
23 July 2018

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Enabling NFV Services on Resource-Constrained CPEs / Bonafiglia, Roberto; Miano, Sebastiano; Nuccio, Sergio; Risso,
FULVIO GIOVANNI OTTAVIO; Sapio, Amedeo. - STAMPA. - (2016), pp. 83-88. ((Intervento presentato al convegno 5th
IEEE International Conference on Cloud Networking (CloudNet) tenutosi a Pisa (IT) nel 3-5 October 2016.

Original

Enabling NFV Services on Resource-Constrained CPEs

Publisher:

Published
DOI:10.1109/CloudNet.2016.24

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2646752 since: 2017-11-04T11:30:20Z

IEEE

Enabling NFV Services

on Resource-Constrained CPEs

Roberto Bonafiglia∗, Sebastiano Miano∗, Sergio Nuccio†, Fulvio Risso∗, Amedeo Sapio∗

∗Politecnico di Torino, Department of Computer and Control Engineering, Torino, Italy
†Telecom Italia, Torino, Italy

∗{roberto.bonafiglia, sebastiano.miano, fulvio.risso, amedeo.sapio}@polito.it †sergio.nuccio@telecomitalia.it

Abstract—Virtual Network Functions (VNFs) are often imple-
mented using virtual machines (VMs) because they provide an
isolated environment compatible with classical cloud computing
technologies. Unfortunately, VMs are demanding in terms of
required resources and therefore are not suitable for resource-
constrained devices such as residential CPEs. However, such
hardware often runs a Linux-based operating system that sup-
ports several software modules (e.g., iptables) that can be used
to implement network functions (e.g., a firewall), which can be
exploited to provide some of the services offered by simple VNFs,
but with reduced overhead. In this paper we propose and validate
an architecture that integrates those native software components
in a Network Function Virtualization (NFV) platform, making
their use transparent from the user’s point of view.

Keywords-Customer Premise Equipment; Network Function
Virtualization; Virtual Network Function; Home Networks;
Home Gateway; Home Security;

I. INTRODUCTION

While cloud providers can count on centralized data centers

encompassing mainly homogeneous servers, telecom operators

feature an existing widely distributed infrastructure made of

heterogeneous devices. In particular, although we can see

clear benefits by integrating current Customer Premise Equip-

ment (CPE) in the Network Functions Virtualization (NFV)

infrastructure [1], those devices are usually based on low-cost

hardware that cannot support Virtualized Network Functions

(VNFs) under the form of virtual machines.

However, we can note that most CPEs are based on the

Linux operating system, which includes (hence it can po-

tentially execute) a broad set of existing software network

functions (e.g., firewall, NAT, virtual switch, etc) running on

the bare hardware.

This paper exploits this capability and proposes a software

architecture that integrates existing CPEs in an NFV domain,

leaving complex VNFs in the data center while simple Native

Network Functions (NNFs) are executed in the CPE with low

hardware resources, especially on the Home Gateway, hence

combining the benefits of the cloud with the locality of the

services running on local CPEs.

NNFs rely on the native capabilities, i.e. software compo-

nents that are already available on the CPE and that can be

executed directly on the host operating system. In particular,

the concept of “native” involves not only regular and built-

in network functions (such as a virtual switching instance),

but also elements (e.g., the Linux iptables module) that can

be exploited to build network services (e.g., a firewall). As

a result, native functions lead to significant improvements, in

terms of memory consumption, storage requirements and start-

up time, compared to existing technologies (LXC, Docker,

VMs), enabling the execution of network functions even on

resource-constrained devices.

Our solution enables an NFV orchestrator to optimize the

scheduling of the Network Functions (NFs) by starting the

services that require network functions close to the end user

(e.g., IPsec terminator, low-latency services) directly on the

user CPE, while other components of the same service (e.g.,

the NAT module) are executed in a remote data center. This

requires our architecture to define an abstraction that allows

the orchestrator to understand the capabilities of the underlying

infrastructure domain, and that can handle the lifecycle of

each network function independently from its actual imple-

mentation. Furthermore, a reasonable security model has to

be defined in order to support multi-tenancy for NNF as

well, as the nice properties in terms of security and isolation

guaranteed by traditional hypervisors are not available in our

context.

The rest of this paper is organized as follows. The next

section examines similar works in current research. Section III

describes the technologies used in this work. Section IV

presents and describes Native Network Functions with their

abstraction. Experimental results that validate this work are

shown in Section V, followed by some final considerations

and conclusions in Section VI.

II. RELATED WORK

The necessity to introduce more flexibility in CPEs serving

home/small office customers has increased over the years and

has become evident with the emerging NFV paradigm. In fact,

a recent trend consists in moving (part of) the CPE functions

in the data center with the so called virtual CPE (vCPE) such

as in [2], [3]; a minimal hardware appliance is left at the

edge of the network, while (most of) the intelligence is moved

to the cloud and implemented through virtual functions. An

intermediate step toward a fully virtualized CPE is proposed

in [4], which is based on the architecture defined by the

Home Gateway Initiative industry alliance1. This architecture

1http://www.homegatewayinitiative.org/. However, this working group will
be shut down in 2016.

is highly modular and implements the different CPE functions

as Java OSGi bundles, which can be dynamically loaded/dis-

carded on demand. The Surrogate vNF proposed by the paper

extends this paradigm by defining a set of “proxy” OSGi

functions that keep compatibility with the existing architecture

while delegate most of the processing to a companion VNF

running in the cloud.

However, the above solutions require excellent connectivity

between the customer premises and the data center, and may

introduce excessive delay for some latency-sensitive services.

Furthermore, although in principle NFV enables a telecom

operator to orchestrate its services by exploiting the resources

offered across its entire network infrastructure, the vCPE

approach cannot exploit resources that may be available on

the CPE itself as VNFs are moved to the cloud.

Edge-based services are proposed in [5], which exploits

eBPF programs to create a programmable data path in the CPE

while the control plane is kept on the cloud. The CPE is able

to handle locally the traffic, hence guaranteeing its operations

also in case the connectivity toward the cloud is lost. Although

this solution is very efficient, the eBPF virtual machine is

not Turing-complete and cannot support even simple programs

(e.g., string matching) that are rather common at the edge of

the network.

Considering that the CPE is usually resource-constrained,

[6] proposes an optimization model that is able to select the

best VNF among a set of possible choices, hence optimizing

the cost of the VNFs deployed on CPE. However, they rely on

the existing technologies for the VNF implementation such as

Linux containers or virtual machines, thus being orthogonal

with the idea proposed in this paper.

To summarize, current NFV-compatible solutions do not

support local processing in the CPEs, while more flexible CPE

architectures are still limited in terms of supported features

and are not compliant with the NFV world. This paper aims

at achieving both objectives, namely NFV compatibility and

arbitrary traffic processing in the CPE, while still supporting

possible VNF running in the cloud, if needed.

III. BACKGROUND

The architecture proposed in this paper, depicted in Figure 2,

is an extension of the Universal Node (UN) [7] developed in

the EU UNIFY project [1].

The UN is a single box, e.g., a server, that features a

control plane that is able to jointly orchestrate network and

compute resources, supports multiple execution environments

and different virtual switches, and advertises functional capa-

bilities (e.g., capability to execute a NAT service) instead of

infrastructure-like information (e.g., KVM execution environ-

ment, available memory, etc.). The UN is a tiny infrastructure

domain and it exploits locally available information to opti-

mize the service evaluating local resources/constraints, such

as assigning VNFs to the best CPU cores.

Upon accepting a new service request from an overarching

orchestrator that is in charge of the global deployment of

the service across multiple infrastructure domains, the UN

Compute Node 3

Compute Node 1

Network

Monitor

Stealth

Firewall

NAT
VNFs

Compute Node 2

Network

Monitor

Stealth

Firewall

NAT

VNFs

NNFs

Service graph user1/user2 Service graph user 3

Global Orchestrator

Stealth

Firewall
NAT

Network

Monitor

Stealth

Firewall
NAT

Figure 1. Service instantiation of a graph.

Universal Node
LSI - 0

Virtual switch

OF contr.

LSI #1

OF contr.

LSI #0

Network Functions Forwarding Graph (NF-FG)

Compute controller

Native

driver

libvirt

Switch Manager

xDPd

driver

OvS

driver

OF contr.

LSI #N

NF4

DPDK

driverdriverdriver

Docker

driver

NF2

LSI - graph 1

NF3NF1

REST server

Virtual Link among LSIs

Network function port(s)

(between an LSI and a VNF)

OpenFlow connection

Compute control

Network control

Node resource manager

Docker VM

driver

LSI - graph N

NF5

ERFS

driver

Network controller

UN capabilities and resources

VNF selectorVNF scheduler

VNF

resolver

Figure 2. Architecture of the Universal Node.

can either deploy exactly the VNFs requested by the global

orchestrator or, in case “generic” VNFs are chosen (e.g., a

generic firewall instead of the one of a specific manufacturer) it

relies on an additional component, the VNF resolver, to select

the best implementation available. Furthermore, it creates a

new Logical Switching Instance (LSI) to properly steer the

traffic among the selected VNFs.

A. Network abstraction

The network controller of the UN manages the networking

paths among the deployed VNFs through multiple levels of

LSIs: a base LSI-0 and a set of LSI-N (where N ≥ 1), each

one in charge of a different deployed graph (Figure 1). The

first (LSI-0) dispatches the traffic from the physical interfaces

of the machine to the LSIs of the other graphs. The additional

LSIs create the traffic steering paths between the VNFs that

belong to that graph. Each LSI is managed by a separate

embedded OpenFlow controller, provided by the UN, that

dynamically inserts the proper rules in its flow table(s).

A switch manager module can control different types of

virtual switches by means of the set of primitives listed in

Table I
NETWORK ABSTRACTION IN THE UN

Function Description

createLSI() Create an LSI

deleteLSI() Remove an LSI

createPort() Create a port connected to a NF on an LSI

deletePort() Remove a port connected to a NF from an LSI

createTSRule() Generate a new traffic steering rule in an LSI

deleteTSRule() Remove an existing traffic steering rule from an LSI

Table II
COMPUTE ABSTRACTION IN THE UN

Function Description

createNF() Allocate the resources to start the NF; create a shadow

(local) copy of the NF image (if needed)

startNF() Attach ports to the NF, and starts the NF image

stopNF() Stop the NF, without deallocating resources

updateNF() Update the NF while running, e.g., by removing or

hotplugging new network interfaces

deleteNF() Release the resources (memory, shadow disk image)

allocated to the NF

pauseNF() Suspend the NF execution (for possible migration)

Table I and implemented by each technology-specific driver.

Basically, the abstraction allows to (i) create/delete an LSI,

(ii) create/remove a port on the LSI that is connected to a

NF, and (iii) create/remove a traffic steering rule between

VNFs or ports. This allow to replace a generic virtual switch

implementation with an hardware-accelerated one, without

impacting on the rest of the software.

B. Compute abstraction

The compute controller is responsible for the VNF lifecycle

management, such as instantiate, terminate and update a VNF.

This is achieved by defining a common compute abstraction

(Table II) that is generic enough to be applicable to any type

of execution environment. This abstraction is implemented by

a set of drivers, each one in charge of a specific execution

environment technology (e.g., VM, Docker, DPDK process)

with the associated required parameters. For instance, the

plugin that manages the KVM hypervisor creates on the fly

the proper XML file required by the libvirt library for the

VM instantiation when the createNF() call is invoked.

Each compute driver needs also to support different types

of interfaces (e.g., dpdkr, virtio, etc.), according to the

specific execution environment, as each execution environment

supports only a subset of the available port types. In this re-

spect, the compute controller needs to be coordinated with the

network controller in order to attach the VNF ports, according

to the required technology, to the existing softswitch.

C. Northbound interface

The northbound interface of the UN is bidirectional: the

downstream direction is based on generic service graphs that

have to be instantiated on the node, while the upstream

direction is used to export the information needed by an

overarching orchestrator and that is used to properly instantiate

the requested service across different infrastructure domains.

The UN exports three types of information to such an upper

layer orchestrator. Functional capabilities represent the ability

to execute a specific network function, such as a NAT or

firewall service, optionally with some specific characteristics,

such as the capability to handle high amount of traffic (e.g.,

because it can exploit an hardware accelerator available in

the node). Infrastructure-level capabilities refers lower-level

characteristics, such as the CPU architecture, the ability to

execute generic VMs or Docker containers, etc. Available

resources refer to the about of unused hardware resources,

such as the amount of free memory or the presence of an

hardware accelerator.

The capability to advertise functional capabilities is a unique

feature of the UN and it represents also the main reason we

can bring the concept of Native Network Functions in this

environment. In fact, an overarching orchestrator that operates

based on functional capabilities will not decide the actual VNF

implementation to be used, but it will only tell the underlying

domain (e.g., the UN) to start a specific network function,

leaving to that domain the decision about the specific VNF

flavor (e.g., VM, Docker, etc) to be used. In turn, the UN will

delegate this decision to the the VNF resolver.

IV. NATIVE NETWORK FUNCTIONS

This section introduces the concept of Native Network

Function, i.e. a data-plane processing component that exploits

capabilities natively present on the compute node and cannot

be exploited by current NFV solutions. Our architecture allows

NNFs to work alongside traditional VNFs, giving the possi-

bility to improve overall network performance without losing

the flexibility guaranteed by the NFV approach.

A. NNF model and VNF template

In principle, a generic NNF must be compliant with the

interface defined for all the compute drivers, such as in

Table II. However, each NNF may require some additional

properties that have to be satisfied in order to be able to

run. Therefore, besides all the information required for the

execution of a generic VNF (e.g., number of ports, port

types), additional properties refer to either dependencies or

requirements. Those might refer to software packages (e.g.,

executables, libraries) available on the compute node that are

already installed and that are required for the NNF to operate.

In addition, our model considers also information regarding

the status of the allocated function, telling about current

configuration and resource used by the function. This data

is needed in order to be able to release the resources used by

the NNF when the function stops, while in traditional VMs

resources are freed along with the deletion of the VM.

In order to cope with this data, we extended the network

function template to keep both VNF general attributes, com-

mon for all types of network function, and NNF-specific

{
”name” : ”firewall” ,
”uri” : ”http://repo/native/firewall.tgz”,
”vnf !"#$%&'&%()!*+$%,
”multitenancy” : true,
”dependencies” :
{ ”capability”: [{

”name” : ”iptables”,
”type” : ”package” ,
}] },

}

Figure 3. Excerpt of the template of a firewall NNF.

information. Figure 3 contains an excerpt of an NNF template

representing a native firewall, which shows the properties of

the function. In particular, it exploits iptables as a native capa-

bility and also supports multi-tenancy. The function handlers

that will be used by the compute controller to drive its life-

cycle (e.g., start, modify and stop) are available at the given

URI with a specific format. The template also specifies basic

I/O and network configuration of the function, information

needed for driving the other NF types as well, not shown in

the example.

B. The native compute driver

After receiving the VNF template, the compute controller

has to control the native function by using the abstraction

described in Section III-B. The native driver will download the

function using the URI specified in the VNF template, which

points to a .tgz file. The above archive is a very compact file

that includes a set of bash scripts that are called to perform

the actions listed in Table II, such as starting a new instance

of the NNF, updating, stopping and all the other actions that

are required in the VNF lifecycle management. As evident,

the support for bash is the only requirement for running a

NNF, which, in turn, enables native functions to be seamlessly

deployed on machines with different CPU architectures.

C. I/O model

In the traditional NFV framework, the traffic steering among

the VNFs is carried out by a virtual switch that forwards

packets according to the rules given by a network controller.

Each VNF is provided by a certain number of virtual network

interfaces that correspond to its ports, connected to the virtual

switch.

In order to seamlessly support the execution of NNFs, the

same I/O model must be repeated and therefore each NNF

should be connected to the vSwitch with the appropriate

number of ports. In this way, the network controller remains

exactly the same and can create virtual ports for the NNF as

well as for the VNF.

In the NNF case, these ports are implemented as virtual

Ethernet (veth) interfaces assigned to a network namespace

on which the NNF is executed. As such, each NNF sees its

own network interfaces that can use to retrieve/send its own

specific network traffic.

D. Isolation model

Differently from current virtualization technologies that

natively support an isolation model for the instantiated VNFs,

the NNF driver needs to explicitly implement a layer that

provides at least some form of isolation of the NNF against

the rest of the system.

The NNF driver leverages the Linux namespaces by creating

a new network namespace before running an NNF, adds to it

the virtual network ports required by the function, and then

launches the NNF inside the namespace. As a result, the NNF

is isolated for the incoming traffic that will be only the one

sent by the vswitch to the veth of the NNF. The name of

the namespace is unequivocally related with the graph and the

function name, thus avoiding possible collisions. At the end

of the execution of the NNF, the namespace is deleted by the

native driver and all the other related resources are freed.

Differently from Linux containers that exploit all the dif-

ferent types of namespaces available in the Linux OS, NNFs

use by default only the network one in order to guarantee net-

work isolation between different NNFs. A more sophisticated

isolation model, leveraging multiple namespaces that can be

activated on demand (based on the requirements of the tenant,

the infrastructure owner, and NF), is currently in progress.

E. Multitenancy

In a traditional NFV architecture in which each VNF runs

on a distinct VM, multitenancy is an intrinsic property of the

execution model. In fact, multiple instances of the same VNF

can always be launched while traffic steering primitives can

set the proper flow rules to the software switches in order to

create the correct traffic steering paths among VNFs.

Supposing that a NNF can be instantiated multiple times,

multitenancy is achieved by encapsulating multiple instances

of the NNF in dedicated namespaces whose virtual interfaces

are connected to different ports of the software switches. On

the contrary, if a NNF does not support multiple instances

running at the same time, multitenancy should be managed by

means of an ad-hoc marking mechanism that allows the NNF

to distinguish between traffic belonging to different service

graphs.

F. Security considerations

Launching a native function, hence a script running on the

bare hardware, offers less protection than starting a software

in a VM or in a Docker container, which can leverage the

additional protection shield provided by the hypervisor or the

Docker execution engine. For instance, little protection exists

to limit the resources used by native functions, e.g., in terms

of CPU/memory consumption or the number of occupied CPU

cores. Although the impact of the above problems could be

limited by turning on some addition Linux mechanism such as

cgroup, this complicates the solution to the extent to which

other alternatives may be more appealing, such as replacing

the NNF with a Docker-based implementation.

In any case no protection exists that prevents a VNF, which

is expected to provide a given service (e.g., firewall), to behave

U
n

iv
e

rs
a

l

N
o

d
e

CPE (device under test)

User device

(traffic source)

Corporate VPN

server Server

(traffic sink)

Corporate

LAN

IPSec client

endpoint IPSec server

endpoint

Figure 4. Testbed used in the validation.

Table III
CHARACTERISTICS OF THE DEVICES USED IN THE VALIDATION

Machine(s) Hardware and software characteristics

User device (source) Intel Core i7-4770, 32GB RAM, 500GB HD

Traffic server (sink) Linux Ubuntu 14.04, Kernel version: 3.16

Corp. VPN server

Server CPE Intel Core i5-3450S, 8GB RAM, 200GB SSD

Linux Ubuntu 14.04, Kernel version: 3.19

Domestic CPE Netgear R6300v2, CPU Broadcom BCM4708A0,

800MHz (2 cores), 128MB Flash, 256MB RAM

OpenWrt 15.05, Kernel version: 3.18

Business CPE Hawkeye HK-0910, Freescale QorIQ T1040,

1.2GHz (four e5500 cores), 64MB NOR Flash,

2GB RAM DDR3L-1600

Freescale QorIQ SDK V1.7, Kernel version: 3.12

differently (e.g., to launch an attack toward a remote host)

and the current solution is simply to trust the creator of the

application or the entity (e.g., app marketplace owner) that

sells it. Therefore, although we acknowledge that the problem

of determining whether a NF is malicious is emphasized in

case of NNF because of their inferior degree of isolation, we

feel that the problem is rather general and should require a

more generic solution that guarantees, a priori, the goodness

of the VNF, e.g., by means of novel software verification

techniques.

In this respect, a possible direction for future investigation

could consist in integrating remote attestation techniques [8]

in our execution environment, exploiting an external machine

to verify the correctness of the running software.

V. VALIDATION

This section presents the results of a preliminary validation

campaign with a transparent VPN access use case, i.e., when

a user client located on a trusted local network (e.g., home)

needs to connect to its corporate VPN server. In order to

avoid the necessity to install the VPN client software on all

user’s devices (e.g., laptop, smartphone, etc.), the VPN client is

instantiated on the user’s CPE, hence providing secure access

to the corporate network independently of the user device.

The specific testbed, shown in Figure 4, encompasses a

client that generates the traffic, a CPE executing the IPSec

client NF in charge of encrypting/decrypting the traffic, a VPN

server with the opposite duty, and finally a traffic sink. All the

four boxes are connected with point-to-point 1Gbps Ethernet

links; faster speeds are usually not available in low-end CPEs.

Three powerful workstations were used respectively as traffic

source, VPN server and traffic sink in order to avoid those

machines to become the bottleneck, while different flavors of

CPEs are used, namely a mid-range server, a business CPE

based on the Freescale T1040 and a domestic CPE, all with the

same version of the UN software, although compiled for the

specific platform. The specific hardware and software details

are listed in Table III.

The UN was configured through its northbound interface

with a very simple service graph, featuring an IPsec client NF

connected to the LAN and WAN ports; the NF was based

on the well-known Strongswan [9] software, configured to

operate in IPsec tunnel mode (using IKEv2 to establish the

security associations, AES-CBC-128 for the encryption and

SHA1-HMAC for verifying the data integrity).

The use of different hardware platforms was coupled with

different implementations of the same NF, whenever possi-

ble. The server-based CPE was tested with three equivalent

network functions based on VM, Docker and NNF, while the

business CPE and the domestic CPE supported the network

function only as sofware-based NNF. Our experiments took

into consideration (i) the throughput between the two hosts

and the associated CPU load during the experiment, (ii) the

amount of RAM consumed, (iii) the NF image size, (iv) the

amount of additional libraries required to start the requested

execution environment in addition to the base Linux system

(e.g., KVM/QEM for VMs) and (v) the time required to

start the NF. The first two experiments leveraged the iperf

tool installed on the source and sink machines, configured

to generate two unidirectional TCP streams at the maximum

speed. We set the packet size such that the MTU is not

exceeded after the addition of the IPSec header, in order to

avoid fragmentation. All experiments were repeated 10 times

and averaged.

The throughput, in the second column of Table IV, shows

that NNFs and Docker bring significant performance improve-

ments compared to VMs because of the simplified architecture

that does require neither the hypervisor nor the guest OS,

where the NF is running. Their throughput is higher with

a reduced CPU consumption as well. In this respect, NNFs

and Docker show the same level of performance, as expected,

given that they are based on the same technology (i.e., kernel-

based processing in the host plus namespaces).

The memory occupation, i.e., the amount of RAM required

to execute the given NF and the execution platform, showed

in the third column of Table IV, exhibits the same trend.

In this case numbers can only be considered as qualitative

measurements, as they may change considerably by tuning

the NF in a different way, particularly for the VM case. In

our test we created a guest OS with the default installation of

a Ubuntu server 14.04, installing only the packages required

for our VNF to work. As evident, the memory occupation is

definitely higher in the case of VMs, while Docker and NNF

are very similar, although they slightly vary according to the

hardware platform under consideration. Note that Table IV

reports the application-level throughput, i.e., measured on the

source/sink machines. Packets are extended with the additional

Table IV
COMPARING DIFFERENT IMPLEMENTATIONS OF THE IPSEC CLIENT, ON

DIFFERENT MACHINES

IPsec client implementation Thr.@CPU RAM NF image

(Mbps/load%) (MB) (MB)

1) Server CPE - KVM/QEMU 796 / 100% 390.6 522

2) Server CPE - Docker 1095 / 80% 24.2 240

3) Server CPE - NNF 1094 / 80% 19.4 5

4) Domestic CPE - NNF 57.2 / 100% 5 2

5) Business CPE - NNF 617 / 90% 1.9 3.7

IPsec headers required to create the tunnel, hence reaching,

between the CPE and the IPSec server endpoint, an higher

throughput.

The fourth column of Table IV shows the NF image size,

which confirms definitely the advantages of NNFs not only

with respect to VMs, but also against Docker, as the image size

is about two orders of magnitude less than its counterparts2.

Moreover, this impacts also on the time required to download

the NF image from a remote location, which is critical when

the CPE is connected to the Internet through slow links (e.g.,

ADSL). An additional test was carried out in the host environ-

ment to measure the additional disk size, required in the host,

to support the execution of the specific environment; due to the

intrinsic limitations this was only possible on the server-based

CPE. Starting from a clean installation of Ubuntu server 14.04

with default settings, we measured an additional 40MB for

the components (i.e., KVM/QEMU) required to execute VMs

and 30MB required to execute Docker containers. The above

numbers confirm the advantages of the NNF with resource-

constrained environments; in fact, the reason for not testing

Docker on the home and business CPEs is the disk size

limitation on those platforms.

Finally, we measured also the time to start a NF in the

server-based CPE, being the only environment that can start

all the NF types. The result showed about 3 second with VMs

(which require starting the entire VM), 350ms with Docker,

and 727ms with NNF; the baseline, i.e., the time required to

launch the IPsec client on the base system without wrapping

it in any NF, was 154 ms. This confirms, once more, the

advantage of running applications in the host; the (relatively)

high number with NNF is due to some implementation-

dependent delay required to attach the network ports to the

NNF, requires further optimizations.

VI. CONCLUSIONS

This paper presents the idea of Native Network Functions,

an NFV abstraction that allows to execute network functions

even on resource-constrained devices by exploiting their native

(both software and hardware) capabilities.

Our preliminary validation campaign confirms that NNFs

can be implemented over a reasonable variety of hardware,

2The image size of a NNF is merely the size of the NF software, compiled
for the target platform

ranging from standard high-volume servers to business and

domestic CPEs, with different hardware characteristics (CPU

architecture and speed, memory size, etc.). Furthermore, NNFs

can export existing hardware accelerators as network func-

tions, hence enabling an NFV orchestrator to transparently

take advantage from the superior efficiency of the hardware

compared to pure software implementations.

Future work will aim at extending this approach to sup-

port traditional middleboxes as well (e.g., routers, switches,

etc.), allowing their seamless integration in an existing NFV

infrastructure.

ACKNOWLEDGMENT

This work was conducted within the framework of the FP7

UNIFY3 and SECURED4 projects, which are partially funded

by the Commission of the European Union. Study sponsors

had no role in writing this report. The views expressed do not

necessarily represent the views of the authors’ employers, the

UNIFY and SECURED projects, or the Commission of the

European Union.

REFERENCES

[1] A. Császár, W. John, M. Kind, C. Meirosu, G. Pongrácz, D. Staessens,
A. Takács, and F.-J. Westphal, “Unifying cloud and carrier network:
Eu fp7 project unify,” in Utility and Cloud Computing (UCC), 2013

IEEE/ACM 6th International Conference on, IEEE. Washington, DC,
USA: IEEE Computer Society, December 2013, pp. 452–457.

[2] Z. Bronstein and E. Shraga, “Nfv virtualisation of the home environment,”
in Consumer Communications and Networking Conference (CCNC), 2014

IEEE 11th, Jan 2014, pp. 899–904.
[3] T. Cruz, P. Simes, N. Reis, E. Monteiro, and F. Bastos, “An architecture

for virtualized home gateways,” in Integrated Network Management (IM
2013), 2013 IFIP/IEEE International Symposium on, May 2013, pp. 520
– 526.

[4] N. Herbaut, D. Negru, G. Xilouris, and Y. Chen, “Migrating to a nfv-based
home gateway: Introducing a surrogate vnf approach,” in Network of

the Future (NOF), 2015 6th International Conference on the, September
2015, pp. 1–7.

[5] F. Sanchez and D. Brazewell, “Tethered linux cpe for ip service delivery,”
in Network Softwarization (NetSoft), 2015 1st IEEE Conference on.
IEEE, April 2015, pp. 1–9.

[6] G. Faraci and G. Schembra, “An analytical model to design and manage
a green sdn/nfv cpe node,” Network and Service Management, IEEE

Transactions on, vol. 12, no. 3, pp. 435–450, September 2015.
[7] I. Cerrato, A. Palesandro, F. Risso, M. Suñé, V. Vercellone, and H. Woes-

ner, “Toward dynamic virtualized network services in telecom operator
networks,” Computer Networks, vol. 92, Part 2, pp. 380 – 395, 2015,
software Defined Networks and Virtualization.

[8] T. Su, A. Lioy, and N. Barresi, “Trusted computing technology and
proposals for resolving cloud computing security problems,” in Cloud

Computing Security: Foundations and Challenges, In Press.
[9] “Strongswan,” https://www.strongswan.org/, [Online; accessed August

07th, 2016].

3http://www.fp7-unify.eu/
4http://www.secured-fp7.eu/

