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Definition

Abduction is a form of reasoning, sometimes de-
scribed as “deduction in reverse,” whereby given
a rule that “A follows from B” and the ob-
served result of “A” we infer the condition “B”
of the rule. More generally, given a theory, T,
modeling a domain of interest and an obser-
vation, “A,” we infer a hypothesis “B” such
that the observation follows deductively from T
augmented with “B.” We think of “B” as a pos-
sible explanation for the observation according
to the given theory that contains our rule. This
new information and its consequences (or ram-
ifications) according to the given theory can be
considered as the result of a (or part of a) learning
process based on the given theory and driven by
the observations that are explained by abduction.
Abduction can be combined with » induction in
different ways to enhance this learning process.
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Motivation and Background

Abduction is, along with induction, a synthetic
form of reasoning whereby it generates, in its
explanations, new information not hitherto con-
tained in the current theory with which the rea-
soning is performed. As such, it has a natural re-
lation to learning, and in particular to knowledge
intensive learning, where the new information
generated aims to complete, at least partially, the
current knowledge (or model) of the problem
domain as described in the given theory.

Early uses of abduction in the context of
machine learning concentrated on how abduction
can be used as a theory revision operator for
identifying where the current theory could be
revised in order to accommodate the new learn-
ing data. This includes the work of Michalski
(1993), Ourston and Mooney (1994), and Ade
et al. (1994). Another early link of abduction to
learning was given by the » explanation based
learning method (DeJong and Mooney 1986),
where the abductive explanations of the learning
data (training examples) are generalized to all
cases. An extensive survey of the role of abduc-
tion in Machine Learning during this early period
can be found in Bergadano et al. (2000).

Following this, it was realized (Flach and
Kakas 2000) that the role of abduction in learn-
ing could be strengthened by linking it to in-
duction, culminating in a hybrid integrated ap-
proach to learning where abduction and induction
are tightly integrated to provide powerful learn-
ing frameworks such as the ones of Progol 5.0
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(Muggleton and Bryant 2000) and HAIL (Ray
et al. 2003). On the other hand, from the point
of view of abduction as “inference to the best
explanation” (Josephson and Josephson 1994) the
link with induction provides a way to distinguish
between different explanations and to select those
explanations that give a better inductive general-
ization result.

A recent application of abduction, on its own
or in combination with induction, is in Systems
Biology where we try to model biological
processes and pathways at different levels.
This challenging domain provides an important
development test-bed for these methods of
knowledge intensive learning (see e.g., King
et al. 2004; Papatheodorou et al. 2005; Ray et al.
2006; Tamaddoni-Nezhad et al. 2004; Zupan
et al. 2003).

Structure of the Learning Task

Abduction contributes to the learning task by first
explaining, and thus rationalizing, the training
data according to a given and current model
of the domain to be learned. These abductive
explanations either form on their own the result
of learning or they feed into a subsequent phase
to generate the final result of learning.

Abduction in Artificial Intelligence

Abduction as studied in the area of Artificial
Intelligence and the perspective of learning
is mainly defined in a logic-based approach.
Other approaches to abduction include set
covering (See, e.g., Reggia 1983) or case-based
explanation, (e.g., Leake 1995). The following
explanation uses a logic-based approach.

Given a set of sentences T (a theory or model),
and a sentence O (observation), the abductive
task is the problem of finding a set of sentences
H (abductive explanation for O) such that:

1. TUH E O,
2. T U H is consistent,

where = denotes the deductive entailment rela-
tion of the formal logic used in the representation
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of our theory and consistency refers also to the
corresponding notion in this logic. The particular
choice of this underlying formal framework of
logic is in general a matter that depends on the
problem or phenomena that we are trying to
model. In many cases, this is based on » first
order predicate calculus, as, for example, in the
approach of theory completion in Muggleton and
Bryant (2000). But other logics can be used, e.g.,
the nonmonotonic logics of default logic or logic
programming with negation as failure when the
modeling of our problem requires this level of
expressivity.

This basic formalization as it stands, does not
fully capture the explanatory nature of the abduc-
tive explanation H in the sense that it necessarily
conveys some reason why the observations hold.
It would, for example, allow an observation O
to be explained by itself or in terms of some
other observations rather than in terms of some
“deeper” reason for which the observation must
hold according to the theory 7. Also, as the
above specification stands, the observation can
be abductively explained by generating in H
some new (general) theory completely unrelated
to the given theory T'. In this case, H does not
account for the observations O according to the
given theory T and in this sense it may not be
considered as an explanation for O relative to T'.
For these reasons, in order to specify a “level”
at which the explanations are required and to un-
derstand these relative to the given general theory
about the domain of interest, the members of an
explanation are normally restricted to belong to
a special preassigned, domain-specific class of
sentences called abducible.

Hence abduction, is typically applied on a
model, 7', in which we can separate two disjoint
sets of predicates: the observable predicates and
the abducible (or open) predicates. The basic
assumption then is that our model 7" has reached
a sufficient level of comprehension of the domain
such that all the incompleteness of the model
can be isolated (under some working hypothe-
ses) in its abducible predicates. The observable
predicates are assumed to be completely defined
(in T') in terms of the abducible predicates and
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other background auxiliary predicates; any in-
completeness in their representation comes from
the incompleteness in the abducible predicates. In
practice, the empirical observations that drive the
learning task are described using the observable
predicates. Observations are represented by for-
mulae that refer only to the observable predicates
(and possibly some background auxiliary predi-
cates) typically by ground atomic facts on these
observable predicates. The abducible predicates
describe underlying (theoretical) relations in our
model that are not observable directly but can,
through the model 7, bring about observable
information.

The assumptions on the abducible predicates
used for building up the explanations may be
subject to restrictions that are expressed through
integrity constraints. These represent additional
knowledge that we have on our domain express-
ing general properties of the domain that remain
valid no matter how the theory is to be extended
in the process of abduction and associated learn-
ing. Therefore, in general, an abductive theory
is a triple, denoted by (7, A,IC), where T is
the background theory, A is a set of abducible
predicates, and IC is a set of integrity constraints.
Then, in the definition of an abductive expla-
nation given above, one more requirement is
added:

3. T U H satisfies IC.

The satisfaction of integrity constraints can be
formally understood in several ways (see Kakas
et al. 1992 and references therein). Note that the
integrity constraints reduce the number of expla-
nations for a set of observations filtering out those
explanations that do not satisfy them. Based on
this notion of abductive explanation a credulous
form of abductive entailment is defined. Given
an abductive theory, T = (T, A,IC), and an
observation O then, O is abductively entailed
by T, denoted by T =4 O, if there exists an
abductive explanation of O in T'.

This notion of abductive entailment can then
form the basis of a coverage relation for learning
in the face of incomplete information.

Abductive Concept Learning

Abduction allows us to reason in the face of
incomplete information. As such when we have
learning problems where the background data on
the training examples is incomplete the use of
abduction can enhance the learning capabilities.

Abductive concept learning (ACL) (Kakas and
Riguzzi 2000) is a learning framework that allows
us to learn from incomplete information and to
later be able to classify new cases that again
could be incompletely specified. Under ACL, we
learn abductive theories, (T, A, IC) with abduc-
tion playing a central role in the covering relation
of the learning problem. The abductive theories
learned in ACL contain both rules, in 7', for the
concept(s) to be learned as well as general clauses
acting as integrity constraints in IC.

Practical problems that can be addressed with
ACL: (1) concept learning from incomplete back-
ground data where some of the background pred-
icates are incompletely specified and (2) concept
learning from incomplete background data to-
gether with given integrity constraints that pro-
vide some information on the incompleteness
of the data. The treatment of incompleteness
through abduction is integrated within the learn-
ing process. This allows the possibility of learn-
ing more compact theories that can alleviate the
problem of over fitting due to the incompleteness
in the data. A specific subcase of these two prob-
lems and important third application problem of
ACL is that of (3) multiple predicate learning,
where each predicate is required to be learned
from the incomplete data for the other predicates.
Here the abductive reasoning can be used to
suitably connect and integrate the learning of the
different predicates. This can help to overcome
some of the nonlocality difficulties of multiple
predicate learning, such as order-dependence and
global consistency of the learned theory.

ACL is defined as an extension of » Inductive
Logic Programming (ILP) where both the back-
ground knowledge and the learned theory are
abductive theories. The central formal definition
of ACL is given as follows where examples are
atomic ground facts on the target predicate(s) to
be learned.


http://dx.doi.org/10.1007/978-1-4899-7687-1_135

Definition 1 (Abductive Concept Learning)
Given

A set of positive examples E*

* A set of negative examples E~

¢ An abductive theory T = (P, A, I) as back-
ground theory

* An hypothesis space 7 = (P,Z) consisting
of a space of possible programs P and a space
of possible constraints 7

Find

A set of rules P’ € P and a set of constraints
I’ € T such that the new abductive theory
T = (P UP' A, I U] satisfies the following
conditions

A T/'ZA E+
e Ve e E-, T ¥ e

where ET stands for the conjunction of all posi-
tive examples.

An individual example e is said to be covered
by a theory T’ if T/ |4 e. In effect, this
definition replaces the deductive entailment as the
example coverage relation in the ILP problem
with abductive entailment to define the ACL
learning problem.

The fact that the conjunction of positive ex-
amples must be covered means that, for every
positive example, there must exist an abduc-
tive explanation and the explanations for all the
positive examples must be consistent with each
other. For negative examples, it is required that
no abductive explanation exists for any of them.
ACL can be illustrated as follows.

Example 1 Suppose we want to learn the concept
father. Let the background theory be T =
(P, A, @) where:

P = {parent(john,mary),male(john),
parent(david, steve),
parent(kathy,ellen), female(kathy)},
A ={male, female}.

Let the training examples be:
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E* = {father(john,mary), father
(david, steve)},

E~ ={father(kathy,ellen), father
(john, steve)}.

In this case, a possible hypotheses 7' = (P U
P’, A, I’) learned by ACL would consist of

P’ = {father(X,Y)
male(X)},
I' = { <« male(X), female(X)}.

<« parent(X,Y),

This hypothesis satisfies the definition of ACL
because:

1. T'|Ea father(john,mary), father
(david, steve) with A = {male(david)}.

2. T" ¥4 father(kathy,ellen), as the only
possible explanation for this goal, namely
{male(kathy)} is made inconsistent by the
learned integrity constraint in /.

3. T ¥4 father(john,steve), as this has no
possible abductive explanations.

Hence, despite the fact that the background
theory is incomplete (in its abducible predicates),
ACL can find an appropriate solution to the
learning problem by suitably extending the
background theory with abducible assumptions.
Note that the learned theory without the
integrity constraint would not satisfy the
definition of ACL, because there would exist
an abductive explanation for the negative
example father(kathy,ellen), namely A~ =
{male(kathy)}. This explanation is prohibited
in the complete theory by the learned constraint
together with the fact female(kathy).

The algorithm and learning system for ACL
is based on a decomposition of this problem into
two subproblems: (1) learning the rules in P’
together with appropriate explanations for the
training examples and (2) learning integrity con-
straints driven by the explanations generated in
the first part. This decomposition allows ACL to
be developed by combining the two IPL settings
of explanatory (predictive) learning and confir-
matory (descriptive) learning. In fact, the first
subproblem can be seen as a problem of learning
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from entailment, while the second subproblem as
a problem of learning from interpretations.

Abduction and Induction

The utility of abduction in learning can be en-
hanced significantly when this is integrated with
induction. Several approaches for synthesizing
abduction and induction in learning have been
developed, e.g., Ade and Denecker (1995),
Muggleton and Bryant (2000), Yamamoto
(1997), and Flach and Kakas (2000). These
approaches aim to develop techniques for
knowledge intensive learning with complex
background theories. One problem to be faced by
purely inductive techniques, is that the training
data on which the inductive process operates,
often contain gaps and inconsistencies. The
general idea is that abductive reasoning can
feed information into the inductive process
by using the background theory for inserting
new hypotheses and removing inconsistent data.
Stated differently, abductive inference is used to
complete the training data with hypotheses about
missing or inconsistent data that explain the
example or training data, using the background
theory. This process gives alternative possibilities
for assimilating and generalizing this data.

Induction is a form of synthetic reasoning that
typically generates knowledge in the form of new
general rules that can provide, either directly,
or indirectly through the current theory 7 that
they extend, new interrelationships between the
predicates of our theory that can include, unlike
abduction, the observable predicates and even in
some cases new predicates. The inductive hy-
pothesis thus introduces new, hitherto unknown,
links between the relations that we are studying
thus allowing new predictions on the observable
predicates that would not have been possible be-
fore from the original theory under any abductive
explanation.

An inductive hypothesis, H, extends, like in
abduction, the existing theory 7 to a new theory
T'=T U H,but now H provides new links be-
tween observables and nonobservables that was
missing or incomplete in the original theory T.
This is particularly evident from the fact that
induction can be performed even with an empty

given theory 7', using just the set of observa-
tions. The observations specify incomplete (usu-
ally extensional) knowledge about the observable
predicates, which we try to generalize into new
knowledge. In contrast, the generalizing effect of
abduction, if at all present, is much more limited.
With the given current theory 7', that abduction
always needs to refer to, we implicitly restrict the
generalizing power of abduction as we require
that the basic model of our domain remains that
of T'. Induction has a stronger and genuinely new
generalizing effect on the observable predicates
than abduction. While the purpose of abduction
is to extend the theory with an explanation and
then reason with it, thus enabling the generalizing
potential of the given theory 7', in induction the
purpose is to extend the given theory to a new the-
ory, which can provide new possible observable
consequences.

This complementarity of abduction and in-
duction — abduction providing explanations from
the theory while induction generalizes to form
new parts of the theory — suggests a basis for
their integration within the context of theory
formation and theory development. A cycle of
integration of abduction and induction (Flach and
Kakas 2000) emerges that is suitable for the task
of incremental modeling (Fig. 1). Abduction is
used to transform (and in some sense normalize)
the observations to information on the abducible
predicates. Then, induction takes this as input
and tries to generalize this information to general

N

TUHE O Abduction

Induction

T~ 0O

Abduction, Fig. 1 The cycle of abductive and inductive
knowledge development. The cycle is governed by the
“equation” T'U H = O, where T is the current theory,
O the observations triggering theory development, and H
the new knowledge generated. On the left-hand side we
have induction, its output feeding into the theory T for
later use by abduction on the right; the abductive output in
turn feeds into the observational data O’ for later use by
induction, and so on



rules for the abducible predicates now treating
these as observable predicates for its own pur-
poses. The cycle can then be repeated by adding
the learned information on the abducibles back
in the model as new partial information on the
incomplete abducible predicates. This will affect
the abductive explanations of new observations
to be used again in a subsequent phase of in-
duction. Hence, through this cycle of integration
the abductive explanations of the observations
are added to the theory, not in the (simple) form
in which they have been generated, but in a
generalized form given by a process of induction
on these.

A simple example, adapted from Ray et al.
(2003), that illustrates this cycle of integration of
abduction and induction is as follows. Suppose
that our current model, 7', contains the following
rule and background facts:

sad(X) <« tired(X), poor(X),
tired(oli), tired(ale), tired(kr),
academic(oli), academic(ale), academic(kr),

student(oli), lecturer(ale), lecturer(kr),

where the only observable predicate is sad /1.
Given the observations O = {sad(ale),
sad(kr),not sad(oli)} can we improve our
model? The incompleteness of our model resides
in the predicate poor. This is the only abducible
predicate in our model. Using abduction we can
explain the observations O via the explanation:

E = {poor(ale), poor(kr), not poor(oli)}.

Subsequently, treating this explanation as training
data for inductive generalization we can general-
ize this to get the rule:

poor(X) <« lecturer(X)

thus (partially) defining the abducible predicate
poor when we extend our theory with this rule.
This combination of abduction and induction
has recently been studied and deployed in several
ways within the context of ILP. In particular,
inverse entailment (Muggleton and Bryant 2000)
can be seen as a particular case of integration of
abductive inference for constructing a “bottom”
clause and inductive inference to generalize it.
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This is realized in Progol 5.0 and applied to sev-
eral problems including the discovery of the func-
tion of genes in a network of metabolic pathways
(King et al. 2004), and more recently to the study
of inhibition in metabolic networks (Tamaddoni-
Nezhad et al. 2006, 2004). In Moyle (2000), an
ILP system called ALECTO, integrates a phase of
extraction-case abduction to transform each case
of a training example to an abductive hypothesis
with a phase of induction that generalizes these
abductive hypotheses. It has been used to learn
robot navigation control programs by completing
the specific domain knowledge required, within a
general theory of planning that the robot uses for
its navigation (Moyle 2002).

The development of these initial frameworks
that realize the cycle of integration of abduction
and induction prompted the study of the prob-
lem of completeness for finding any hypothe-
ses H that satisfies the basic task of finding a
consistent hypothesis H such that T U H |
O for a given theory 7', and observations O.
Progol was found to be incomplete (Yamamoto
1997) and several new frameworks of integration
of abduction and induction have been proposed
such as SOLDR (Ito and Yamamoto 1998), CF-
induction (Inoue 2001), and HAIL (Ray et al.
2003). In particular, HAIL has demonstrated that
one of the main reasons for the incompleteness
of Progol is that in its cycle of integration of
abduction and induction, it uses a very restricted
form of abduction. Lifting some of these re-
strictions, through the employment of methods
from abductive logic programming (Kakas et al.
1992), has allowed HAIL to solve a wider class of
problems. HAIL has been extended to a frame-
work, called XHAIL (Ray 2009), for learning
nonmonotonic ILP, allowing it to be applied to
learn Event Calculus theories for action descrip-
tion (Alrajeh et al. 2009) and complex scientific
theories for systems biology (Ray and Bryant
2008).

Applications of this integration of abduction
and induction and the cycle of knowledge devel-
opment can be found in the recent proceedings of
the Abduction and Induction in Artificial Intelli-
gence workshops in 2007 (Flach and Kakas 2009)
and 2009 (Ray et al. 2009).
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Abduction in Systems Biology

Abduction has found a rich field of application in
the domain of systems biology and the declarative
modeling of computational biology. In a project
called, Robot scientist (King et al. 2004), Progol
5.0 was used to generate abductive hypotheses
about the function of genes. Similarly, learn-
ing the function of genes using abduction has
been studied in GenePath (Zupan et al. 2003)
where experimental genetic data is explained in
order to facilitate the analysis of genetic net-
works. Also in Papatheodorou et al. (2005) ab-
duction is used to learn gene interactions and
genetic pathways from microarray experimental
data. Abduction and its integration with induction
has been used in the study of inhibitory effect
of toxins in metabolic networks (Tamaddoni-
Nezhad et al. 2004, 2006) taking into account
also the temporal variation that the inhibitory
effect can have. Another bioinformatics appli-
cation of abduction (Ray et al. 2006) concerns
the modeling of human immunodeficiency virus
(HIV) drug resistance and using this in order
to assist medical practitioners in the selection
of antiretroviral drugs for patients infected with
HIV. Also, the recently developed frameworks of
XHAIL and CF-induction have been applied to
several problems in systems biology, see e.g., Ray
(2009), Ray and Bryant (2008), and Doncescu
et al. (2007), respectively. Finally, the recent book
edited by Cerro and Inoue (2014) on the logical
modeling of biological systems contains several
articles on the application of abduction in systems
biology.
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Absolute Error Loss

Mean Absolute Error

Accuracy

Definition

Accuracy refers to a measure of the degree to
which the predictions of a model matches the
reality being modeled. The term accuracy is often
applied in the context of » classification models.
In this context, accuracy = P(A(X) = Y), where
XY is a joint distribution and the classification
model A is a function X — Y. Sometimes, this
quantity is expressed as a percentage rather than
a value between 0.0 and 1.0.

The accuracy of a model is often assessed or

estimated by applying it to test data for which the

labels (Y values) are known. The accuracy of a
classifier on test data may be calculated as num-
ber of correctly classified objects/total number of
objects. Alternatively, a smoothing function may
be applied, such as a » Laplace estimate or an m-
estimate.

Accuracy is directly related to » error rate,
such that accuracy = 1.0 — error rate (or when
expressed as a percentage, accuracy = 100 —
error rate).
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Actions

In a » Markov decision process, actions are the
available choices for the decision-maker at any
given decision epoch, in any given state.

Active Learning

David Cohn
Mountain View, CA, USA
Edinburgh, UK

Definition

The term Active Learning is generally used to
refer to a learning problem or system where the
learner has some role in determining on what
data it will be trained. This is in contrast to
Passive Learning, where the learner is simply
presented with a » training set over which it has
no control. Active learning is often used in set-
tings where obtaining » labeled data is expensive
or time-consuming; by sequentially identifying
which examples are most likely to be useful,
an active learner can sometimes achieve good
performance, using far less » training data than
would otherwise be required.

Structure of Learning System

In many machine learning problems, the train-
ing data are treated as a fixed and given part
of the problem definition. In practice, however,
the training data are often not fixed beforehand.
Rather, the learner has an opportunity to play a
role in deciding what data will be acquired for
training. This process is usually referred to as
“active learning,” recognizing that the learner is
an active participant in the training process.

The typical goal in active learning is to select
training examples that best enable the learner

to minimize its loss on future test cases. There
are many theoretical and practical results demon-
strating that, when applied properly, active learn-
ing can greatly reduce the number of training
examples, and even the computational effort re-
quired for a learner to achieve good generaliza-
tion.

A toy example that is often used to illustrate
the utility of active learning is that of learning
a threshold function over a one-dimensional
interval. Given +/— labels for N points drawn
uniformly over the interval, the expected error
between the true value of the threshold and any
learner’s best guess is bounded by O(1/N).
Given the opportunity to sequentially select
the position of points to be labeled, however,
a learner can pursue a binary search strategy,
obtaining a best guess that is within O(1/2") of
the true threshold value.

This toy example illustrates the sequential
nature of example selection that is a component
of most (but not all) active learning strategies: the
learner makes use of initial information to discard
parts of the solution space, and to focus future
data acquisition on distinguishing parts that are
still viable.

Related Problems

The term “active learning” is usually applied
in supervised learning settings, though there
are many related problems in other branches of
machine learning and beyond. The “exploration”
component of the “exploration/exploitation”
strategy in reinforcement learning is one such
example. The learner must take actions to gain
information, and must decide what actions
will give him/her the information that will
best minimize future loss. A number of fields
of Operations Research predate and parallel
machine learning work on active learning,
including Decision Theory (North 1968), Value
of Information Computation, Bandit problems
(Robbins 1952), and Optimal Experiment Design
(Fedorov 1972; Box and Draper 1987).
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Active Learning Scenarios

When active learning is used for classification
or regression, there are three common settings:
constructive active learning, pool-based active
learning, and stream-based active learning (also
called selective sampling).

Constructive Active Learning

In constructive active learning, the learner is
allowed to propose arbitrary points in the input
space as examples to be labeled. While this in
theory gives the learner the most power to ex-
plore, it is often not practical. One obstacle is
the observation that most learning systems train
on only a reduced representation of the instances
they are presented with: text classifiers on bags
of words (rather than fully-structured text) and
speech recognizers on formants (rather than raw
audio). While a learning system may be able
to identify what pattern of formants would be
most informative to label, there is no reliable
way to generate audio that a human could rec-
ognize (and label) from the desired formants
alone.

Pool-Based Active Learning

Pool-based active learning (McCallum and
Nigam 1998) is popular in domains such as
text classification and speech recognition where
unlabeled data are plentiful and cheap, but labels
are expensive and slow to acquire. In pool-based
active learning, the learner may not propose
arbitrary points to label, but instead has access
to a set of unlabeled examples, and is allowed to
select which of them to request labels for.

A special case of pool-based learning is trans-
ductive active learning, where the test distribution
is exactly the set of unlabeled examples. The
goal then is to sequentially select and label a
small number of examples that will best allow
predicting the labels of those points that remain
unlabeled.

A theme that is common to both constructive
and pool-based active learning is the principle of
sequential experimentation. Information gained
from early queries allows the learner to focus
its search on portions of the domain that are
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most likely to give it additional information on
subsequent queries.

Stream-Based Active Learning

Stream-based active learning resembles pool-
based learning in many ways, except that the
learner only has access to the unlabeled instances
as a stream; when an instance arrives, the learner
must decide whether to ask for its label or let
it go.

Other Forms of Active Learning

By virtue of the broad definition of active learn-
ing, there is no real limit on the possible set-
tings for framing it. Angluin’s early work on
learning regular sets (Angluin 1987) employed
a “counterexample” oracle: the learner would
propose a solution, and the oracle would either
declare it correct, or divulge a counterexample
— an instance on which the proposed and true
solutions disagreed. Jin and Si (2003) describe a
Bayesian method for selecting informative items
to recommend when learning a collaborative fil-
tering model, and Steck and Jaakkola (2002)
describe a method best described as unsupervised
active learning to build Bayesian networks in
large domains.

While most active learning work assumes that
the cost of obtaining a label is independent of the
instance to be labeled, there are many scenarios
where this is not the case. A mobile robot taking
surface measurements must first travel to the
point it wishes to sample, making distant points
more expensive than nearby ones. In some cases,
the cost of a query (e.g., the difficulty of traveling
to a remote point to sample it) may not even be
known until it is made, requiring the learner to
learn a model of that as well. In these situations,
the sequential nature of active learning is greatly
accentuated, and a learner faces the additional
challenges of planning under uncertainty (see
“Greedy vs. Batch Active Learning,” below).

Common Active Learning Strategies

1. Version space partitioning. The earliest prac-
tical active learning work (Ruff and Dietterich
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1989; Mitchell
on version

1982) explicitly relied
space partitioning. These
approaches tried to select examples on which
there was maximal disagreement between
hypotheses in the current version space.
When such examples were labeled, they
would invalidate as large a portion of the
version space as possible. A limitation of
explicit version space approaches is that, in
underconstrained domains, a learner may
waste its effort differentiating portions of
the version space that have little effect on the
classifier’s predictions, and thus on its error.

2. Query by Committee (Seung et al. 1992). In
query by committee, the experimenter trains
an ensemble of models, either by selecting
randomized starting points (e.g., in the case
of a neural network) or by bootstrapping the
training set. Candidate examples are scored
based on disagreement among the ensemble
models — examples with high disagreement in-
dicate areas in the sample space that are under-
determined by the training data, and therefore
potentially valuable to label. Models in the
ensemble may be looked at as samples from
the version space; picking examples where
these models disagree is a way of splitting the
version space.

3. Uncertainty sampling (Lewis and Gail 1994).
Uncertainty sampling is a heuristic form of
statistical active learning. Rather than sam-
pling different points in the version space by
training multiple learners, the learner itself
maintains an explicit model of uncertainty
over its input space. It then selects for labeling
those examples on which it is least confident.
In classification and regression problems, un-
certainty contributes directly to expected loss
(as the variance component of the “error = bias
+ variance” decomposition), so that gathering
examples where the learner has greatest uncer-
tainty is often an effective loss-minimization
heuristic. This approach has also been found
effective for non-probabilistic models, by sim-
ply selecting examples that lie near the current
decision boundary. For some learners, such as
support vector machines, this heuristic can be
shown to be an approximate partitioning of
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the learner’s version space (Tong and Koller
2001).

4. Loss minimization (Cohn 1996). Uncertainty
sampling can stumble when parts of the
learner’s domain are inherently noisy. It
may be that, regardless of the number of
samples labeled in some neighborhood, it
will remain impossible to accurately predict
these. In these cases, it would be desirable to
not only model the learner’s uncertainty over
arbitrary parts of its domain, but also to model
what effect labeling any future example is
expected to have on that uncertainty. For some
learning algorithms it is feasible to explicitly
compute such estimates (e.g., for locally-
weighted regression and mixture models,
these estimates may be computed in closed
form). It is, therefore, practical to select
examples that directly minimize the expected
loss to the learner, as discussed below under
“Statistical Active Learning.”

Statistical Active Learning

Uncertainty sampling and direct loss minimiza-
tion are two examples of statistical active learn-
ing. Both rely on the learner’s ability to statisti-
cally model its own uncertainty. When learning
with a statistical model, such as a linear regressor
or a mixture of Gaussians (Dasgupta 1999), the
objective is usually to find model parameters
that minimize some form of expected loss. When
active learning is applied to such models, it is
natural to also select training data so as to min-
imize that same objective. As statistical models
usually give us estimates on the probability of (as
yet) unknown values, it is often straightforward
to turn this machinery upon itself to assist in the
active learning process (Cohn 1996). The process
is usually as follows:

1. Begin by requesting labels for a small random
subsample of the examples x;, x», K, x,x and
fit our model to the labeled data.

2. For any x in our domain, a statistical model
lets us estimate both the conditional expec-
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tation y(x) and oé(x), the variance of that
expectation. We estimate our current loss by
drawing a new random sample of unlabeled
data, and computing the averaged O’A(x)

3. We now consider a candidate point X, and
ask what reduction in loss we would obtain
if we had labeled it y. If we knew its label
with certainty, we could simply add the point
to the training set, retrain, and compute the
new expected loss. While we do not know the
true y, we could, in theory, compute the new
expected loss for every possible y and average
those losses, weighting them by our model’s
estimate of p(y|y). In practice, this is nor-
mally unfeasible; however, for some statistical
models, such as locally-weighted regression
and mixtures of Gaussians, we can compute
the distribution of p(y|y) and its effect on
O’); ) in closed form (Cohn 1996).

4. Given the ability to estimate the expected
effect of obtaining label y for candidate X,
we repeat this computation for a sample of
M candidates, and then request a label for the
candidate with the largest expected decrease
in loss. We add the newly-labeled example
to our training set, retrain, and begin look-
ing at candidate points to add on the next
iteration.

The Need for Reference Distributions

Step (2) above illustrates a complication that
is unique to active learning approaches. Tradi-
tional “passive” learning usually relies on the
assumption that the distribution over which the
learner will be tested is the same as the one
from which the training data were drawn. When
the learner is allowed to select its own training
data, it still needs some form of access to the
distribution of data on which it will be tested. A
pool-based or stream-based learner can use the
pool or stream as a proxy for that distribution, but
if the learner is allowed (or required) to construct
its own examples, it risks wasting all its effort on
resolving portions of the solution space that are
of no interest to the problem at hand.
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A Detailed Example: Statistical Active
Learning with LOESS

LOESS (Cleveland et al. 1988) is a simple form
of locally-weighted regression using a kernel
function. When asked to predict the unknown
output y corresponding to a given input X,
LOESS computes a » linear regression over
known (x, y) pairs, in which it gives pair (x;,
y;) weight according to the proximity of x; to x.
We will write this weighting as a kernel function,
K(x;, x), or simplify it to k; when there is no
chance of confusion.

In the active learning setting, we will assume
that we have a large supply of unlabeled examples
drawn from the test distribution, along with labels
for a small number of them. We wish to label a
small number more so as to minimize the mean
squared error (MSE) of our model. MSE can be
decomposed into two terms: squared » bias and
variance. If we make the (inaccurate but simpli-
fying) assumption that LOESS is approximately
unbiased for the problem at hand, minimizing
MSE reduces to minimizing the variance of our
estimates.

Given n labeled pairs, and a prediction to
make for input x, LOESS computes the following
covariance statistics around x:

Xikix; s Ziki(xi — px)?
Mx =, Ox =
n n
Ziki(xi — px)(yi — py)
Oxy =
n

_ Zikiyi y  Tiki(yi — py)?
py = S o= T

2 2 Oxy

We can combine these to express the conditional
expectation of y (our estimate) and its variance
as:

A Oxy 2 _
YV =1ly +?(X—Mx),0ﬁ =

/‘Lx) Z 2(xl Hx) )
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Our proxy for model error is the variance of our
prediction, integrated over the test distribution

<ay%>. As we have assumed a pool-based setting

in which we have a large number of unlabeled
examples from that distribution, we can simply
compute the above variance over a sample from
the pool, and use the resulting average as our
estimate.

To perform statistical active learning, we want
to compute how our estimated variance will
change if we add an (as yet unknown) label

y for an arbitrary X. We will write this new
expected variance as <0A> While we do not know

what value y will take, our model gives us an
estimated mean 7 (X) and variance o2 + for the
value, as above. We can add this “distributed” y
value to LOESS just as though it were a discrete

one, and compute the resulting expectation <6y%>

in closed form. Defining k as K(x, x), we write:

l/Lx)

|x
(T
y (Zkiz(xi ;;zx) G —(}/;x) )) 7

where the component expectations are computed
as follows:

(83) = (63) = 2.
52 = noy k(025 + $E) = my))
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X n + ]g ’
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Greedy Versus Batch Active Learning

It is also worth pointing out that virtually all
active learning work relies on greedy strategies
— the learner estimates what single example best
achieves its objective, requests that one, retrains,
and repeats. In theory, it is possible to plan some
number of queries ahead, asking what point is
best to label now, given that N-1 more label-
ing opportunities remain. While such strategies
have been explored in Operations Research for
very small problem domains, their computational
requirements make this approach unfeasible for
problems of the size typically encountered in
machine learning.

There are cases where retraining the learner
after every new label would be prohibitively ex-
pensive, or where access to labels is limited by
the number of iterations as well as by the total
number of labels (e.g., for a finite number of
clinical trials). In this case, the learner may select
a set of examples to be labeled on each iteration.
This batch approach, however, is only useful if
the learner is able to identify a set of examples
whose expected contributions are non-redundant,
which substantially complicates the process.
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Definition

The term active learning applies to a wide range
of situations in which a learner is able to exert
some control over its source of data. For instance,
when fitting a regression function, the learner
may itself supply a set of data points at which to
measure response values, in the hope of reducing
the variance of its estimate. Such problems have
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been studied for many decades under the rubric
of experimental design (Chernoff 1972; Fedorov
1972). More recently, there has been substantial
interest within the machine learning community
in the specific task of actively learning binary
classifiers. This task presents several fundamen-
tal statistical and algorithmic challenges, and an
understanding of its mathematical underpinnings
is only gradually emerging. This brief survey will
describe some of the progress that has been made
so far.

Learning from Labeled and
Unlabeled Data

In the machine learning literature, the task of
learning a classifier has traditionally been studied
in the framework of supervised learning. This
paradigm assumes that there is a training set
consisting of data points x (from some set X))
and their labels y (from some set ))), and the
goal is to learn a function f : X — ), that will
accurately predict the labels of data points arising
in the future. Over the past 50 years, tremendous
progress has been made in resolving many of the
basic questions surrounding this model, such as
“how many training points are needed to learn an
accurate classifier?”

Although this framework is now fairly well
understood, it is a poor fit for many modern
learning tasks because of its assumption that all
training points automatically come labeled. In
practice, it is frequently the case that the raw,
abundant, easily obtained form of data is unla-
beled, whereas labels must be explicitly procured
and are expensive. In such situations, the reality
is that the learner starts with a large pool of un-
labeled points and must then strategically decide
which ones it wants labeled: how best to spend its
limited budget.

Example: Speech recognition. When building
a speech recognizer, the unlabeled training data
consists of raw speech samples, which are very
easy to collect: just walk around with a micro-
phone. For all practical purposes, an unlimited
quantity of such samples can be obtained. On the
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other hand, the “label” for each speech sample
is a segmentation into its constituent phonemes,
and producing even one such label requires sub-
stantial human time and attention. Over the past
decades, research labs and the government have
expended an enormous amount of money, time,
and effort on creating labeled datasets of English
speech. This investment has paid off, but our
ambitions are inevitably moving past what these
datasets can provide: we would now like, for in-
stance, to create recognizers for other languages,
or for English in specific contexts. Is there some
way to avoid more painstaking years of data la-
beling, to somehow leverage the easy availability
of raw speech so as to significantly reduce the
number of labels needed? This is the hope of
active learning.

Some early results on active learning were in
the membership query model, where the data is
assumed to be separable (that is, some hypothesis
h perfectly classifies all points) and the learner
is allowed to query the label of any point in the
input space X (rather than being constrained to
a prespecified unlabeled set), with the goal of
eventually returning the perfect hypothesis /*.
There is a significant body of beautiful theoretical
work in this model (Angluin 2001), but early
experiments ran into some telling difficulties.
One study (Baum and Lang 1992) found that
when training a neural network for handwritten
digit recognition, the queries synthesized by the
learner were such bizarre and unnatural images
that they were impossible for a human to classify.
In such contexts, the membership query model is
of limited practical value; nonetheless, many of
the insights obtained from this model carry over
to other settings (Hanneke 2007a).

We will fix as our standard model one in which
the learner is given a source of unlabeled data,
rather than being able to generate these points
himself. Each point has an associated label, but
the label is initially hidden, and there is a cost
for revealing it. The hope is that an accurate
classifier can be found by querying just a few
labels, much fewer than would be required by
regular supervised learning.

How can the learner decide which labels to
probe? One option is to select the query points
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at random, but it is not hard to show that this
yields the same label complexity as supervised
learning. A better idea is to choose the query
points adaptively: for instance, start by querying
some random data points to get a rough sense
of where the decision boundary lies, and then
gradually refine the estimate of the boundary
by specifically querying points in its immediate
vicinity. In other words, ask for the labels of
data points whose particular positioning makes
them especially informative. Such strategies cer-
tainly sound good, but can they be fleshed out
into practical algorithms? And if so, do these
algorithms work well in the sense of producing
good classifiers with fewer labels than would be
required by supervised learning?

On account of the enormous practical impor-
tance of active learning, there are a wide range
of algorithms and techniques already available,
most of which resemble the aggressive, adap-
tive sampling strategy just outlined, and many
of which show promise in experimental stud-
ies. However, a big problem with this kind of
sampling is that very quickly the set of labeled
points no longer reflects the underlying data dis-
tribution. This makes it hard to show that the
classifiers learned have good statistical proper-
ties (for instance, that they converge to an op-
timal classifier in the limit of infinitely many
labels). This survey will only discuss methods
that have proofs of statistical well-foundedness,
and whose label complexity can be explicitly
analyzed.

Motivating Examples

We will start by looking at a few examples that il-
lustrate the enormous potential of active learning
and that also make it clear why analyses of this
new model require concepts and intuitions that
are fundamentally different from those that have
already been developed for supervised learning.

Example: Thresholds on the Line

Suppose the data lie on the real line, and the avail-
able classifiers are simple thresholding functions,
H =1{h,:weR}k



To make things precise, let us denote the
(unknown) underlying distribution on the data
(X,Y) € Rx {+1,—1} by P, and let us suppose
that we want a hypothesis # € H whose error
with respect to P, namely errp = P(h(X) # Y),
is at most some €. How many labels do we need?

In supervised learning, such issues are well
understood. The standard machinery of sample
complexity (using VC theory) tells us that if
the data are separable — that is, if they can be
perfectly classified by some hypothesis in H —
then we need approximately 1/¢ random labeled
examples from PP, and it is enough to return any
classifier consistent with them.

Now suppose we instead draw 1/e unlabeled
samples from P. If we lay these points down
on the line, their hidden labels are a sequence
of —s followed by a sequence of +s, and the
goal is to discover the point w at which the
transition occurs. This can be accomplished with
a simple binary search which asks for just log
1/€ labels: first ask for the label of the median
point; if it is 4+, move to the 25th percentile point,
otherwise move to the 75th percentile point; and
so on. Thus, for this hypothesis class, active
learning gives an exponential improvement in
the number of labels needed, from 1/¢ to just
log 1 /€. For instance, if supervised learning re-
quires a million labels, active learning requires
just log 1,000,000 = 20, literally!

It is a tantalizing possibility that even for
more complicated hypothesis classes #, a sort of
generalized binary search is possible. A natural
next step is to consider linear separators in two
dimensions.

Example: Linear Separators in R?

Let H be the hypothesis class of linear separators
in R?, and suppose the data is distributed accord-
ing to some density supported on the perimeter of
the unit circle. It turns out that the positive results
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Active Learning Theory, Fig. 1 P is supported on the
circumference of a circle. Each B; is an arc of probability
mass €

of the one-dimensional case do not generalize:
there are some target hypotheses in A for which
Q(1/€) labels are needed to find a classifier with
error rate less than €, no matter what active
learning scheme is used.

To see this, consider the following possible
target hypotheses (Fig. 1):

e hy: all points are positive.
e h;i(1 <i <1/e): all points are positive except
for a small slice B; of probability mass €.

The slices B; are explicitly chosen to be disjoint,
with the result that €2(1/¢) labels are needed
to distinguish between these hypotheses. For in-
stance, suppose nature chooses a target hypothe-
sis at random from among the 4;, 1 <i < 1/e.
Then, to identify this target with probability at
least 1/2, it is necessary to query points in at least
(about) half the B;s.

Thus for these particular target hypotheses,
active learning offers little improvement in sam-
ple complexity over regular supervised learning.
What about other target hypotheses in H, for
instance those in which the positive and negative
regions are more evenly balanced? It is quite
easy (Dasgupta 2005) to devise an active learning
scheme which asks for O(min{1/i(h),1/€}) +
O(log 1/¢) labels, where i(h) = min {positive
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Pool-based active learning

Get a set of unlabeled points UcX
Repeat until satisfied:

Pick some xeU to label
Return a hypothesis heH

Active Learning Theory, Fig. 2 Models of pool-and
stream-based active learning. The data are draws from
an underlying distribution Py, and hypotheses A are

mass of /1, negative mass of /1}. Thus even within
this simple hypothesis class, the label complexity
can run anywhere from O(log1/€) to Q(1/¢),
depending on the specific target hypothesis!

Example: An Overabundance of

Unlabeled Data

In our two previous examples, the amount of
unlabeled data needed was O(log1/¢), exactly
the usual sample complexity of supervised learn-
ing. But it is sometimes helpful to have signifi-
cantly more unlabeled data than this. In Dasgupta
(2005), a distribution P is described for which
if the amount of unlabeled data is small (below
any prespecified threshold), then the number of
labels needed to learn the target linear separator
is Q(1/¢€); whereas if the amount of unlabeled
data is much larger, then only O(log1/¢) labels
are needed. This is a situation where most of the
data distribution is fairly uninformative while a
miniscule fraction is highly informative. A lot of
unlabeled data is needed in order to get even a
few of the informative points.

The Sample Complexity of Active
Learning

We will think of the unlabeled points xy, ..., x,
as being drawn i.i.d. from an underlying distri-
bution Py on X (namely, the marginal of the
distribution P on X’ x ))), either all at once (a
pool) or one at a time (a stream). The learner
is only allowed to query the labels of points
in the pool/stream; that is, it is restricted to
“naturally occurring” data points rather than syn-
thetic ones (Fig.2). It returns a hypothesis & €

Stream-based active learning

Repeat for t=0,L,2,...:
Choose a hypothesis h;eH
Receive an unlabeled point xeX
Decide whether to query its label

evaluated by errp(#). If we want to get this error below
€, how many labels are needed, as a function of €?

‘H whose quality is measured by its error rate,
errp(h)

In regular supervised learning, it is well known
that if the VC dimension of H is d, then the num-
ber of labels that will with high probability ensure
errp(h) < € is roughly O(d /¢) if the data is sep-
arable and O(d/€?) otherwise (Haussler 1992);
various logarithmic terms are omitted here. For
active learning, it is clear from the examples
above that the VC dimension alone does not
adequately characterize label complexity. Is there
a different combinatorial parameter that does?

Generic Results for Separable Data

For separable data, it is possible to give upper
and lower bounds on label complexity in terms
of a special parameter known as the splitting
index (Dasgupta et al. 2005). This is merely an
existence result: the algorithm needed to realize
the upper bound is intractable because it involves
explicitly maintaining an e-cover (a coarse ap-
proximation) of the hypothesis class, and the size
of this cover is in general exponential in the VC
dimension. Nevertheless, it does give us an idea
of the kinds of label complexity we can hope to
achieve.

Example Suppose the hypothesis class consists
of intervals on the real line: X = R and
H = {hgp : a,b € R}, where hgp(x) =
1(a < x < b). Using the splitting index, the
label complexity of active learning is seen to be
O(min{1/Px ([a,b]).1/€} + log1/€) when the
target hypothesis is s, (Dasgupta 2005). Here
the @ notation is used to suppress logarithmic
terms.
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Example Suppose X = R? and # consists of
linear separators through the origin. If Py is the
uniform distribution on the unit sphere, the num-
ber of labels needed to learn a hypothesis of error
< € is just @(d log 1/€), exponentially smaller
than the O(d /¢) label complexity of supervised
learning. If Py is not the uniform distribution
but is everywhere within a multiplicative factor
A > 1 of it, then the label complexity becomes
O((d log1/€)log® X), provided the amount of
unlabeled data is increased by a factor of A2
(Dasgupta 2005).

These results are very encouraging, but the
question of an efficient active learning algorithm
remains open. We now consider two approaches.

Mildly Selective Sampling

The label complexity results mentioned above are
based on querying maximally informative points.
A less aggressive strategy is to be mildly selec-
tive, to query all points except those that are quite
clearly uninformative. This is the idea behind one
of the earliest generic active learning schemes
(Cohn et al. 1994). Data points x;, X, ... arrive
in a stream, and for each one the learner makes
a spot decision about whether or not to request
a label. When x; arrives, the learner behaves as
follows.

e Determine whether both possible labelings,
(x¢,+) and (x;,—), are consistent with the
labeled examples seen so far.

e If so, ask for the label y;. Otherwise set y; to
be the unique consistent label.

Fortunately, the check required for the first step
can be performed efficiently by making two calls
to a supervised learner. Thus this is a very simple
and elegant active learning scheme, although as
one might expect, it is suboptimal in its label
complexity (Balcan et al. 2007). Interestingly,
there is a parameter called the disagreement coef-
ficient that characterizes the label complexity of
this scheme and also of some other mildly selec-
tive learners (Friedman 2009; Hanneke 2007b).

Active Learning Theory

In practice, the biggest limitation of the algo-
rithm above is that it assumes the data are sepa-
rable. Recent results have shown how to remove
this assumption (Balcan et al. 2006; Dasgupta
et al. 2007) and to accommodate classification
loss functions other than 0 — 1 loss (Beygelzimer
et al. 2009). Variants of the disagreement coef-
ficient continue to characterize label complexity
in the agnostic setting (Beygelzimer et al. 2009;
Dasgupta et al. 2007).

A Bayesian Model

The query by committee algorithm (Seung et al.
1992) is based on a Bayesian view of active learn-
ing. The learner starts with a prior distribution
on the hypothesis space, and is then exposed to a
stream of unlabeled data. Upon receiving x;, the
learner performs the following steps.

e Draw two hypotheses /1, i’ at random from the
posterior over H.

o If h(x;) # h'(x;) then ask for the label of x;
and update the posterior accordingly.

This algorithm queries points that substantially
shrink the posterior, while at the same time taking
account of the data distribution. Various theoret-
ical guarantees have been shown for it (Freund
et al. 1997); in particular, in the case of linear
separators with a uniform data distribution, it
achieves a label complexity of O(d log 1/¢), the
best possible.

Sampling from the posterior over the hypoth-
esis class is, in general, computationally pro-
hibitive. However, for linear separators with a
uniform prior, it can be implemented efficiently
using random walks on convex bodies (Gilad-
Bachrach et al. 2005).

Other Work

In this survey, I have touched mostly on active
learning results of the greatest generality, those
that apply to arbitrary hypothesis classes. There
is also a significant body of more specialized
results.

» Efficient active learning algorithms for spe-
cific hypothesis classes.
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This includes an online learning algorithm for
linear separators that only queries some of the
points and yet achieves similar regret bounds
to algorithms that query all the points (Cesa-
Bianchi et al. 2004). The label complexity of
this method is yet to be characterized.

* Algorithms and label bounds for linear sepa-
rators under the uniform data distribution.
This particular setting has been amenable to
mathematical analysis. For separable data,it
turns out that a variant of the perceptron al-
gorithm achieves the optimal O(d log1/e)
label complexity (Dasgupta 2005). A simple
algorithm is also available for the agnostic
setting (Balcan et al. 2007).

Conclusion

The theoretical frontier of active learning is
mostly an unexplored wilderness. Except for a
few specific cases, we do not have a clear sense
of how much active learning can reduce label
complexity: whether by just a constant factor, or
polynomially, or exponentially. The fundamental
statistical and algorithmic challenges involved,
together with the huge practical importance of
the field, make active learning a particularly
rewarding terrain for investigation.
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Adaboost

Adaboost is an » ensemble learning technique,
and the most well-known of the » Boosting fam-
ily of algorithms. The algorithm trains models
sequentially, with a new model trained at each
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round. At the end of each round, mis-classified
examples are identified and have their emphasis
increased in a new training set which is then
fed back into the start of the next round, and a
new model is trained. The idea is that subsequent
models should be able to compensate for errors
made by earlier models. See » ensemble learning
for full details.
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Adaptive Real-Time Dynamic
Programming

Andrew G. Barto
University of Massachusetts, Amherst, MA,
USA

Synonyms

ARTDP

Definition

Adaptive Real-Time Dynamic Programming
(ARTDP) is an algorithm that allows an agent
to improve its behavior while interacting over
time with an incompletely known dynamic
environment. It can also be viewed as a heuristic
search algorithm for finding shortest paths in
incompletely known stochastic domains. ARTDP
is based on » Dynamic Programming (DP), but
unlike conventional DP, which consists of off-

Adaptive Control Processes

line algorithms, ARTDP is an on-line algorithm
because it uses agent behavior to guide its
computation. ARTDP is adaptive because it
does not need a complete and accurate model
of the environment but learns a model from data
collected during agent-environment interaction.
When a good model is available, » Real-Time
Dynamic Programming (RTDP) is applicable,
which is ARTDP without the model-learning
component.

Motivation and Background

RTDP combines strengths of heuristic search and
DP. Like heuristic search — and unlike conven-
tional DP — it does not have to evaluate the
entire state space in order to produce an optimal
solution. Like DP — and unlike most heuristic
search algorithms — it is applicable to nondeter-
ministic problems. Additionally, RTDP’s perfor-
mance as an » anytime algorithm is better than
conventional DP and heuristic search algorithms.
ARTDP extends these strengths to problems for
which a good model is not initially available.

In artificial intelligence, control engineering,
and operations research, many problems require
finding a policy (or control rule) that determines
how an agent (or controller) should generate ac-
tions in response to the states of its environment
(the controlled system). When a “cost” or a “re-
ward” is associated with each step of the agent’s
behavior, policies can be compared according to
how much cost or reward they are expected to
accumulate over time.

The usual formulation for problems like this in
the discrete-time case is the » Markov Decision
Process (MDP). The objective is to find a policy
that minimizes (maximizes) a measure of the
total cost (reward) over time, assuming that the
agent—environment interaction can begin in any
of the possible states. In other cases, there is
a designated set of “start states” that is much
smaller than the entire state set (e.g., the initial
board configuration in a board game). In these
cases, any given policy only has to be defined
for the set of states that can be reached from the
starting states when the agent is using that policy.
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The rest of the states will never arise when that
policy is being followed, so the policy does not
need to specify what the agent should do in those
states.

ARTDP and RTDP exploit situations where
the set of states reachable from the start states is
a small subset of the entire state space. They can
dramatically reduce the amount of computation
needed to determine an optimal policy for the
relevant states as compared with the amount of
computation that a conventional DP algorithm
would require to determine an optimal policy for
all the states. These algorithms do this by fo-
cussing computation around simulated behavioral
experiences (if there is a model available capable
of simulating these experiences), or around real
behavioral experiences (if no model is available).

RTDP and ARTDP were introduced by Barto
et al. (1995). The starting point was the novel
observation by Bradtke that Korf’s Learning
Real-Time A* heuristic search algorithm (Korf
1990) is closely related to DP. RTDP generalizes
Learning Real-Time A* to stochastic problems.
ARTDP is also closely related to Sutton’s Dyna
system (Sutton 1990) and Jalali and Ferguson’s
(1989) Transient DP. Theoretical analysis relies
on the theory of Asnychronous DP as described
by Bertsekas and Tsitsiklis (1989).

ARTDP and RTDP are » model-based rein-
forcement learning algorithms, so called because
they take advantage of an environment model,
unlike » model-free reinforcement learning algo-
rithms such as » Q-Learning and Sarsa.

Structure of Learning System

Backup Operations

A basic step of many DP and RL algorithms is
a backup operation. This is an operation that up-
dates a current estimate of the cost of an MDP’s
state. (We use the cost formulation instead of
reward to be consistent with the original presenta-
tion of the algorithms. In the case of rewards, this
would be called the value of a state and we would
maximize instead of minimize.) Suppose X is the
set of MDP states. For each state x € X, f(x),
the cost of state x, gives a measure (which varies
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with different MDP formulations) of the total cost
the agent is expected to incur over the future if it
starts in x. If fx(x) and fry;(x), respectively,
denote the estimate of f(x) before and after a
backup, a typical backup operation applied to x
looks like this:

Jer1(x) = minaeA[Cx(a)‘l‘Z pxy(a)fk(fv)]’

yeX

where A is the set of possible agent actions,
¢x(a) is the immediate cost the agent incurs for
performing action a in state x, and py,(a) prob-
ability that the environment makes a transition
from state x to state y as a result of the agent’s
action a. This backup operation is associated with
the DP algorithm known as » value iteration. It
is also the backup operation used by RTDP and
ARTDP.

Conventional DP algorithms consist of suc-
cessive “sweeps” of the state set. Each sweep
consists of applying a backup operation to each
state. Sweeps continue until the algorithm con-
verges to a solution. Asynchronous DP, which
underlies RTDP and ARTDP, does not use sys-
tematic sweeps. States can be chosen in any way
whatsoever, and as long as backups continue to
be applied to all states (and some other conditions
are satisfied), the algorithm will converge. RTDP
is an instance of asynchronous DP in which the
states chosen for backups are determined by the
agent’s behavior.

The backup operation above is model-based
because it uses known rewards and transition
probabilities, and the values of all the states
appear on the right-hand-side of the equation. In
contrast, a sample backup uses the value of just
one sample successor state. RTDP and ARTDP
are like RL algorithms in that they rely on real or
simulated behavioral experience, but unlike many
(but not all) RL algorithms, they use full backups
like DP.

Off-Line Versus On-Line

A conventional DP algorithm typically executes
off-line. When applied to finding an optimal pol-
icy for an MDP, this means that the DP algo-
rithm executes to completion before its result
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(an optimal policy) is used to control the agent’s
behavior. The sweeps of DP sequentially “visit”
the states of the MDP, performing a backup
operation on each state. But it is important not
to confuse these visits with the behaving agent’s
visits to states: the agent is not yet behaving
while the off-line DP computation is being done.
Hence, the agent’s behavior has no influence on
the DP computation. The same is true for off-line
asynchronous DP.

RTDP is an on-line, or “real-time,” algorithm.
It is an asynchronous DP computation that exe-

Adaptive Real-Time Dynamic Programming

cutes concurrently with the agent’s behavior so
that the agent’s behavior can influence the DP
computation. Further, the concurrently executing
DP computation can influence the agent’s behav-
ior. The agent’s visits to states directs the “visits”
to states made by the concurrent asynchronous
DP computation. At the same time, the action
performed by the agent is the action specified
by the policy corresponding to the latest results
of the DP computation: it is the “greedy” action
with respect to the current estimate of the cost
function.

Specify

Asynchronous
Dynamic Programming
Computation

/ actions \

Specify states

Behaving Agent

to backup

In the simplest version of RTDP, when a state
is visited by the agent, the DP computation per-
forms the model-based backup operation given
above on that same state. In general, for each
step of the agent’s behavior, RTDP can apply the
backup operation to each of an arbitrary set of
states, provided that the agent’s current state is
included. For example, at each step of behavior,
a limited-horizon look-ahead search can be con-
ducted from the agent’s current state, with the
backup operation applied to each of the states
generated in the search. Essentially, RTDP is an
asynchronous DP computation with the compu-
tational effort focused along simulated or actual
behavioral trajectories.

Learning A Model

ARTDP is the same as RTDP except that (1) an
environment model is updated using any on-line
model-learning, or system identification, method,
(2) the current environment model is used in
performing the RTDP backup operations, and
(3) the agent has to perform exploratory actions
occasionally instead of always greedy actions as
in RTDP. This last step is essential to ensure that

the environment model eventually converges to
the correct model. If the state and action sets are
finite, the simplest way to learn a model is to keep
counts of the number of times each transition
occurs for each action and convert these frequen-
cies to probabilities, thus forming the maximum-
likelihood model.

Summary of Theoretical Results

When RTDP and ARTDP are applied to stochas-
tic optimal path problems, one can prove that
under certain conditions they converge to optimal
policies without the need to apply backup opera-
tions to all the states. Indeed, is some problems,
only a small fraction of the states need to be
visited. A stochastic optimal path problem is an
MDP with a nonempty set of start states and
a nonempty set of goal states. Each transition
until a goal state is reached has a nonnegative
immediate cost, and once the agent reaches a
goal state, it stays there and thereafter incurs zero
cost. Each episode of agent experience begins
with a start state. An optimal policy is one that
minimizes the cost of every state, i.e., minimizes
f(x) for all states x. Under some relatively mild
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conditions, every optimal policy is guaranteed to
eventually reach a goal state.

A state x is relevant if a start state s and an
optimal policy exist such that x can be reached
from s when the agent uses that policy. If we
could somehow know which states are relevant,
we could restrict DP to just these states and
obtain an optimal policy. But this is not possi-
ble because knowing which states are relevant
requires knowledge of optimal policies, which
is what one is seeking. However, under certain
conditions, without requiring repeated visits to
all the irrelevant states, RTDP produces a policy
that is optimal for all the relevant states. The
conditions are that (1) the initial cost of every
goal state is zero, (2) there exists at least one
policy that guarantees that a goal state will be
reached with probability one from any start state,
(3) all immediate costs for transitions from non-
goal states are strictly positive, and (4) none of
the initial costs are larger than the actual costs.
This result is proved in Barto et al. (1995) by
combining aspects of Korf’s (1990) proof for
LRTA* with results for asynchronous DP.

Special Cases and Extensions

A number of special cases and extensions of
RTDP have been developed that improve per-
formance over the basic version. Some exam-
ples are as follows. Bonet and Geffner’s (2003a)
Labeled RTDP labels states that have already
been “solved,” allowing faster convergence than
RTDP. Feng et al. (2003) proposed Symbolic
RTDP, which selects a set of states to update at
each step using symbolic model-checking tech-
niques. The RTDP convergence theorem still ap-
plies because this is a special case of RTDP.
Smith and Simmons (2006) developed Focused
RTDP that maintains a priority value for each
state to better direct search and produce faster
convergence. Hansen and Zilberstein’s (2001)
LAO* uses some of the same ideas as RTDP
to produce a heuristic search algorithm that can
find solutions with loops to non-deterministic
heuristic search problems. Many other variants
are possible. Extending ARTDP instead of RTDP
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in all of these ways would produce analogous
algorithms that could be used when a good model
is not available.
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Abstract

Computational models based on cognitive and
neural systems are now deeply embedded in
the standard repertoire of machine learning
and data mining methods, with intelligent
learning systems enhancing performance in
nearly every existing application area. Beyond
data mining, this article shows how models
based on adaptive resonance theory (ART)
may provide entirely new questions and
practical solutions for technological appli-
cations. ART models carry out hypothesis
testing, search, and incremental fast or slow,
self-stabilizing learning, recognition, and
prediction in response to large nonstationary
databases (big data). Three computational
examples, each based on the distributed ART
neural network, frame questions and illustrate
how a learning system (each with no free
parameters) may enhance the analysis of
large-scale data. Performance of each task
is simulated on a common mapping platform,
a remote sensing dataset called the Boston
Testbed, available online along with open-
source system code. Key design elements
of ART models and links to software for
each system are included. The article further
points to future applications for integrative
ART-based systems that have already been
computationally specified and simulated. New
application directions include autonomous
robotics, general-purpose machine vision,
audition, speech recognition, language
acquisition, eye movement control, visual
search, figure-ground separation, invariant

Adaptive Resonance Theory

object recognition, social cognition, object
and spatial attention, scene understanding,
space-time integration, episodic memory,
navigation, object tracking, system-level
analysis of mental disorders, and machine
consciousness.

Adaptive Resonance Theory

Adaptive resonance theory (ART) neural net-
works model real-time hypothesis testing, search,
learning, recognition, and prediction. Since the
1980s, these models of human cognitive infor-
mation processing have served as computational
engines for a variety of neuromorphic technolo-
gies (http://techlab.bu.edu/resources/articles/C5).
This article points to a broader range of tech-
nology transfers that bring new methods to new
problem domains. It describes applications of
three specific systems, ART knowledge discov-
ery, self-supervised ART, and biased ART, and
summarizes future application areas for large-
scale, brain-based model systems.

ART Design Elements

In this article, ART refers generally to a theory
of cognitive information processing and to an
inclusive family of neural models. Design prin-
ciples derived from scientific analyses and design
constraints imposed by targeted applications have
jointly guided the development of variants of the
basic systems.

Stable Fast Learning with Distributed and
Winner-Take-All Coding

ART systems permit fast online learning,
whereby long-term memories reach their
asymptotes on each input trial. With slow
learning, memories change only slightly on each
trial. One characteristic that distinguishes classes
of ART systems from one another is the nature of
their patterns of persistent activation at the coding
field F, (Fig. 1). The coding field is functionally
analogous to the hidden layer of multilayer
perceptrons (Encyclopedia cross reference).
At the perceptron hidden layer, activation is
distributed across many nodes, learning needs
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Adaptive Resonance Theory, Fig. 1 Distributed ART
(dART) (Carpenter 1997). (a) At the field Fj, complement
coding transforms the feature pattern a to the system input
A, which represents both scaled feature values a; € [0, 1]
and their complements (1 —a;) ( =1...M). (b) F, is
a competitive field that transforms its input pattern into
the working memory code y. The F, nodes that remain
active following competition send the pattern o of learned
top-down expectations to the match field F. The pattern
active at F; becomes x = A A o, where A denotes the
component-wise minimum, or fuzzy intersection. (c) A
parameter p € [0, 1], called vigilance, sets the matching
criterion. The system registers a mismatch if the size of x

to be slow, and activation does not persist once
inputs are removed. The ART coding field is a
competitive network where, typically, one or a
few nodes in the normalized F, pattern y sustain
persistent activation, even as their generating
inputs shift, habituate, or vanish. The pattern
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is less than p times the size of A. A top-down/bottom-up
mismatch triggers a signal that resets the active F, code.
(d) Medium-term memories in the Fy-to-F, dynamic
weights allow the system to activate a new code y. When
only one F, node remains active following competition,
the code is maximally compressed, or winner-take-all.
When |x| > p|A], the activation pattern y persists until
the next reset, even if input A changes or Fy-to-F, signals
habituate. During learning, thresholds 7;; in paths from
Fy to F, increase according to the dInstar law; and
thresholds t; in paths from F, to F) increase according
to the dOutstar law

y persists until an active reset signal (Fig. 1c)
prepares the coding field to register a new
Fy-to-F, input. Early ART networks (Carpenter
and Grossberg 1987; Carpenter et al. 1991a,
1992) employed localist, or winner-take-all,
coding, whereby strongly competitive feedback
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results in only one F, node staying active until
the next reset. With fast as well as slow learning,
memory stability in these early networks relied
on their winner-take-all architectures.

Achieving stable fast learning with distributed
code representations presents a computational
challenge to any learning network. In order to
meet this challenge, distributed ART (Carpenter
1997) introduced a new network configuration
(Fig. 1) in which system fields are identified with
cortical layers (Carpenter 2001). New learning
laws (dInstar and dOutstar) that realize stable
fast learning with distributed coding predict adap-
tive dynamics between cortical layers.

Distributed ART (dART) systems employ a
new unit of long-term memory, which replaces
the traditional multiplicative weight (Encyclo-
pedia cross reference) with a dynamic weight
(Carpenter 1994). In a path from the F, coding
node j to the F| matching node i, the dynamic
weight equals the amount by which coding node
activation y; exceeds an adaptive threshold ;.
The total signal o; from F; to the i""  F| node
is the sum of these dynamic weights, and F;
node activation x; equals the minimum of the top-
down expectation ¢; and the bottom-up input A4;.
During dOutstar learning, the top-down pattern o
converges toward the matched pattern x.

When coding node activation y;is below 7;;,
the dynamic weight is zero and no learning occurs
in that path, even if y; is positive. This property
is critical for stable fast learning with distributed
codes. Although the dInstar and dOutstar laws are
compatible with F, patterns y that are arbitrarily
distributed, in practice, following an initial learn-
ing phase, most changes in paths to and from a
coding node j occur only when its activation y ;
is large. This type of learning is therefore called
quasi-localist. In the special case where coding is
winner-take-all, the dynamic weight is equivalent
to a multiplicative weight that formally equals the
complement of the adaptive threshold.

Complement Coding: Learning Both Absent
Features and Present Features

ART networks employ a preprocessing step
called complement coding (Carpenter et al.
1991b), which models the nervous system’s
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ubiquitous computational design known as op-
ponent processing (Hurvich and Jameson 1957).
Balancing an entity against its opponent, as in
opponent colors such as red vs. green or agonist-
antagonist muscle pairs, allows a system to
act upon relative quantities, even as absolute
magnitudes fluctuate unpredictably. In ART
systems, complement coding is analogous to
retinal on-cells and off-cells (Schiller 1982).
When the learning system is presented with
a set of input features a = (a;...q;...apy),
complement coding doubles the number of input
components, presenting to the network an input
A that concatenates the original feature vector
and its complement (Fig. 1a).

Complement coding produces normalized in-
puts A that allow a model to encode features that
are consistently absent on an equal basis with
features that are consistently present. Features
that are sometimes absent and sometimes present
when a given F, node is highly active are re-
garded as uninformative with respect to that node,
and the corresponding present and absent top-
down feature expectations shrink to zero. When
a new input activates this node, these features
are suppressed at the match field F; (Fig. 1b).
If the active code then produces an error signal,
attentional biasing can enhance the salience of
input features that it had previously ignored, as
described below.

Matching, Attention, and Search

A neural computation central to both scientific
and technological analyses is the ART matching
rule (Carpenter and Grossberg 1987), which con-
trols how attention is focused on critical feature
patterns via dynamic matching of a bottom-up
sensory input with a top-down learned expecta-
tion. Bottom-up/top-down pattern matching and
attentional focusing are, perhaps, the primary
features common to all ART models across their
many variations. Active input features that are not
confirmed by top-down expectations are inhib-
ited (Fig. 1b). The remaining activation pattern
defines a focus of attention, which, in turn, deter-
mines what feature patterns are learned. Basing
memories on attended features rather than whole
patterns supports the design goal of encoding sta-
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ble memories with fast as well as slow learning.
Encoding attended feature subsets also enables
one-to-many learning, where the system may
attach many context-dependent labels (Spot, dog,
animal) to one input. This capability promotes
knowledge discovery (Spot = dog and dog =
animal) in a learning system that experiences
one input at a time, with no explicit connection
between inputs.

When the match is good enough, F, activa-
tion persists and learning proceeds. Where they
exceed the corresponding bottom-up input com-
ponents, top-down signals decay as expectations
converge toward the attended pattern at F;. The
coding field F, contains a reserve of uncommitted
coding nodes, which compete with the previously
active committed nodes. When a previously un-
committed node is first activated during super-
vised learning, it is associated with its desig-
nated output class. During testing, the selection
of an uncommitted node means I don’t know.
ART networks for supervised learning are called
ARTMAP (Carpenter et al. 1991a, 1992).

A mismatch between an active top-down
expectation and the bottom-up input leads
to a parallel memory search (Fig.lc). The
ART matching criterion is set by a vigilance
parameter p. Low vigilance permits the learning
of broad classes, across diverse exemplars, while
high vigilance limits learning to narrow classes.
When a new input arrives, vigilance equals a
baseline level. Baseline vigilance is set equal
to zero to maximize generalization. ARTMAP
vigilance increases following a predictive
error or negative reinforcement (Encyclopedia
cross reference). The internal computation that
determines how far p rises to correct the error is
called match tracking (Carpenter et al. 1991a).
As vigilance rises, the network pays more
attention to how well top-down expectations
match the bottom-up input. The match tracking
modification MT- (Carpenter and Markuzon
1998) also allows the system to learn inconsistent
cases. For example, three similar, even identical,
map regions may have been correctly labeled by
different observers as ocean or water or natural.
The ability to learn one-to-many maps, which can
label a single test input as ocean and water and
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natural, is a key feature of the ART knowledge
discovery system described below.

Applications

Three computational examples illustrate how
cognitive and neural systems can introduce new
approaches to the analysis of large datasets.
Application 1 (self-supervised ART) addresses
the question: how can a neural system learning
from one example at a time absorb information
that is inconsistent but correct, as when a
family pet is called Spot and dog and animal,
while rejecting similar incorrect information, as
when the same pet is called wolf? How does
this system transform scattered information
into knowledge that dogs are animals, but not
conversely? Application 2 (ART knowledge
discovery) asks: how can a real-time system,
initially trained with a few labeled examples
and a limited feature set, continue to learn
from experience, without supervision, when
confronted with oceans of additional information,
without eroding reliable early memories? How
can such individual systems adapt to their unique
application contexts? Application 3 (biased ART)
asks: how can a neural system that has made an
error refocus attention on features that it initially
ignored?

The Boston Testbed

The Boston Testbed was developed to compare
performance of learning systems applied to chal-
lenging problems of spatial analysis. Each mul-
tispectral Boston image pixel produces 41 fea-
ture values: 6 Landsat 7 Thematic Mapper (TM)
bands at 30 m resolution, 2 thermal bands at 60 m
resolution, 1 panchromatic band at 15m reso-
lution, and 32 derived bands representing local
contrast, color, and texture. In the Boston dataset,
each of 28,735 ground truth pixels is labeled
as belonging to one of seven classes (beach,
ocean, ice, river, park, residential, industrial).
For knowledge discovery system training, some
ocean, ice, and river pixels are instead labeled
as belonging to broader classes such as water or
natural. No pixel has more than one label, and
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the learning system is given no information about
relationships between target classes. The labeled
dataset is available from the CNS Technology
Lab Website [http://techlab.bu.edu/classer/data_
sets/].

A cross-validation procedure divides an image
into four vertical strips: two for training, one
for validation (if needed for parameter selec-
tion), and one for testing. Class mixtures differ
markedly across strips. For example, one strip
contains many ocean pixels, while another strip
contains neither ocean nor beach pixels. Geo-
graphically dissimilar training and testing areas
robustly assess regional generalization. In this
article, spatial analysis simulations on the Boston
Testbed follow this protocol to illustrate ART
systems for self-supervised learning, knowledge
discovery, and attentional control. Since each
system in Applications 1-3 requires no parameter
selection, training uses randomly chosen pixels
from three strips, with testing on the fourth strip.

Application 1: Learning from Experience

with Self-Supervised ART

Computational models of supervised pattern
recognition typically utilize two learning phases.
During an initial training phase, input patterns,
described as specified values of a set of features,
are presented along with output class labels or
patterns. During a subsequent testing phase, the
model generates output predictions for unlabeled
inputs, and no further learning takes place.

Although supervised learning has been suc-
cessfully applied in diverse settings, it does not
reflect many natural learning situations. Humans
do learn from explicit training, as from a textbook
or a teacher, and they do take tests. However,
students do not stop learning when they leave
the classroom. Rather, they continue to learn
from experience, incorporating not only more
information but new types of information, all the
while building on the foundation of their earlier
knowledge. Self-supervised ART models such
life-long learning.

An unsupervised learning system clusters un-
labeled input patterns. Semi-supervised learning
incorporates both labeled and unlabeled inputs in
its training set, but all inputs typically have the
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same number of specified feature values. Without
any novel features from which to learn, semi-
supervised learning systems use unlabeled data
to refine the model parameters defined using la-
beled data. Reviews of semi-supervised learning
(Chapelle et al. 2006) have found that many of
the successful models are carefully selected and
tuned, using a priori knowledge of the problem.
Chapelle et al. (2006) conclude that none of the
semi-supervised models they review is robust
enough to be general purpose. The main difficulty
seems to be that, whenever unlabeled instances
are different enough from labeled instances to
merit learning, these differences could contain
misinformation that may damage system perfor-
mance.

The self-supervised paradigm models two
learning stages. During Stage 1 learning, the
system receives all output labels, but only
a subset of possible feature values for each
input. During Stage 2 learning, the system may
receive more feature values for each input, but
no output labels. In Stage 1, when the system
can confidently incorporate externally specified
output labels, self-supervised ART (Amis and
Carpenter 2010) employs winner-take-all coding
and fast learning. In Stage 2, when the system
internally generates its own output labels, codes
are distributed so that incorrect hypotheses do not
abruptly override reliable “classroom learning”
of Stage 1. The distributed ART learning laws,
dInstar (Carpenter 1997) and dOutstar (Carpenter
1994), scale memory changes to internally
generated measures of prediction confidence
and prevent memory changes altogether for
most inputs. Memory stability derives from
the dynamic weight representation of long-term
memories, which permits learning only in paths
to and from highly active coding nodes. Dynamic
weights solve a problem inherent in learning laws
based on multiplicative weights, which are prone
to catastrophic forgetting when implemented
with distributed codes and huge datasets, even
when learning is very slow.

In addition to emulating the human learning
experience, self-supervised learning maps to
technological applications that need to cope
with huge, ever-changing datasets. A supervised
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learning system that completes all training before
making test predictions does not adapt to new
information and individual contexts. A semi-
supervised system risks degrading its supervised
knowledge. Self-supervised ART continues
to learn from new experiences, with built-in
safeguards that conserve useful memories. Self-
supervised ART code is available from the CNS
Technology Lab Website (http://techlab.bu.edu/
SSARTY).

A simulation study based on the Boston
Testbed (Amis and Carpenter 2010) illustrates
ways in which high-dimensional problems may
challenge any system learning without labels.
As in most ground truth datasets, labeled
pixels consist primarily of clear exemplars of
single classes. Because sensors have a 15-60 m
resolution, many unlabeled pixels cover multiple
classes, such as ice and industrial. Stage 2 inputs
thus mix and distort features from multiple
classes, placing many of the unlabeled feature
vectors far from the distinct class clusters of the
Stage 1 training set. Although the distributed
ART learning laws are open to unrestricted
adaptation on any pixel, the distributed codes of
Stage 2 minimize the influence of mixed pixels.
Most memory changes occur on unambiguous
cases, despite the fact that the unlabeled pixels
provide no external indices of class ambiguity.
Self-supervised Stage 2 learning dramatically
improves performance compared to learning
that ends after Stage 1. On every one of 500
individual simulations, Stage 2 learning improves
test accuracy, as unlabeled fully featured inputs
consistently expand knowledge from Stage 1
training.

Application 2: Transforming Information

into Knowledge Using ART Knowledge
Discovery

Classifying terrain or objects may require the res-
olution of conflicting information from sensors
working at different times, locations, and scales
and from users with different goals and situations.
Image fusion has been defined as “the acquisi-
tion, processing and synergistic combination of
information provided by various sensors or by
the same sensor in many measuring contexts”
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(Simone et al. 2002, p. 3). When multiple sources
provide inconsistent data, fusion methods are
called upon to appraise information components
to decide among various options and to resolve
inconsistencies, as when evidence suggests that
an object is a car or a truck or a bus. Fusion meth-
ods weigh the confidence and reliability of each
source, merging complementary information or
gathering more data. In any case, at most one of
these answers is correct.

The method described here defines a com-
plementary approach to the information fusion
problem, considering the case where sensors and
sources are both nominally inconsistent and reli-
able, as when evidence suggests that an object is
a car and a vehicle and man-made or when a car
is alternatively labeled automobile. Underlying
relationships among classes are assumed to be
unknown to the automated system or the human
user, as if the labels were encrypted.

The ART knowledge discovery model acts as a
self-organizing expert system to derive consistent
knowledge structures from such nominally incon-
sistent data (Carpenter et al. 2005). Once derived,
a rule set can be used to assign classes to levels.
For each rule x = y, class x is located at a lower
level than classy. Classes connected by arrows
that codify a list of rules and confidence val-
ues form a graphical representation of a knowl-
edge hierarchy. For spatial data, the resulting
diagram of the relationships among classes can
guide the construction of orderly layered maps.
ART knowledge discovery code is available from
the CNS Technology Lab Website (http://techlab.
bu.edu/classer/classer_toolkit_overview). On the
Boston Testbed, the ART knowledge discovery
system places each class at its correct level and
finds all the correct rules for this example.

Application 3: Correcting Errors by Biasing
Attention Using Biased ART

Memories in ART networks are based on
matched patterns that focus attention on
critical  features, where bottom-up inputs

match active top-down expectations. While this
learning strategy has proved successful for both
brain models and applications, computational
examples demonstrate that paying too much


http://techlab.bu.edu/SSART/
http://techlab.bu.edu/SSART/
http://techlab.bu.edu/classer/classer_toolkit_overview
http://techlab.bu.edu/classer/classer_toolkit_overview

30

attention to critical features that have been
selected to represent a given category early
on may distort memory representations during
subsequent learning. If training inputs are
repeatedly presented, an ART system will correct
these initial errors. However, real-time learning
may not afford such repeat opportunities. Biased
ART (bART) (Carpenter and Gaddam 2010)
solves the problem of overemphasis on early
critical features by directing attention away from
initially attended features after the system makes
a predictive error.

Activity x at the ART field F; computes the
match between the field’s bottom-up and top-
down input patterns (Fig. 1). A reset signal shuts
off the active F, code when x fails to meet the
matching criterion determined by vigilance p.
Reset alone does not, however, induce a different
code: unless the prior code has left an enduring
trace within the Fy—F, subsystem, the network
will simply reactivate the same pattern at F;.

Following reset, all ART systems shift atten-
tion away from previously active coding nodes at
the field F,. As modeled in ART 3 (Carpenter and
Grossberg 1990), biasing the bottom-up input to
the coding field to favor previously inactive F,
nodes implements search by enabling the network
to activate a new code in response to a reset
signal. The ART 3 search mechanism defines a
medium-term memory in the Fy-to-F, adaptive
filter so that the system does not perseverate
indefinitely on an output class that had just pro-
duced a reset. A presynaptic interpretation of
this bias mechanism is transmitter depletion or
habituation.

The biased ART network (Carpenter and
Gaddam 2010) introduces a second, top-down,
medium-term memory which, following reset,
shifts attention away from previously active
feature nodes at the match field F. In Fig. 1, the
first feature is strongly represented in the input A
and in the matched patterns x at F; both before
reset (Fig. 1b) and after reset (Fig. 1d). Following
the same sequence as in Fig. la—c, biased ART
would diminish the size of the first feature in the
matched pattern. The addition of featural biasing
helps the system to pay more attention to input
features that it had previously ignored.
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The biasing mechanism is a small modular
element that can be added to any ART net-
work. While computational examples and Boston
Testbed simulations demonstrate how featural
biasing in response to predictive errors improves
performance on supervised learning tasks, the
error signal that gates biasing could have orig-
inated from other sources, as in reinforcement
learning. Biased ART code is available from the
CNS Technology Lab Website (http://techlab.bu.
edu/bART).

Future Directions

Applications for tested software based on compu-
tational intelligence abound. This section outlines
areas where ART systems may open qualitatively
new frontiers for novel technologies. Future ap-
plications summarized here would adapt and spe-
cialize brain models that have already been math-
ematically specified and computationally simu-
lated to explain and predict large psychological
and neurobiological databases. By linking the
brain to mind, these models characterize both
mechanism (how the model works) and func-
tion (what the model is for). Both mechanism
and function are needed to design new applica-
tions. These systems embody new designs for
autonomous adaptive agents, including new com-
putational paradigms that are called Complemen-
tary Computing and Laminar Computing. These
paradigms enable the autonomous adaptation in
real time of individual persons or machines to
nonstationary situations filled with unexpected
events. See Grossberg (2013) for a review.

New Paradigms for Autonomous

Intelligent Systems: Complementary
Computing and Laminar Computing
Functional integration is essential to the design
of a complex autonomous system such as a robot
moving and learning freely in an unpredictable
environment. Linking independent modules for,
say, vision and motor control will not necessarily
produce a coordinated system that can adapt to
unexpected events in changeable contexts. How,
then, should such an autonomous adaptive system
be designed?
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A clue can be found in the nature of brain
specialization. How have brains evolved while
interacting with the physical world and embody-
ing its invariants? Many scientists have proposed
that our brains possess independent modules.
The brain’s organization into distinct anatom-
ical areas and processing streams shows that
brain regions are indeed specialized. Whereas
independent modules compute their particular
processes on their own, behavioral data argue
against this possibility. Complementary Comput-
ing (Grossberg 2000a,b, 2013) concerns the dis-
covery that pairs of parallel cortical process-
ing streams compute computationally comple-
mentary properties. Each stream has comple-
mentary strengths and weaknesses, much as in
physical principles like the Heisenberg uncer-
tainty principle. Each cortical stream can also
possess multiple processing stages. These stages
realize a hierarchical resolution of uncertainty.
“Uncertainty” here means that computing one
set of properties at a given stage prevents com-
putation of a complementary set of properties
at that stage. Complementary Computing pro-
poses that the computational unit of brain pro-
cessing that has behavioral significance consists
of parallel and hierarchical interactions between
complementary cortical processing streams with
multiple processing stages. These interactions
overcome complementary weaknesses to com-
pute necessary information about a particular
type of biological intelligence.

Five decades of neural modeling have shown
how Complementary Computing is embedded as
a fundamental design principle in neural systems
for vision, speech and language, cognition, emo-
tion, and sensory-motor control. Complementary
Computing hereby provides a blueprint for de-
signing large-scale autonomous adaptive systems
that are poised for technological implementation.

A unifying anatomical theme that enables
communication among cortical systems is
Laminar Computing. The cerebral cortex, the
seat of higher intelligence in all modalities,
is organized into layered circuits (often six
main layers) that undergo characteristic bottom-
up, top-down, and horizontal interactions. As
information travels up and down connected
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regions, distributed decisions are made in real
time based on a preponderance of evidence.
Multiple levels suppress weaker groupings while
communicating locally coherent choices. The
distributed ART model (Fig.1), for example,
features three cortical layers, with its distributed
code (e.g., at a cortical layer 6) producing a
distributed output. Stacks of match fields (inflow)
and coding fields (outflow) lay the substrate for
cortical hierarchies.

How do specializations of this shared lami-
nar design embody different types of biological
intelligence, including vision, speech, language,
and cognition? How does this shared design en-
able seamless intercortical interactions? Models
of Laminar Computing clarify how these differ-
ent types of intelligence all use variations of the
same laminar circuitry (Grossberg 2013; Gross-
berg and Pearson 2008). This circuitry represents
a revolutionary synthesis of desirable computa-
tional properties of feedforward and feedback
processing, digital and analog processing, and
bottom-up data-driven processing and top-down
attentive hypothesis-driven processing. Realizing
such designs in hardware that embodies biolog-
ical intelligence promises to facilitate the devel-
opment of increasingly general-purpose adaptive
autonomous systems for multiple applications.

Complementary Computing in the Design

of Perceptual/Cognitive and Spatial/Motor
Systems

Many neural models that embody subsystems
of an autonomous adaptive agent have been
developed and computationally character-
ized. It remains to unify and adapt them
to particular machine learning applications.
Complementary Computing implies that not
all of these subsystems could be based on
variants of ART. In particular, accumulating
experimental and theoretical evidence shows that
perceptual/cognitive and spatial/motor processes
use different learning, matching, and predictive
laws for their complementary functions (Fig.2).
ART-like processing is ubiquitous in perceptual
and cognitive processes, including excitatory
matching and match-based learning that enables
self-stabilizing memories to form. Vector
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Spatially-invariant object
learning and recognition

Fast learning without
catastrophic forgetting
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WHERE

Spatially-variant reaching and
movement

Continually update sensory-
motor maps and gains

IT PPC
WHAT WHERE
MATCHING | EXCITATORY | INHIBITORY
LEARNING MATCH MISMATCH

Adaptive Resonance Theory, Fig. 2 Complementary
What and Where cortical processing streams for spatially
invariant object recognition and spatially variant spatial
representation and action, respectively. Perception and
recognition use top-down excitatory matching and match-

Associative Map (VAM) processing is often
found in spatial and motor processes, which
rely on inhibitory matching and mismatch-
based learning. In these modalities, spatial
maps and motor plants are adaptively updated
without needing to remember past maps and
parameters. Complementary mechanisms create
a self-stabilizing perceptual/cognitive front
end for intelligently manipulating the more
labile spatial/motor processes that enable our
changeable bodies to act effectively upon a
changing world.

Some of the existing large-scale ART systems
are briefly reviewed here, using visually based
systems for definiteness. Citations refer to articles
that specify system equations and simulations
and that can be downloaded from http://cns.bu.
edu/~steve.

Where's Waldo? Unifying Spatial and

Object Attention, Learning, Recognition,

and Search of Valued Objects and Scenes
ART models have been incorporated into
larger system architectures that clarify how
individuals autonomously carry out intelligent
behaviors as they explore novel environments.
One such development is the ARTSCAN family
of architectures, which model how individuals
rapidly learn to search a scene to detect,

based fast or slow learning without catastrophic forget-
ting. Spatial and motor tasks use inhibitory matching
and mismatch-based learning to achieve adaptation to
changing bodily parameters. /7 inferotemporal cortex,
PPC posterior parietal cortex

attend, invariantly recognize, and look at a
valued target object (Fig.3; Cao, Grossberg,
and Markowitz 2011; Chang, Grossberg, and
Cao 2014; Fazl, Grossberg, and Mingolla 2009;
Foley, Grossberg, and Mingolla 2012; Grossberg,
Srinivasan, and Yazdanbakhsh 2014). Such a
competence represents a proposed solution of the
Where’s Waldo problem.

The ventral What stream is associated with
object learning, recognition, and prediction,
whereas the dorsal Where stream carries out
processes such as object localization, spatial
attention, and eye movement control. To achieve
efficient object recognition, the What stream
learns object category representations that
become increasingly invariant under view, size,
and position changes at higher processing
stages. Such invariance enables objects to
be learned and recognized without causing a
combinatorial explosion. However, by stripping
away the positional coordinates of each object
exemplar, the What stream loses the ability
to command actions to the positions of valued
objects. The Where stream computes positional
representations of the world and controls actions
to acquire objects in it, but does not represent
detailed properties of the objects themselves.

ARTSCAN architectures model how an au-
tonomous agent can determine when the views
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that are foveated by successive scanning move-
ments belong to the same object and thus de-
termine which view-selective categories should
be associatively linked to an emerging view- ,
size-, and positionally-invariant object category.
This competence, which avoids the problem of
erroneously merging pieces of different objects,
works even under the unsupervised learning con-
ditions that are the norm during many object
learning experiences in vivo. The model identifies
a new role for spatial attention in the Where
stream, namely, control of invariant object cat-
egory learning by the What stream. Interactions
across the What and Where streams overcome the
deficiencies of computationally complementary
properties of these streams.

In the ARTSCAN Search model, both Where-
to-What and What-to-Where stream interactions
are needed to overcome complementary
weaknesses: Where stream processes of spatial
attention and predictive eye movement control
regulate What stream processes whereby multiple
view- and positionally-specific object categories
are learned and associatively linked to view-
and positionally-invariant object categories
through bottom-up and object-attentive top-down
interactions. What stream cognitive-emotional
learning processes enable the focusing of
motivated attention upon the invariant object cat-
egories of desired objects (Brown, Bullock, and
Grossberg 1999, 2004; Dranias, Grossberg, and
Bullock 2008; Grossberg and Seidman 2006).
What stream cognitive names or motivational
drives can, together with volitional signals,
drive a search for Waldo. Mediated by object
attention, search proceeds from What stream
positionally-invariant representations to Where
stream positionally-specific representations that
focus spatial attention on Waldo’s position.
ARTSCAN architectures hereby model how
the dynamics of multiple brain regions are
coordinated to achieve clear functional goals.

The focus of spatial attention on Waldo’s po-
sition in the Where stream can be used to control
eye and hand movements toward Waldo, after
navigational circuits (see below) bring the ob-
server close enough to contact him. VAM-type
learning circuits have been developed for the
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control of goal-oriented eye and hand movements
that can be used for this purpose (e.g., Bul-
lock and Grossberg 1988, 1991; Bullock, Cisek,
and Grossberg 1998; Contreras-Vidal, Grossberg,
and Bullock 1997; Gancarz and Grossberg 1999;
Grossberg, Srihasam, and Bullock 2012; Pack,
Grossberg, and Mingolla 2001; Srihasam, Bul-
lock, and Grossberg 2009).

The ARTSCENE system (Grossberg and
Huang 2009) models how humans can incremen-
tally learn and rapidly predict scene identity by
gist and then accumulates learned evidence from
scenic textures to refine its initial hypothesis,
using the same kind of spatial attentional
shrouds that help to learn invariant object
categories in ARTSCAN. The ARTSCENE
Search system (Huang and Grossberg 2010)
models how humans use target-predictive
contextual information to guide search for desired
targets in familiar scenes. For example, humans
can learn that a certain combination of objects
may define a context for a kitchen and trigger a
more efficient search for a typical object, such as
a sink, in that context.

General-Purpose Vision and How It
Supports Object Learning, Recognition,
and Tracking
Visual preprocessing constrains the quality of
visually based learning and recognition. On an
assembly line, automated vision systems suc-
cessfully scan for target objects in this carefully
controlled environment. In contrast, a human or
robot navigating a natural scene faces overlaid
textures, edges, shading, and depth information,
with multiple scales and shifting perspectives.
In the human brain, evolution has produced a
huge preprocessor, involving multiple brain re-
gions, for object and scene representation and
for target tracking and navigation. One reason
for this is that visual boundaries and surfaces,
visual form and motion, and target tracking and
visually based navigation are computationally
complementary, thus requiring several distinct
but interacting cortical processing streams.

Prior to the development of systems such
as ARTSCAN and ARTSCENE, the FACADE
(Form-And-Color-And-DEpth) model provided
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a neural theory of form perception, including
3D vision and figure-ground separation (e.g.,
Cao and Grossberg 2005, 2012; Fang and
Grossberg 2009; Grossberg, Kuhlmann, and Min-
golla 2007; Grossberg and Swaminathan 2004;
Kelly and Grossberg 2000). The 3D FORMO-
TION model provides a neural theory of motion
processing and form-motion interactions (e.g.,
Baloch and Grossberg 1997; Baloch, Grossberg,
Mingolla, and Nogueira 1999; Berzhanskaya,
Grossberg, and Mingolla 2007; Grossberg,
Leveille, and Versace 2011; Grossberg, Min-
golla, and Viswanathan 2001; Grossberg and
Rudd 1992). The FACADE model has just the
properties that are needed for solving the Where’s
Waldo problem, and the 3D FORMOTION
model has just the properties that are needed
for tracking unpredictably moving targets.
Their complementary properties enabled these
extensions.

Visual and Spatial Navigation, Cognitive
Working Memory, and Planning

In addition to being able to see, learn, recognize,
and track valued goal objects, an animal or au-
tonomous robot must also be able to navigate
to or away from them and to interact with them
through goal-oriented hand and arm movements.
Navigation is controlled by two distinct and in-
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teracting systems: a visually guided system and a
spatial path integration system.

Visually guided navigation through a cluttered
natural scene is modeled using the 3D FORMO-
TION model as a front end. The STARS and
ViSTARS neural systems (Browning, Grossberg,
and Mingolla 2009a,b; Elder, Grossberg, and
Mingolla 2009) model how primates use object
motion information to segment objects and
optic flow information to determine heading
(self-motion direction), for purposes of goal
approach and obstacle avoidance in response to
realistic environments. The models predict how
computationally complementary processes in
parallel streams within the visual cortex compute
object motion for tracking and self-motion
for navigation. The models’ steering decisions
compute goals as attractors and obstacles as
repellers, as do humans.

Spatial navigation based upon path integration
signals has been a topic of great interest recently.
Indeed, the 2014 Nobel Prize in Physiology or
Medicine was awarded to John O’Keefe for his
discovery of place cells in the hippocampal cortex
and to Edvard and May-Britt Moser for their
discovery of grid cells in the entorhinal cor-
tex. The GridPlaceMap neural system (Gross-
berg and Pilly 2012, 2014; Pilly and Grossberg
2012, 2014; Mhatre, Grossberg, and Gorchetch-

Adaptive Resonance Theory, Fig. 3 ARTSCAN
Search macrocircuit and corresponding brain regions.
Dashed boxes indicate boundary and surface pre-
processing. (a) Category learning system. Arrows
represent excitatory cortical processes. Spatial attention
in the Where stream regulates view-specific and view-
invariant category learning and recognition, and attendant
reinforcement learning, in the What stream. Connections
ending in circular disks indicate inhibitory connections.
(b) Where’s Waldo search system. Search begins when
a name category or value category is activated and
subliminally primes an object-value category via the
ART matching rule. A volition control signal enables
the primed object-value category to fire output signals.
Bolstered by volitional control signals, these output
signals can, in turn, propagate through a positionally-
invariant object category to all the positionally-variant

view category integrators whose various views and
positions are represented by the object category. The
view category integrators can subliminally prime,
but not fully activate, these view categories. All this
occurs in the What stream. When the bottom-up input
from an object’s boundary/surface representation also
activates one of these view categories, its activity
becomes suprathreshold, wins the competition across
view categories for persistent activation, and activates
a spatial attentional representation of Waldo’s position
in the Where stream. [7a anterior part of inferotemporal
cortex, ITp posterior part of inferotemporal cortex, PPC
posterior parietal cortex, LIP lateral intraparietal cortex,
LGN lateral geniculate nucleus, ORB orbitofrontal cortex,
Amyg amygdala, BG basal ganglia, PF'C prefrontal cortex,
SC superior colliculus, VI striate visual cortex, V2, V3,
and V4 prestriate visual cortices
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nikov 2012; Pilly and Grossberg 2014) proposes
how entorhinal grid cells and hippocampal place
cells may be learned as spatial categories in a
hierarchy of self-organizing maps. The model
responds to realistic rat navigational trajectories
by learning both grid cells with hexagonal grid
firing fields of multiple spatial scales, and place
cells with one or more firing fields. Model dy-
namics match neurophysiological data about their
development in juvenile rats. The GridPlaceMap
model enjoys several parsimonious design fea-
tures that will facilitate their embodiment in tech-
nological applications, including hardware: (1)
similar ring attractor mechanisms process both
linear and angular path integration inputs that
drive map learning; (2) the same self-organizing
map mechanisms can learn grid cell and place cell
receptive fields in a hierarchy of maps, and both
grid and place cells can develop by detecting,
learning, and remembering the most frequent and
energetic co-occurrences of their inputs; and (3)
the learning of the dorsoventral organization of
grid cell modules with multiple spatial scales
that occur in the pathway from the medial en-
torhinal cortex to hippocampus seems to use
mechanisms that are homologous to those for
adaptively timed temporal learning that occur in
the pathway from the lateral entorhinal cortex to
hippocampus (Grossberg and Merrill 1989, 1992;
Grossberg and Schmajuk 1989). The homologous
mechanisms for representing space and time in
this entorhinal-hippocampal system has led to the
phrase “neural relativity” for this parsimonious
design.

Finally, the GridPlaceMap model is an ART
system. It proposes how top-down hippocampus-
to-entorhinal attentional mechanisms may sta-
bilize map learning and thereby simulates how
hippocampal inactivation may disrupt grid cell
properties and explains challenging data about
theta, beta, and gamma oscillations.

Visual and path integration information coop-
erate during navigation. Cognitive planning also
influences navigational decisions. More research
is needed to show how learning fuses visual, path
integration, and planning circuits into a unified
navigational system. The design of a general
planning system will be facilitated by the fact that

Adaptive Resonance Theory

similar circuits for short-term storage of event
sequences (working memory) and for learning
of sequential plans are used by the brain to
control linguistic, spatial, and motor behaviors
(Grossberg and Pearson 2008; Silver, Grossberg,
Bullock, Histed, and Miller 2011).

Social Cognition

How can multiple autonomous systems interact
intelligently? Individuals experience the world
from self-centered perspectives. What we learn
from each other is thus computed in different
coordinates within our minds. How do we bridge
these diverse coordinates? A model of social
cognition that explains how a teacher can in-
struct a learner who experiences the world from
a different perspective can be used to enable a
single human or robotic teacher to instruct a large
“class” of embodied robots that all experience the
teacher from different perspectives.

Piaget’s circular reaction notes the feedback
loop between the eye and hand in the learning
infant, laying the foundation for visually guided
reaching. Similarly, feedback between babbled
sounds and hearing forms the learned substrate
of language production. These intrapersonal cir-
cular reactions were extended to interpersonal
circular reactions within the Circular Reactions
for Imitative Behavior (CRIB) model (Grossberg
and Vladusich 2010). This model shows how
social cognition builds upon ARTSCAN mecha-
nisms. These mechanisms clarify how an infant
learns how to share joint attention with adult
teachers and to follow their gaze toward valued
goal objects. The infant also needs to be capable
of view-invariant object learning and recognition
whereby it can carry out goal-directed behaviors,
such as the use of tools, using different object
views than the ones that its teachers use. Such
capabilities are often attributed to mirror neu-
rons. This attribution does not, however, explain
the brain processes whereby these competences
arise. CRIB proposes how intrapersonal circular
reactions create a foundation for interpersonal
circular reactions when infants and other learners
interact with external teachers in space. Both
types of circular reactions involve learned co-
ordinate transformations between body-centered
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arm movement commands and retinotopic visual
feedback, and coordination of processes within
and between the What and Where cortical pro-
cessing streams. Specific breakdowns of model
processes generate formal symptoms similar to
clinical symptoms of autism.

Mental Disorders and Homeostatic

Plasticity

Optimally functioning autonomous intelligent
systems require properly balanced complemen-
tary systems. What happens when they become
imbalanced? In humans, they can experience
mental disorders.

Scientific literature on human mental disor-
ders such as autism and schizophrenia is, of
necessity, more anecdotal than parametric and is,
therefore, an insufficient foundation for model
construction. Real-time models of normal mental
behavior that are based on the huge databases
from decades of psychological and neurobiologi-
cal experiments have, however, provided insights
into the mechanisms of abnormal behaviors (e.g.,
Carpenter and Grossberg 1993; Grossberg 1984,
2000a,b; Grossberg and Seidman 2006).

Imbalanced processes across the complemen-
tary systems that control normal behaviors can
produce constellations of model symptoms that
strikingly resemble mental disorders. For exam-
ple, fixing the ART vigilance parameter p at
too high a level leads to symptoms familiar in
autistic individuals, notably learning of hyper-
concrete categories and difficulty paying atten-
tion to the meaning of a task. Underarousal of
the model amygdala can lead to insensitivity to
social meanings and also to intense emotional
outbursts and coping strategies to reduce event
complexity and unexpectedness. Damage to the
model cerebellum can lead to defects of adap-
tively timed learning and thus a host of problems
in socialization.

In both humans and robots, it remains an
open problem to model how biologically based
autonomous systems can discover and maintain
their own optimal operating parameters in
response to the challenges of an unpredictable
world. An initial step toward solving this
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homeostatic plasticity problem was made in
Chandler and Grossberg (2012).

Machine Consciousness?

An early ART prediction is that all conscious
states are resonant states, though not all
resonant states are conscious. Since that time,
ART has predicted how specific resonances
support different kinds of consciousness. These
observations suggest the question: can machines
that embody ART resonant dynamics experience
a type of consciousness? For example, ART
models predict that surface-shroud resonances
subserve conscious percepts of visual qualia,
feature-category resonances subserve recogni-
tion of familiar objects and scenes, spectral-
shroud resonances subserve conscious percepts
of auditory streams, spectral-pitch-and-timbe
resonances subserve conscious recognition of
auditory streams, item-list resonances subserve
conscious percepts of speech and language,
and cognitive-emotional resonances subserve
conscious feelings and knowing the objects or
events that cause them. ART models also identify
the brain regions and interactions that would
support these resonances.

These results about model correlates of
consciousness emerge from ART analyses of
the mechanistic relationships among processes
of Consciousness, Learning, Expectation,
Attention, Resonance, and Synchrony (the
CLEARS processes). Recall, however, that not
all resonant states are conscious states. For
example, entorhinal-hippocampal resonances are
predicted to dynamically stabilize the learning
of entorhinal grid cells and hippocampal place
cells, and parietal-prefrontal resonances are
predicted to trigger the selective opening of
basal ganglia gates to enable the read-out of
context-appropriate actions. Grossberg (2013;
2016) reviews these and other aspects of ART as
a cognitive and neural theory.
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Adaptive System

Complexity in Adaptive Systems

Agent

In computer science, the term “agent” usually
denotes a software abstraction of a real entity
which is capable of acting with a certain degree
of autonomy. For example, in artificial societies,
agents are software abstractions of real people,
interacting in an artificial, simulated environ-
ment. Various authors have proposed different
definitions of agents. Most of them would agree
on the following set of agent properties:

* Persistence: Code is not executed on
demand but runs continuously and decides
autonomously when it should perform some
activity.

* Social ability: Agents are able to interact with
other agents.

* Reactivity: Agents perceive the environment
and are able to react.

* Proactivity: Agents exhibit goal-directed be-
havior and can take the initiative.

Agent-Based Computational Models

Artificial Societies

Adaptive System

Agent-Based Modeling and
Simulation

Artificial Societies

Agent-Based Simulation Models

Artificial Societies

AlS

Artificial Immune Systems

Algorithm Evaluation

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Definition

Algorithm evaluation is the process of assessing
a property or properties of an algorithm.

Motivation and Background

It is often valuable to assess the efficacy of
an algorithm. In many cases, such assessment
is relative, that is, evaluating which of several
alternative algorithms is best suited to a specific
application.

Processes and Techniques

Many machine learning and data mining algo-
rithms have been proposed. In order to under-
stand the relative merits of these alternatives, it
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Analytical Learning

is necessary to evaluate them. The primary ap-
proaches to evaluation can be characterized as ei-
ther theoretical or experimental. Theoretical eval-
uation uses formal methods to infer properties
of the algorithm, such as its computational com-
plexity (Papadimitriou 1994), and also employs
the tools of computational learning theory to
assess learning theoretic properties. Experimental
evaluation applies the algorithm to learning tasks
to study its performance in practice.

There are many different types of property
that may be relevant to assess depending upon
the intended application. These include algorith-
mic properties, such as time and space com-
plexity. These algorithmic properties are often
assessed separately with respect to performance
when learning a » model, that is, at » training
time, and performance when applying a learned
model, that is, at » test time.

Other types of property that are often studied
are the properties of the models that are learned
(see » Model Evaluation). Strictly speaking, such
properties should be assessed with respect to
a specific application or class of applications.
However, much machine learning research in-
cludes experimental studies in which algorithms
are compared using a set of data sets with little
or no consideration given to what class of appli-
cations those data sets might represent. It is dan-
gerous to draw general conclusions about relative
performance in general across any application
from relative performance on this sample of some
unknown class of applications. Such experimen-
tal evaluation has become known disparagingly
as a bake-off.

An approach to experimental evaluation that
may be less subject to the limitations of bake-offs
is the use of experimental evaluation to assess
a learning algorithm’s » bias and variance pro-
file. Bias and variance measure properties of
an algorithm’s propensities in learning models
rather than directly being properties of the models
that are learned. Hence, they may provide more
general insights into the relative characteristics of
alternative algorithms than do assessments of the
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performance of learned models on a finite number
of applications. One example of such use of bias—
variance analysis is found in Webb (2000).
Techniques for experimental algorithm
evaluation include » bootstrap sampling, » cross-
validation, » holdout evaluation, » out-of-sample
evaluation and » prospective evaluation.

Cross-References

Evaluation of Learning Algorithms
Model Evaluation
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Abstract

Anomalies correspond to the behavior of a
system which does not conform to its expected
or normal behavior. Identifying such anoma-
lies from observed data, or the task of anomaly
detection, is an important and often critical
analysis task. This includes finding abnormal-
ities in a medical image, fraudulent transac-
tions in a credit card history, or structural
defects in an aircraft’s engine. The importance
of this problem has resulted in a large body of
literature on this topic. However, given that the
definition of an anomaly is strongly tied to the
underlying application, the existing research
is often embedded in the application domains,
and it is unclear how methods developed for
one domain would perform in another. The
goal of this article is to provide a general intro-
duction of the anomaly detection problem. We
start with the basic formulation of the problem
and then discuss the various extensions. In par-
ticular, we discuss the challenges associated
with identifying anomalies in structured data
and provide an overview of existing research
in this area. We hope that this article will
provide a better understanding of the different
directions in which research has been done on
this topic, and how techniques developed in
one area can be applied in domains for which
they were not intended to begin with.

Introduction

Anomalies are the unusual, unexpected, surpris-
ing patterns in the observed world. Identifying,
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understanding, and predicting anomalies from
data form one of the key pillars of modern data
mining. Effective detection of anomalies allows
extracting critical information from data which
can then be used for a variety of applications,
such as to stop malicious intruders, detect and
repair faults in complex systems, and better un-
derstand the behavior of natural, social, and engi-
neered systems.

Anomaly detection refers to the problem of
finding anomalies in data. While “anomaly” is
a generally accepted term, other synonyms, such
as outliers, discordant observations, exceptions,
aberrations, surprises, peculiarities, or contam-
inants, are often used in different application
domains. In particular, anomalies and outliers
are often used interchangeably. Anomaly detec-
tion finds extensive use in a wide variety of
applications such as fraud detection for credit
cards, insurance or healthcare, intrusion detec-
tion for cybersecurity, fault detection in safety
critical systems, and military surveillance for
enemy activities. The importance of anomaly
detection stems from the fact that for a variety
of application domains, anomalies in data often
translate to significant (and often critical) action-
able insights. For example, an anomalous traffic
pattern in a computer network could mean that
a hacked computer is sending out sensitive data
to an unauthorized destination (Kumar 2005).
An anomalous remotely sensed weather variable
such as temperature could imply a heat wave or
cold snap or even faulty remote sensing equip-
ment. An anomalous MRI image may indicate
early signs of Alzheimer’s or the presence of ma-
lignant tumors (Spence et al. 2001). Anomalies in
credit card transaction data could indicate credit
card or identity theft (Aleskerov et al. 1997),
or anomalous readings from a spacecraft sensor
could signify a fault in some component of the
spacecraft (Fujimaki et al. 2005).

Anomaly detection is generally considered as
a core machine learning or data mining problem,
in the same vein as classification and cluster-
ing. Given the practical significance of anoma-
lies, there has been a tremendous interest in
studying this problem, starting from statistical
methods proposed as early as the nineteenth cen-
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tury (Edgeworth 1887). Over time, a variety of
anomaly detection techniques have been devel-
oped in several research communities. Many of
these techniques have been specifically devel-
oped for certain application domains, while oth-
ers are more generic. Several books and surveys
have been published in recent years that pro-
vide an overview of the vast literature on this
topic (Chandola et al. 2009; Aggarwal 2013;
Hodge and Austin 2004; Chandola et al. 2012;
Akoglu et al. 2015).

However, one key characteristic of anomaly
detection sets it apart from other machine learn-
ing problems. Anomaly detection is a highly
application-oriented problem which means that
there is a lack of a consistent definition of an
anomaly across tasks and application domains.
Researchers typically define an anomaly in a way
that best suits the target application. Thus, several
different formulations of the anomaly detection
problem exist. Existing solutions for these prob-
lem formulations have borrowed concepts from
a variety of disciplines in mathematics, statistics,
and computer science. This has resulted in a rich
and complex landscape for anomaly detection
research (See Fig. 1).

The goal of this article is to provide the readers
a general understanding of the complex prob-
lem space of anomaly detection. Starting with
the most basic problem setting, i.e., identifying
anomalous data instances from a data set, we
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then discuss other formulations and the corre-
sponding methods. To highlight the practical im-
portance of anomaly detection, we provide an
application-oriented overview of existing meth-
ods. Finally, we discuss open challenges and re-
search questions that exist in this area to motivate
future research.

Point Anomaly Detection

In the most widely accepted setting for anomaly
detection, also referred to as point anomaly de-
tection, the goal is to identify points (objects,
instances, etc.) in a data set that do not conform
to the accepted normal behavior. Typically, no
other knowledge about the normal or anomalous
behavior is available. The lack of any ground
truth for training makes this an unsupervised
anomaly detection problem. In the sequel, we
briefly talk about other formulations in which
partial knowledge of normal and/or anomalous
behavior is available.

Even in the basic setting of point anomaly
detection, a uniform definition of anomaly does
not exist. Figure 2 shows several hypothetical
examples of anomalies in a two-dimensional data
set. In each of the example, anomalies have a
different interpretation. For instance, the point 0|
in Fig.2a is anomalous because it is far away
from the rest of the data points which belong to
a dense region. In Fig. 2b, however, the point 0|

Application Domains

Cybersecurity

Fraud detection

— System health monitor-
ing

— Medicine and Health-

care

\

Problem Characteris-
tics

|

: Anomaly Detec-

: tion Methods

|

Problem For-
mulations

| _ Availability of labels

} ‘ — Nature of input data
| — Type of anomalies

— Expected output

Anomaly Detection, Fig. 1 Anatomy of an anomaly detection problem
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Anomaly Detection, Fig. 2 Examples of anomalies in
2-D data. (a) Anomaly with respect to rest of the data
points. (b) Anomaly with respect to local neighbor-
hood. (¢) Anomaly with respect to the data distribution.

is anomalous because it lies relatively far away
from a dense region, even though there are points
in the second sparse region which are equally
distant from their nearest points. In the third ex-
ample (see Fig. 2¢), the point 0; is anomalous be-
cause it lies away from the statistical distribution
(bivariate normal) of the data. On the other hand,
there are several points located at the ends of the
elliptical distribution that are farther away from
the points that 0;. The anomalies 0;, 03, and 04 in
Fig. 2d are points that are away from their closest
dense regions. The points in the anomalous set
o1 in Fig.2d, e, and f are all groups of points
whose density is anomalous with respect to the
rest of the data set. As shown in the above simple
2-D example, even for point anomaly detection,
one can define anomalies in multiple ways. Most
existing anomaly detection methods, on the other
hand, have been developed, by starting from a
different notion of anomaly often motivated by
a specific application domain. Thus, one method
might be successful in one scenario and not in the
other. We now discuss some prominent classes of
point anomaly detection methods and the defini-
tions of anomalies that they are best suited for.
The various classes of point anomaly detection
methods are briefly discussed below:

(d) Anomaly with respect to local dense regions. (e)
Anomalous tight cluster in a sparse region. (f) Anomalous
sparse cluster in a dense region

Nearest neighbor-based methods analyze the
nearest neighborhood of a test instance to assign
it an anomaly score (Ramaswamy et al. 2000;
Knorr and Ng 1999; Knorr et al. 2000; Otey
et al. 2006; Tang et al. 2002; Breunig et al.
2000, 1999). The key assumption underlying
nearest neighbor-based anomaly detection meth-
ods is that normal points lie in dense neighbor-
hoods and anomalous points lie in sparse neigh-
borhoods. Nearest neighbor methods consider
suitable measures of density, e.g., distance to the
k-th nearest neighbor (Ramaswamy et al. 2000),
radius needed to enclose a certain number of
points (Knorr and Ng 1999; Knorr et al. 2000),
etc. Such methods are capable of identifying
global anomalies (See Fig.2a) but are shown to
perform poorly when the data has regions with
varying densities (See Fig. 2b). For such scenar-
ios, methods such as local outlier factor (Bre-
unig et al. 1999) and commute distance-based
outlier factor (Khoa and Chawla 2010) have been
proposed. When data is high dimensional, such
methods typically suffer from the “curse of di-
mensionality.” Methods such as angle-based out-
lier detection (Kriegel et al. 2008) and subspace-
based approaches (Zhang and Wang 2006) have
been proposed to address this issue.
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Clustering-based methods learn clusters from
a given data set and assign an anomaly score to
a test instance based on its relationship with its
nearest cluster (Eskin et al. 2002; He et al. 2003;
Marchette 1999; Eskin et al. 2002; Portnoy et al.
2001; Mahoney et al. 2003). Clustering-based
methods assume that while normal points exhibit
cluster structure, anomalous points do not belong
to a cluster or are far away from the nearest
normal cluster representative. In certain settings,
if the anomalies themselves may form a cluster,
one assumes that normal points form large and
dense clusters, whereas anomalous points form
small clusters or clusters with low density (see
Fig.2d, e and f). While such methods identify
anomalies as a post-clustering phase, recently,
there have been methods that focus on identifying
anomalies simultaneously with the clusters (Ott
et al. 2014; Chawla and Gionis 2013).

Statistical methods estimate a parametric or
nonparametric model from the data and apply a
statistical test on the probability of the instance
to be generated by the estimated model to assign
an anomaly score to the test instance (Barnett
and Lewis 1994; Fox 1972; Abraham and Chuang
1989; Laurikkala et al. 2000; Chow and Yeung
2002). Such statistical models assume that nor-
mal points appear in the high probability regions
of the distribution, thereby having high likelihood
of occurring and hence low anomaly scores. On
the other hand, anomalous points appear in the
low probability regions of the distribution and
have high anomaly score. Such methods are ef-
fective if the normal instances can be modeled
by a statistical distribution. For instance, if the
data in Fig.2c is modeled as a bivariate nor-
mal distribution, the anomalous point o; can be
easily identified using a standard Mahalanobis
statistic, while rest of the points will appear
normal.

Classification-based methods learn a classifier
from a labeled (or unlabeled) training data
and assign an anomaly score or label to a
test data instance (Tax 2001; Tax and Duin
1999a,b; Barbara et al. 2001; Roth 2004,
Hawkins et al. 2002; Mahoney and Chan
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2002, 2003). The key assumption underlying
classification-based anomaly detection methods
is that based on the available training data, one
can learn a classifier in the given feature space
to distinguish between normal and anomalous
points. Classification-based anomaly detection
methods can be categorized into one-class
methods, which have one model for the normal
class and any point which does not fit that model
is deemed anomalous, and multi-class methods,
which have multiple normal classes and points
which do not fit any of the normal classes are
deemed anomalous. A variety of models such
as support vector machines, neural networks,
Bayesian models, and rule-based systems have
been used for classification-based anomaly
detection. However, such methods are limited
by their dependence on availability of labels
for normal and/or anomalous behavior. There
are, however, methods that can operate in a
purely unsupervised setting, such as the one-
class support vector machines (Scholkopf et al.
2001; Tax 2001).

Spectral decomposition-based methods find
an approximation of the data using a combination
of attributes that capture the bulk of variability
in the data. Instances that are significantly differ-
ent from others in the lower approximation are
detected as anomalies (Agovic et al. 2007; Parra
et al. 1996; Shyu et al. 2003; Fujimaki et al.
2005). Such methods are particularly effective
in scenarios where the data is being generated
from a lower dimensional manifold, e.g., See
Fig. 2c.

Information theoretic methods are based on
the assumption that anomalies in data induce
irregularities in the information content of the
data set. Such methods analyze the information
content of a data set using different information
theoretic measures such as Kolmogorov com-
plexity, entropy, relative entropy, etc. and detect
instance that induces irregularities in the informa-
tion content of the data set as anomalies (Arning
et al. 1996; Keogh et al. 2004; Lee and Xiang
2001; He et al. 2005, 2006).
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Extensions to Point Anomaly
Detection

In certain settings, the unsupervised point
anomaly detection problem discussed in
section ‘“Point Anomaly Detection” is not
rich enough to capture all requirements of an
application domain. Here we discuss some of the
different ways in which the basic problem setting
is typically extended.

Nature of Input Data

The modality of the data determines the
applicability of anomaly detection techniques.
For example, for statistical techniques, different
statistical models have to be used for continuous
and categorical data. Similarly, for nearest
neighbor-based techniques, the nature of
attributes would determine the distance measure
to be used. Often, instead of the actual data,
the pairwise distance between instances might
be provided in the form of a distance (or
similarity) matrix. In such cases, techniques
that require original data instances are not
applicable, e.g., many statistical methods and
certain classification-based techniques. However,
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many of the nearest neighbor-based or clustering-
based methods discussed in section “Point
Anomaly Detection” are still applicable.

Input data can also be categorized based on the
relationship present among data instances (Tan
et al. 2005). Most of the existing anomaly de-
tection techniques deal with data represented as
a vector of attributes (record or point data, if the
data can be mapped onto a coordinate space), as
discussed in section “Point Anomaly Detection.”
Typically, no relationship is assumed among the
data instances.

In general, data instances can be related
to each other. Some examples are sequence
data, spatial data, and graph data (See Fig.3
for an overview). In sequence data, the data
instances are linearly ordered, e.g., time-series
data, genome sequences, protein sequences. In
spatial data, each data instance is related to
its neighboring instances, e.g., vehicular traffic
data, ecological data. When the spatial data has
a temporal (sequential) component, it is referred
to as spatiotemporal data, e.g., climate data. In
graph data, data instances are represented as
vertices in a graph and are connected to other
vertices with edges. Later in this section, we will
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discuss situations where such relationship among
data instances becomes relevant for anomaly
detection.

Type of Anomaly

Anomaly detection techniques vary depending on
the nature of the desired anomaly. We have al-
ready discussed point anomalies in section “Point
Anomaly Detection,” which is the most common
form of anomaly. While point anomalies are iso-
lated by nature, several applications need to con-
sider anomalies in a context or small collection
of observations which appear anomalous. One
can define two additional types of anomalies to
capture such structures: contextual anomalies and
collective anomalies.

Contextual Anomalies

Data instances which are anomalous in a specific
context, but not otherwise, are called contextual
anomaly (also referred to as conditional anomaly
Song et al. 2007). For example, a temperature
of 70°F may be normal over summer, but is
anomalous in the context of winter; a heart rate
of 130 may be normal for an individual exercising
or running, but is anomalous when the individual
is resting. In the setting of contextual anomaly
detection, the context, such as summer/winter and
exercising/resting, has to be specified as a part of
the problem formulation. In particular, the data
instances are defined using following two sets
of attributes:

1. Contextual  attributes. The  contextual
attributes are used to determine the context (or
neighborhood) for that instance. For example,
in spatial data sets, the longitude and latitude
of a location are the contextual attributes. In
time-series data, time is a contextual attribute
which determines the position of an instance
on the entire sequence.

2. Behavioral attributes. The  behavioral
attributes define the non-contextual charac-
teristics of an instance. For example, in a
spatial data set describing the average rainfall
of the entire world, the amount of rainfall at
any location is a behavioral attribute.
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The context determines the normal behavioral
attributes, and the normal can be different in
different contexts. Anomalous behavior is deter-
mined using the values for the behavioral at-
tributes within a specific context, in particular
when such values deviate from what is normal in
that context. A data instance might be a contex-
tual anomaly in a given context, but an identical
data instance (in terms of behavioral attributes)
could be considered normal in a different context.
This property is key in identifying contextual and
behavioral attributes for a contextual anomaly
detection technique.

Contextual anomalies have been most
commonly explored in time-series data (Weigend
et al. 1995; Salvador and Chan 2003) and
spatial data (Kou et al. 2006; Shekhar et al.
2001). In spatial data domain, an observation
has a neighborhood specified by its location
component (refer to our earlier discussion on
spatial data). Consider an example in which each
data instance is a county location which is defined
over several attributes. If these attributes show
high pollution levels for a particular county, but
the neighborhood of this county is also highly
polluted, then this county is not an anomaly. But
if the neighborhood has very low pollution, then
this county becomes an anomaly.

A similar example can be found in the credit
card fraud detection domain. A contextual at-
tribute in credit card domain can be the time
of purchase. Suppose an individual usually has
a weekly shopping bill of $100 except during
the Christmas week, when it reaches $1000. A
new purchase of $1000 in a week in July will be
considered a contextual anomaly, since it does not
conform to the normal behavior of the individual
in the context of time (even though the same
amount spent during Christmas week will be
considered normal).

The choice of applying a contextual anomaly
detection technique is determined by the mean-
ingfulness of the contextual anomalies in the
target application domain. Another key factor is
the availability of contextual attributes. In several
cases, defining a context is straightforward, and
hence applying a contextual anomaly detection
technique makes sense. In other cases, defining
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a context is not easy, making it difficult to apply
such techniques.

Collective Anomalies

If a collection of related data instances is anoma-
lous with respect to the entire data set, it is
termed as a collective anomaly. The individual
data instances in a collective anomaly may not
be anomalies by themselves, but their occurrence
together as a collection is anomalous. Figure 4
illustrates an example which shows a greenness
measurement called normalized difference veg