal logics. This
simple consideration is developed in this paper. The aim
is to show how this can be put into practice, by exploiting
state of the art formal verification tools based on Commu-
nicating Sequential Processes (CSP).

2 Related work

Verification of UML statemachines has been a subject
for research during more than the last 10 years. UML stat-
echarts have a complex underlying semantics. There were
numerous implementations constructing a bridge between
semi-formal and formal representations. [4] gives a gen-
eral overview of existing approaches.

Taking some of the results coming from this line of
research, the distinguishing characteristic of our work is
to apply formal verification of UML statemachines in the
context of requirements verification with the SysML mod-
elling language.

A significant amount of research on formal analysis of
requirements has been done. Just to mention one among
the most advanced initiatives, the work in [3] resulted in
the RATSY software. Our approach differs from most
works in this line of research because our final aim is
to integrate already available formal semantics for UML
state machines and state-of-the-art refinement checking
tools into an integrated environment for internal consis-
tency checking of requirements in SysML models.

Two papers are most closely related to our work. In
[2] refinement checking is done on requirements partially
expressed with Controlled Natural Language and partially
derived from Motorola mobile phone interfaces, by ex-
ploiting the FDR model checker. In contrast, our approach
is not based on home-grown modeling techniques that suit
only specific environments (Motorola phones in particu-
lar) but is smoothly integrated with a generic modeling
environment.

Another related work is [7] where the SysML require-
ment diagram is augmented with property stereotypes
linked to requirement elements. The authors claim to use
model-checking for safety properties described by a UML
profile, though no verification results have been reported
in the paper. Also, the authors address safety properties
while our focus is refinement checking.

Summing up, there were some works on adjacent areas,
but there were no proposed methods for fully automatic
verification of requirements modelled with widely used
modeling languages. The natural idea of linking verifica-
tion activities to requirements to the best of our knowl-
edge has not been elaborated up to techniques ready to be
widely applied during development processes. The cur-
rent paper represents a first step for filling this gap.

3 Integrated Refinement Checking

3.1 Communicating Sequential Processes
CSP [6] is a mathematical modelling language oriented

basically on the description of concurrent systems and
interaction between them. CSP is based on events and
processes. Processes are described by events and other
operators such as parallel execution operators, choice
operators, etc. Usually, CSP is applied for the description

of safety-critical systems.

CSP can be used to describe the semantics of UML
Statemachines so that the latter can be translated into cor-
responding CSP processes. Since CSP models are event-
driven, state-based UML Statemachines become event-
driven models after translation. Events in CSP models
correspond to transitions in UML State charts, and pro-
cesses correspond to states.

3.2 Refinement Checking
Refinement checking is a formal verification technique

that compares two models written in the same concur-
rent specification language (in contrast to model checking
where a property written in temporal logic is verified on
a model written in another formal language). The output
is a statement of whether or not one model refines another
model. There are several definitions of refinement rela-
tion. In this work trace refinement is considered.

A trace of a model P refers to one of its possible execu-
tions. A trace is an ordered list of labels representing the
time-ordered events and/or states occurring in that execu-
tion of P. Formally, given models P and Q one says that Q
trace refines P if all the traces of Q correspond to possible
traces of P.

The traces of Q can contain new trace elements (state
transitions in terms of UML statemachines, events in
terms of CSP) interleaved with trace elements of P. For
more details on trace refinement see [1]. In the sequel of
this paper, the term refinement denotes trace refinement.

The output of refinement checking represents a
YES/NO answer and a counterexample (if the answer is
NO). The notion of counterexample in refinement check-
ing defines a trace which is present in one description, but
absent in another one while it should be present in both.

Usually, refined models contain more transitions
(events) with respect to abstract ones. Events introduced
during refinement are normally disregarded when check-
ing refinement, i.e. only the projection of the refined trace
on the alphabet of the abstract trace is considered.

PAT [8] is a recently developed framework that imple-
ments various model checking techniques and refinement
checking too on CSP models. The translation from UML
Statecharts to CSP# (CSP + syntactic sugar) is included in
PAT, which makes this tool very interesting for our pur-
poses.

3.3 General Workflow
The aim of our work is to integrate refinement check-

ing into the modeling process. When dealing with re-
quirements on different levels it is important to have ev-
idence that more detailed requirements do not contradict
the less detailed requirements they are derived from. Ob-
viously, such a checking cannot be performed automati-
cally for plain text descriptions while it is possible when
some degree of formalization is introduced in require-
ments. Though many formal descriptions are available

Figure 1. Dataflow for refinement checking
of SysML Requirements diagram

for use, this paper focusses on reactive systems describ-
able by UML statemachines due to reasons mentioned in
Chapter 1. Pure UML, though including FSMs, is too gen-
eral for system modelling and does not include specific
support for requirements. This is why this paper focuses
on SysML which incorporates specific constructs for rep-
resenting requirements and their relationships. In SysML,
state machines can be associated with requirements, thus
providing the basis for assigning formal semantics to re-
quirements. When this is done, if two requirements are
bound by a refinement relationship, this relationship can
be verified to hold on the state machines that formalize
the two requirements.

The overall workflow for refinement checking of
SysML requirements is depicted in Fig.1.

The requirement diagram is usually serialized into
XML. We assume that state-machines are already as-
signed to requirements. In our first experiments we used
MDT Papyrus [5] for SysML modelling, but any other
modelling environment that is either open-source or pro-
vides powerful API or OLE Automation (or similar) fa-
cilities is suitable for our approach. Statemachines must
be extracted from the serialized format. This can be done

using a proper XSLT transformation, as we demonstrated
by implementing the transformation stylesheet. Note that
only XSLT 2.0 supports output to more than one XML
file. After having obtained a single file for each statema-
chine associated with a requirement, each file must be
translated into a language suitable for refinement check-
ing. Fortunately, the PAT tool includes a function that de-
rives a CSP description out of the XML representation of
a UML statemachine. On the next step, automatic com-
posing of the refinement verification model is required.
Manual composing is easy, and usually it does not require
much time, but many cases have to be considered in order
to make it automatic. For the time being, we experimented
with manual composition, leaving automation as future
work. During composition, newly introduced events must
be “hidden”, which can be achieved by using the CSP hid-
ing operator, and repeated names for processes have to be
disambiguated. Finally, the refinement verification model
consists of two corrected CSP# models corresponding to
the original FSMs and an assertion of type “modelA re-
fines model B in trace semantics”. This can be analyzed
by a tool like PAT.

In order to give feedback about refinement checking,
results must be reflected in the modeling environment.
There are two principal pieces of information about re-
finement checking:

1. whether refinement is valid or not;

2. counterexample (path existing in implementation and
inexistent in specification) in case refinement is not
valid.

Both messages can be easily embedded in a suitable box
inside the modeling environment as textual data, but high-
lighting the counterexample on the model is preferable as
it significantly improves user experience. Another pos-
sibility for counterexample representation could be gen-
erating a UML sequence diagram with a counterexample
when refinement is proved to be wrong. At the moment
these features are left as future work.

4 Case Study

This section partially demonstrates the developed con-
cept applied to a quite simple example. Let us assume that
requirements have been collected and formalized within
some enterprise that produces machinery for factory au-
tomation. Let us assume requirements we want to perform
refinement checking on are:

1. Basic requirement: Mechanical press has to be able
to move continuously between two basic states -
“opened” and “closed”.

2. Detailed requirement: Mechanical press should be
able to move continuously between two basic states -
“opened” and “closed” but it should support an alarm
system that would prevent detail under pressure and

Figure 2. Statemachines corresponding to
requirements

press itself from possible damage. The press must
open whenever alarm is detected.

The two requirements could be represented by the state
machines in Fig. 2.

Since the detailed statemachine contains transi-
tions/events that are inexistent in the basic one we must
communicate to refinement checker not to take into ac-
count these transitions/events using the CSP hiding oper-
ator.

The final input to PAT for refinement checking is a
single CSP model with corrected descriptions of both
statemachines and an assertion saying that the detailed
statemachine refines the concrete one.

4.1 Verification results
After having composed the verification model and

launched it in PAT we get the results in table 1.

5. Conclusions and Future Work

In this paper, a concept of linking high level models
with refinement checking has been introduced, explained
and demonstrated on a simple case study. This work is still
ongoing since this approach has not yet been smoothly in-
tegrated into the modeling environment, though its core
logic has already been implemented. For example, au-
tomatic composing of CSP verification models is still in
progress.

Method used on-the-fly trace
refinement checking

using depth-first search
Assertion (Implement() VALID
refines Spec())
Visited States 9
Total Transitions 16
Time Used 0.0059882s
Estimated Memory Used 8634.68KB

Table 1. Verification Results

The presented technique adequately suits all modeling
languages which use the same paradigm for requirements
modeling used by SysML. In particular EAST-ADL for
modeling automotive embedded systems.

Incorporating Requirements Analysis Tool with Syn-
thesis [3] into requirements modelling can be done in or-
der to enable advanced requirements analysis techniques
such as consistency checking and realizability of require-
ments (checking if there exists such a system that realizes
a given requirement), but this kind of integration has been
left as future work.

Also, it is important to develop case studies of realistic
complexity, in order to check the real applicability of the
proposed technique to industrial projects.

References

[1] R. J. R. Back and J. von Wright. Trace refinement of ac-
tion systems. In Structured Programming, pages 367–384.
Springer-Verlag, 1994.

[2] C. Bertolini and A. Mota. Using refinement checking as
system checking. In Iberoamerican Workshop on Require-
ments Engineering and Software Environments, pages 17–
30, 2008.

[3] R. Bloem, A. Cimatti, K. Greimel, G. Hofferek,
R. Knighofer, M. Roveri, V. Schuppan, and R. Seeber. Ratsy
a new requirements analysis tool with synthesis. In Com-
puter Aided Verification, Lecture Notes in Computer Sci-
ence, pages 425–429. Springer Berlin / Heidelberg, 2010.

[4] D. Drusinsky. Modeling and Verification Using UML Stat-
echarts: A Working Guide to Reactive System Design,
Runtime Monitoring and Execution-based Model Checking.
Newnes, 2006.

[5] The Eclipse Foundation. Papyrus Modelling Software,
2011. URL: http://wiki.eclipse.org/MDT/
Papyrus.

[6] C. A. R. Hoare. Communicating sequential processes.
Prentice-Hall, Inc., 1985.

[7] J.-F. Petin, D. Evror, G. Morel, and P. Lamy. Combining
sysml and formal models for safety requirements verifica-
tion. In 22nd International Conference on Software and
Systems Engineering and their Applications, 2010.

[8] J. Sun, Y. Liu, and J. S. Dong. Model checking csp revis-
ited: Introducing a process analysis toolkit. In Proceedings
of the Third International Symposium on Leveraging Ap-
plications of Formal Methods, Verification and Validation
(ISoLA 2008), Communications in Computer and Informa-
tion Science, pages 307–322. Springer, 2008.

