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Chapter 13

Qualitative Spatial Representation and
Reasoning

Anthony G. Cohn and Jochen Renz

13.1 Introduction

The need for spatial representations and spatial reasoning is ubiquitous in Al—from
robot planning and navigation, to interpreting visual inputs, to understanding natural
language—in all these cases the need to represent and reason about spatial aspects
of the world is of key importance. Related fields of research, such as geographic in-
formation science (GIScience) [70], have also driven the spatial representation and
reasoning community to produce efficient, expressive and useful calculi.

Whereas there has been considerable research in spatial representations which are
based on metric measurements, in particular within the vision (e.g., [62, 137]) and
robotics communities (e.g., [198]), and also on raster and vector representations in
GIScience (e.g., [214]), in this chapter we concentrate on symbolic, and in particular
qualitative representations. Chapter 9 is devoted to qualitative reasoning (QR) more
generally, whereas here we limit our attention specifically to qualitative spatial, and
spatio-temporal reasoning (henceforth QSR).

13.1.1 What is Qualitative Spatial Reasoning?

Chapter 9 concentrates on linear quantities; in some cases this suffices to reason about
space in a qualitative way, for example, when reasoning about the position of a sliding
block, or the level of a tank. However, space is multidimensional, and is not in general
adequately represented by a single scalar quantity. Consider using Allen’s interval
calculus, briefly mentioned in Chapter 12, which distinguishes 13 jointly exhaustive
and pairwise disjoint relations that may hold between a pair of convex (one-piece)
intervals, see Fig. 13.1(a). Now we consider using this representation to model two-
dimensional regions, by projecting 2D space onto two separate linear dimensions; in
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Figure 13.1: (a) The 13 jointly exhaustive and pairwise disjoint Allen interval relations between a pair of
convex intervals (the top thick line and each of the thinner lines below)—only seven are displayed—the last
six are asymmetric and have inverses. Projecting regions onto axes and using Allen’s interval calculus can
give misleading results: in (b) the small region is discrete from the larger along the x-axis, whilst in (c) it is
contained in the larger region along both axes.

Fig. 13.1(b) this works well, but in Fig. 13.1(c) it is not so satisfactory—the smaller
region appears to be contained in the larger.!

Early attempts at qualitative spatial reasoning within the QR community led to the
‘poverty conjecture’ [84]. Although purely qualitative representations were quite suc-
cessful in reasoning about many physical systems [209], there was much less success
in developing purely qualitative reasoners about spatial and kinematic mechanisms
and the poverty conjecture is that this is in fact impossible—there is no purely qualita-
tive spatial reasoning mechanism. Forbus et al. correctly identify transitivity of values
as a key feature of qualitative quantity spaces but doubt that this can be exploited
much in higher dimensions and conclude that the space of representations in higher
dimensions is sparse and for spatial reasoning nothing weaker than numbers will do.

The challenge of QSR then is to provide calculi which allow a machine to represent
and reason with spatial entities without resort to the traditional quantitative techniques
prevalent in, for, e.g., the computer graphics or computer vision communities.

There has been an increasing amount of research in recent years which tends to
refute, or at least weaken the ‘poverty conjecture’. Qualitative spatial representations
addressing many different aspects of space including topology, orientation, shape, size
and distance have been put forward. There is a rich diversity of these representations
and they exploit the ‘transitivity’ as demonstrated by the relatively sparse composition
tables (cf. the well known table for Allen’s interval temporal logic [209]) which have
been built for these representations.

This chapter is an overview of some of the major qualitative spatial representa-
tion and reasoning techniques. We focus on the main ideas that have emerged from
research in the area; there is not sufficient space here to be comprehensive and some

UIn certain domains, containing rectangular objects which are uniformly aligned, this can still be a useful
representation, see, for example, [208] where the layout of text blocks on envelopes is learned. A theoretical
analysis into the n-dimensional generalisation of the Allen calculus can be found in [9].
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interesting approaches have had to be omitted though we give some pointers to the
wider literature.?

In Section 13.1.2 we will mention some possible applications of qualitative spatial
reasoning. Thereafter, in Section 13.2 we survey the main aspects of the representa-
tion of qualitative spatial knowledge including ontological aspects, topology, distance,
orientation and shape. Section 13.3 discusses qualitative spatial reasoning and Sec-
tion 13.4 reasoning about spatial change. The chapter concludes with some remarks
on cognitive validity in Section 13.5 and a glimpse at future work in Section 13.6. This
chapter is based on a number of earlier papers, in particular [47].

13.1.2 Applications of Qualitative Spatial Reasoning

Research in QSR is motivated by a wide variety of possible application areas including
Geographic Information System (GIS), robotic navigation, high level vision, spatial
propositional semantics of natural languages, engineering design, common-sense rea-
soning about physical systems and specifying visual language syntax and semantics.
There are numerous other application areas including qualitative document-structure
recognition [208], biology (e.g., [191, 42]) and domains where space is used as a
metaphor (e.g., [127, 160]).

Even though GIS are now a commonplace, the major problem is that of interaction.
With gigabytes of information stored either in vector or raster format, present-day
GISs do not sufficiently support intuitive or common-sense oriented human—computer
interaction. Users may wish to abstract away from the mass of numerical data and
specify a query in a way which is essentially, or at least largely, qualitative. Arguably,
the next generation GIS will be built on concepts arising from Naive Geography [70],
wherein QSR techniques are fundamental. Examples of research employing qualitative
spatial techniques in geography include reasoning about shape in a qualitative way
such as [32].

Although robotic navigation ultimately requires numerically specified directions
to the robot to move or turn, hierarchical planning with detailed decisions (e.g., how
or exactly where to move) being delayed until a high level plan have been achieved
has been shown to be effective [196]. Further, the robot’s model of its environment
may be imperfect, leading to an inability to use standard robot navigation techniques.
Under such circumstances, a qualitative model of space may facilitate planning. One
such approach is the development of a robust qualitative method for robot exploration,
mapping and navigation in large-scale spatial environments described in [125]; another
is the work of Liu and Daneshmend [133] on spatial planning for robotic motion and
path planning using qualitative spatial representation and reasoning. Another example
of using QSR for robotic navigation is [207]. A qualitative solution to the well known
‘piano mover’s problem’ is [78]. Some work in cognitive robotics has addressed the
issue of building topological maps of the robot’s environment (rather than metrical
ones), e.g., [165, 123].

2Much relevant material is published in the proceedings of COSIT (the Conference on Spatial Informa-
tion Theory), GIScience (the International Conference on Geographical Information Science), the journal
Spatial Cognition and Computation, as well as regular Al outlets such as the Al journal, the Journal of
Artificial Intelligence Research (JAIR) the International Journal of Geographical Information Science, and
the proceedings of such conferences as KR, AAAI IJCAI, PRICAI and ECAL
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QSR has been used in computer vision for visual object recognition at a higher
level which includes the interpretation and integration of visual information. QSR
techniques have been used to interpret the results of low-level computations as higher
level descriptions of the scene or video input [80, 121]. The use of qualitative pred-
icates helps to ensure that scenes which are semantically close have identical or at
least very similar descriptions. Work in this area from a cognitive robotics viewpoint
includes that of Santos [181, 180].

In natural language, the use and interpretation of spatial propositions tend to be
ambiguous. There are multiple ways in which natural language spatial prepositions
can be used (e.g., [114] cites many different meanings of “in”); this motivates the use
of qualitative spatial representation for finding some formal way of describing these
prepositions (e.g., [5, 178, 24]).

Engineering design, like robotic navigation, ultimately normally requires a fully
metric description. However, at the early stages of the design process, a reasonable
qualitative description would suffice. The field of qualitative kinematics (e.g., [77]) is
largely concerned with supporting this type of activity.

Finally, visual languages, either visual programming languages or some kind of
representation language, lack a formal specification of the kind that is normally ex-
pected of a textual programming or representation language. Although some of these
languages make metric distinctions, the bulk of it is often predominantly qualitative
in the sense that the exact shape, size, length, etc. of the various components of the
diagram or picture is unimportant—rather, what is important is the topological rela-
tionship between these components [98, 107]. In a similar vein, research continues on
the application of qualitative spatial reasoning for sketch interpretation, e.g., [83, 79,
66, 183, 107, 85].

13.2 Aspects of Qualitative Spatial Representation

Representing space has a rich history in the physical sciences—and serves to locate
objects in a quantitative framework. At the other extreme, spatial expressions in natural
languages tend to operate on a loose partitioning of the domain. Representation for this
less precise description of space proliferated, more or less on an ad hoc basis until the
emergence of qualitative spatial reasoning; thereafter the partitioning was done more
systematically [142].

There are many different aspects to space and therefore to its representation. Not
only do we have to decide on what kind of spatial entity we will admit (i.e., commit to
a particular ontology of space), but also we can consider developing different kinds of
ways of describing the relationship between these kinds of spatial entities; for exam-
ple, we may consider just their topology, or their sizes or the distance between them,
their relative orientation or their shape. In the following sections we will overview
the principal techniques which have emerged to represent these different aspects of
qualitative spatial knowledge.

13.2.1 Ontology

In this chapter we concentrate on what might be termed “pure space”, i.e., purely
spatial entities such as points, lines and regions, rather than entities which have spatial
extensions, such as physical objects or geographic regions.
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Traditionally, in mathematical theories of space, points are considered as the pri-
mary primitive spatial entities (or perhaps points and lines), and extended spatial
entities such as regions are defined, if necessary, as sets of points. A minority tra-
dition (‘mereology’ or ‘calculus of individuals’—Section 13.2.3) regards this as a
philosophical error.> Within the QSR community, there is a strong tendency to take
regions of space as the primitive spatial entity—see [206]. Even though this ontologi-
cal shift means building new theories for most spatial and geometrical concepts, there
are strong reasons for taking regions as the ontological primitive. If one is interested
in using the spatial theory for reasoning about physical objects, then one might ar-
gue that the spatial extension of any physical object must be region-like rather than a
lower dimension entity. Further, one can always define points, if required, in terms of
regions [18]. However, it needs to be admitted that at times it is advantageous to view
a 3D physical entity as a 2D or even a 1D entity. Of course, once entities of various
dimensions are permitted, a pertinent question would be whether mixed dimension
entities are allowed. Further discussion of this issue can be found in [43, 44, 100] and
also in [155, 157] who argues that in a first order 2D planar mereotopology,* a region
based ontology is not as parsimonious as a point based one, from a model theoretic
viewpoint. Whether points or regions are taken as primitive, it is clear that regions nev-
ertheless are conceptually important in modelling physical and geographic objects.

However, even once one has committed to an ontology which includes regions as
primitive spatial entities, there are still several choices facing the modeller. For ex-
ample, in most mereotopologies, the null region is excluded (since no physical object
can have the null region as its extension) though technically it may be simpler to in-
clude it [13, 193]. It is fairly standard to insist that regions are all regular, though this
choice becomes harder to enforce once one allows regions of differing dimensionali-
ties (e.g., 2D and 3D, or even 4D) since the sum of two regions of differing dimensions
will not be regular. One can also distinguish between regular-open and regular-closed
alternatives. Some calculi [21, 65] insist that regions are connected (i.e. one-piece).
A yet stronger condition would be that they are interior connected—e.g., a 2D region
which pinches to a point is not interior connected. In practice, a reasonable constraint
to impose would be that regions are all rational polygons [156].

Another ontological question is what is the nature of the embedding space, i.e.,
the universal spatial entity? Conventionally, one might take this to be R" for some n,
but one can imagine applications where discrete (e.g., [71]), finite (e.g., [99]), or non-
convex (e.g., non-connected) universes might be useful. There is a tension between
the continuous-space models favoured by high-level approaches to handling spatial
information and discrete, digital representations used at the lower level. An attempt to
bridge this gap by developing a high-level qualitative spatial theory based on a discrete
model of space is [91]. For another investigation into discrete vs continuous space, see
[139].

Once one has decided on these ontological questions, there are further issues: in
particular, what primitive “computations” should be allowed? In a logical theory, this
amounts to deciding what primitive non-logical symbols one will admit without defi-
nition, only being constrained by some set of axioms. One could argue that this set of

3Simons [189] says: “No one has ever perceived a point, or ever will do so, whereas people have per-
ceived individuals of finite extent”.
4Mereotopology is defined and discussed in detail in Section 13.2.4 below.
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primitives should be small, not only for mathematical elegance and to make it easier
to assess the consistency of the theory, but also because this will simplify the interface
of the symbolic system to a perceptual component because fewer primitives have to be
implemented. The converse argument might be that the resulting symbolic inferences
may be more complicated or that it is more natural to have a large and rich set of con-
cepts which are given meaning by many axioms which connect them in many different
ways [108]. As we shall see below, in a full first order theory one can define perhaps
surprisingly many concepts from just a few primitives; however sometimes it is de-
sirable to restrict the language used to a less expressive language for computational
reasons—in this case one will typically need to increase the number of primitives. The
next section considers the most common class of such primitives, relations between
spatial entities.

13.2.2 Spatial Relations

It is one of the basic assumptions of qualitative representation and reasoning that situ-
ations are represented by specifying the relationships between the considered entities.
Hence it is natural to represent qualitative information using relations, and in this chap-
ter spatial relations. Formally, a relation R is a set of tuples (dy, . .., di) of the same
arity k, where d; is a member of a corresponding domain D;. In other words, a relation
R of arity k is a subset of the cross-product of k domains, i.e., R € Dy X --- X Dy.

Very often, spatial relations are binary relations and very often the considered
domains are identical, namely, the set of all spatial entities of a particular space. In
these cases spatial relations are of the form R = {(a, b) | a, b € D}. The considered
domain is usually an infinite domain and the spatial relations contain infinitely many
tuples.

Given a set of relations R = {Ry, ..., R,} we can use algebraic operators such as
union, intersection, complement, converse, or composition of relations and in this way
obtain an algebra of relations. Since the relations contain an infinite number of tuples,
applying these operators might not be feasible. It is therefore a common assumption in
qualitative representation and reasoning to select a (small) finite set of relations which
are jointly exhaustive and pairwise disjoint (JEPD), i.e., each tuple (a,b) € D x D
is a member of exactly one relation. JEPD relations are also called atomic, base,
or basic relations. Given a set of JEPD relations, the relationship between any two
spatial entities of the considered domain must be exactly one of the JEPD relations.
Indefinite information can be expressed by taking the union of those base relations that
can possibly hold (representing the disjunction of the base relations). If no information
is known and all possible base relations can hold, we use the universal relation which
is the union of all base relations. The set of all possible relations is then the powerset
of the set of base relations, i.e., all possible unions of the JEPD relations.

In the following sections we discuss various sets of spatial relations, and in particu-
lar some different sets of JEPD relations that have been studied in the literature. These
are usually restricted to one particular aspect of space such as topology, orientation,
shape, etc. How to reason about these relations and more about the consequences of
having infinite domains is covered in Section 13.3, while more about general consid-
erations of defining a qualitative calculus can be found in [132].

3See [59] for a review of the use of relation algebras in spatial and temporal reasoning.
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13.2.3 Mereology

Mereology is concerned with the theory of parthood, deriving from the Greek puepog
(part), and forms a fundamental aspect of spatial representation, with practical appli-
cations in many fields, e.g., [187]. The books by Simons [189], and more recently by
Casati and Varzi [27] are excellent reference works for mereology. Simons proposes a
number of different mereological theories, depending on what properties one wishes
to ascribe to. Perhaps the most widely used theory is his minimal extensional mereol-
0gy [189, pp. 25-30]. The proper part relation is taken as primitive, symbolised PP.%
The logical basis of the system is:

(SAO)  Any axiom set sufficient for first-order predicate calculus with identity.
(SAD)  Vx, y[PP(x,y) = —=PP(y, x)].

(SA2) Vx, v, z[[(PP(x,y) APP(y, z)] = PP(x, 2)I.

(SA1) and (SA2) simply assert that the system’s basic relation is a strict partial order-
ing. Simons goes on to define part (symbolised ‘P’). The next step is to require that an
individual cannot have a single proper part. After defining overlapping (‘O’, having a
common part), Simons gives the 3rd axiom:

(SA3)  Vx, y[PP(x, y) — Jz[PP(z, y) A =0(z, x)]].

This axiom he refers to as the Weak Supplementation Principle (WSP), asserting that
any individual with a proper part has another that is disjoint with the first. The ax-
iom set (SA0)—(SA3) still permits various models Simons regards as unsatisfactory,
in which overlapping individuals do not have a unique product or intersection. Such
models are ruled out by adding:

(SA6) Vx, y[O(x,y) — zVw[P(w, 7) = P(w, x) A P(w, y)],

which ensures the existence of such a unique product. This system of four axioms
defines the system known as minimal extensional mereology. We do not have space
here to present the many other variations of mereology, but refer the reader to the
literature, in particular [189, 27].

13.2.4 Mereotopology

It is clear that topology must form a fundamental aspect of qualitative spatial reasoning
since topology certainly can only make qualitative distinctions. Although topology has
been studied extensively within the mathematical literature, much of it is too abstract
to be of relevance to those attempting to formalise common-sense spatial reasoning.
Although various qualitative spatial theories have been influenced by mathematical
topology, there are number of reasons why such a wholesale importation seems unde-
sirable in general [100], in particular, the absence of consideration of computational
aspects, such as we consider below in Section 13.3. In fact mereotopology is the most
studied aspect of QSR and for this reason we devote particular attention to it in this
chapter.

SFor the sake of uniformity, in a number of cases we have renamed predicate and other symbols in this
chapter from the original formulation.
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Although Whitehead tried to define topological notions within mereology [210],
this is not possible, and requires some further primitive notions. Varzi [205, 204]
presents a systematic account of the subtle relations between mereology and topology.
He notes that whilst mereology is not sufficient by itself, there are theories in literature
which have proposed integrating topology and mereology (henceforth, mereotopol-
0gy). There are three main strategies of integrating the two:

e Generalise mereology by adding a topological primitive. Borgo et al. [21] add
the topological primitive SC(x), i.e., x is a self connected (one-piece) spatial
entity to the mereological part relation. Alternatively a single primitive can be
used as in [205]: “x and y are connected parts of z”. The main advantage of
separate theories of mereology and topology is that it allows collocation without
sharing parts’ which is not possible in the second two approaches below.

e Topology is primal and mereology is a subtheory. For example in the topological
theories based on C(x, y) (x is connected to y, discussed further below) one de-
fines P(x, y) from C(x, y). This has the elegance of being a single unified theory,
but collocation implies sharing of parts. These theories are normally boundary-
less (i.e., without lower dimensional spatial entities) but this is not absolutely
necessary [161, 4], as discussed further below.

e The final approach is that taken by [73], i.e., topology is introduced as a spe-
cialised domain specific subtheory of mereology. An additional primitive needs
to be introduced. The idea is to use restricted quantification by introducing a
sortal predicate, Rg(x), to denote a region. C(x, y) can then be defined thus:

C(x, y) =ar O(x, y) ARg(x) ARg(y).

In the remainder of this subsection, we concentrate on the first two approaches,
which are largely based on approaches based on work to be found in the philosophical
logic community in particular the work of Clarke [33, 34] which was in turn based
on the theory of extensive connection outlined by Whitehead in Process and Real-
ity [211]. Other work in this tradition is cited below and more extensively in [49], in
each case building axiomatic theories of space which are predominantly topological in
nature, and which take regions rather than points as primitive—indeed, this tradition
has been termed as “pointless geometries” [96]. We concentrate here on overviewing
the axiomatic approach to mereotopology; the reader is referred to [17] for a thor-
ough treatment of the algebraic and axiomatic approaches to mereotopology and their
relationship.

As has been pointed out [49], not all this work agrees in its basic terms; even where
there is agreement on vocabulary, such as the use of a binary connection predicate, it is
not always interpreted in the same way. A model-theoretic framework for investigating
the logical space of mereotopological theories and comparing the main options in light
of their intended models has been set out [49]. We now describe this framework further
since it also provides an overview of the various approaches to mereotopology (for
details see [49]).

All the theories are interpreted with respect to some topological space, 7', on which
a closure operator c(x) is axiomatised in a standard way:

TFor further discussion of this issue see [27, 58].
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Figure 13.2: The three C relations (limit cases); a solid line indicates closure.

(A0) @ =c().

(Al)  x Ccx).

(A2)  c(c(x)) < c(x).

(A3) c(x)Uc(y) =c(xUy).

Three different notions of connection are then defined (which are illustrated in
Fig. 13.2), the semantics which are given by:

Cilx,y)©xnNy#40,
Co(x,y) ©xNc(y) £ZWBorc(x)yNy # .
C3(x, y) « c(x) Nc(y) # ¥,

However, since some mereotopologies (e.g., see the first of the three strategies outlined
above) have multiple primitives, two further primitives are made available:

Pp(x, y) =ar ¥2(Cu(z, x) = Cu(z, y)) (1 <n<3)
onx$ =ay 1z9y(Cu(y, 2) < (P ACu(y, x))) (I <n<3)

Intuitively: x is part (P,) of y iff whatever is connected (C,,) to x is also connected (C,,)
to y, and the fusion (o;,) of all ¢-ers (where ¢ is some formula with x free) is that thing
(if it exists at all) that connects,, precisely to those things that ¢ (i.e., for which ¢ holds
for that particular binding of x). Many theories define these notions in terms of the
same connection relation that is assumed as a topological primitive, in which case the
above reduce to ordinary definitions in the object language of the theory. However, this
need not be the case, and in fact an important family of theories stem precisely from the
intuition that parthood and connection cannot be defined in terms of each other. This
effectively amounts to using two distinct primitives—two notions of connection (one
of which is used in defining parthood), or a notion of connection and an independent
notion of parthood. Accordingly, and more generally, the framework considers the
entire space of mereotopological theories that result from the options determined by
the above definitions when 1 < n < 3. That is to say, in the object language all three
connection predicates are available as primitives, and the framework models theories
in which some such predicates are defined in term of others by adding suitable axioms
in place of the corresponding definitions. The choice of which primitives are used will
be indicated with a triple,® which is called a rype, T = (i, j, k) (where 1 < i, j, k < 3),
the three components, respectively, indicating which C;, P; and oy relation is being

81n fact, in [49] a type is quadruple, but we ignore the final component here.
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used in the corresponding t-theory, thus:

Cii,jiy(x, ¥) =ar Ci(x, y),
P jx(x,y) =ar Pj(x,y),
0(i,j )X =af okx.

There are a great many mereotopological relations which can be defined using these
three primitives. We list some of the most common here:

Oc(x,y) =ar 32(P:(z,x) AP¢(z,y)) x t-overlaps y

Ar(x,y) =ar Cc(x, y) A =0 (x,y) x T-abuts y

E:(x,y) =af Pe(x,y) AP<(y,x) x T-equals y

PP:(x,y) =afr P (x,y) A =P<(y, x) x is a proper t-part of y

TP (x,y) =af Pz (x,y) AJz(Ac(z,x) ANAr(z,y)) xisatangential T-partof y

IP:(x,y) =af P:(x,y) A=TP¢(x,y) x is an interior t-part of y

BP.(x, y) =af Yz(P:(z, x) = TP:(z, y)) x is a boundary t-part of y

PO:(x,y) =4r Oz(x,y) A —=Pz(x,y) A =P:(y,x) x properly t-overlaps y

TO: (x, y) =4f 3z2(TP.(z, x) A TP-(z, y)) x tangentially t-overlaps y

10 (x, y) =ar 3z(IP: (2, x) AP (z,y)) x internally T-overlaps y

BO: (x, y) =dafr Oz (x, y) A =10 (x, y) x boundary t-overlaps y

X =45 0:2Vx(¢p — Pr(z, X)) t-product of ¢-ers

X +¢y =df 0:2(P¢(z,x) VPi(z,y)) 7-sum of x and y

x X7y =af 07:2(Pr(z,x) APz(z,y)) t-product of x and y

x —¢ y =af 0:2(Pz(z, x) A =0¢(z, y)) t-difference of x and y

ke (x) =dqf 07270 (2, x) t-complement of x

iz (x) =qf 0¢2IP¢(z, X) T-interior of x

er(x) =qr iz (ke (X)) T-exterior of x

Ce(x) =ar ke(er(x)) r-closure of x

bz (x) =df Cr (x) —¢ iz (x) t—boundary of x

Ur =4r 0:20:(z, 2) T-universe

Bd: (x) =4 JyBP:(x, y) x is a T-boundary

Rg. (x) =ar yIP<(y, x) X is a T-region

Op; (x) =ar Er(x, iz (x)) x is T-open

Cly (x) =ar E¢(x, cz(x)) x is T-closed

Re: (x) =qr E¢ (i (x), iz (cr (x))) x is T-regular

Cne(x) =ar YYVz(Er (x,y +7 2) = Co(y, 2)) x is T-connected (i.e. in
one piece)

CP:(x,y) =ar Pr(x,y) ACn¢(x) X is a T-connected part of y

Depending on the structure of 7, the notions thus defined may receive different
interpretations, hence the gloss on the right should not be taken too strictly. One in-
tended interpretation of the binary relations relative to the Euclidean plane R>—an
interpretation that justifies the gloss—is illustrated in Figs. 2 and 3 in [49]. However,
the exact semantic consequence of these definitions may change radically from one
framework to another, depending on the type t and on the constraints in the model
theory.
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It is easy to see that the following formulas are true in every canonical model for all
types t (i.e., C; is reflexive and symmetric), and indeed these formulae are normally
included as axioms in any mereotopology based on a binary connection relation:

(Cly)  Ce(x,x).
(C27)  Crlx,y) = Ce(y, x).

Similarly, the following are always logically true in view of the definition of P; (and
are included as axioms if parthood is not defined in terms of connection, i.e., the first
and second indices of the type are different):

(P1;) P:(x, x).

(P2¢)  (P(x,y) APe(y,2)) = Pi(x, 2).

Another important property that is often associated with parthood is antisymmetry.
There are two formulations of this property, depending on whether we use 7-equality
(E;) or plain equality (=). The first formulation:

(P3:)  (Pc(x,y) APz(y,x)) = Ec(x, y)

is obviously true by definition. However, the second formulation:

(P3:=)  (Pe(x, ) AP(y,x)) = x=y

is stronger and may fail in some models. Antisymmetry in the sense of (P3;-) is
logically equivalent to the requirement that parthood be extensional in the following
sense:

(P4:=)  Vz(P(z,x) < P:(z,¥) > x =y,
which in turn is equivalent to the requirement that connection is likewise extensional:
(C3:=)  Vz(Ce(z,x) © Ce(z,y)) > x =y,

These requirements are stronger than the corresponding versions for E;. These latter
are logically true, but whether a model satisfies (P4;~) and (C3;~) depends crucially
on the relevant closure operator ¢ and on which sets are included in the universe U'.

It can easily be shown that for any pair of types 71 = (i1, J, k) and 1 = (i2, J, k),
the following holds whenever i1 < is:

(C4iyiy)  Cr(x,y) = Cpy(x, y).

The three parthood predicates are not, in general, related in a similar fashion. In
fact, no instance of the following inclusion schema is generally true when 71 # 13:

(P5i1i2) PT] ()C, y) - P‘[Q(x» y)

Some mereotopologies include boundaries (i.e., lower dimensional entities) in their
domain of discourse; others do not; these cases are examined separately below.

Boundary-tolerant theories

It turns out that none of the cases where 1 is uniform (i = j = k) are viable:
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(a) The option i = 1 yields implausible topologies in which the boundary of a
region is never connected to the region’s interior (since the boundary and the
interior never share any points).

(b) The option i = 2 yields implausible mereologies in which every boundary is
part of its own complement (since anything connected to the former is con-
nected to the latter).

(c) The option i = 3 yields implausible mereotopologies in which the interior
of a region is always connected to its exterior (so that boundaries make no
difference) and in which the closure of a region is always part of the regions
interior.

There is also a sense in which these theories trivialise all mereotopological distinc-
tions in the presence of boundaries. For (a)—(c) imply that if T is uniform, any model
that includes the boundaries of its elements satisfies the conditional: C;(x,y) —
O‘L’ (x ’ y) .

Hence, in every such model the t-abut predicate A; defines the empty relation, and
so do the predicates of tangential and boundary parthood (TP, BP;) and tangential
and boundary overlap (TO;, BO;). Thus if boundaries are admitted in the domain,
uniformly typed theories appear to be inadequate. In fact, this applies not only to
uniform types, but to all types where i = j. (See [18, 96] for related material.)

Moving on to non-uniform types, we may note that some theories have been explic-
itly proposed in the literature, specifically for the case T = (2, 1, 1). An early example
is to be found in [25], though the topological primitive there is Op, rather than C;.
(One gets a definitionally equivalent characterisation of C; via the definitions above.
A similar warning applies to some other theories discussed below.) Other examples are
in [49]. Since parthood P; is not defined in terms of the connection primitive C., these
theories need at least two distinct primitives (corresponding to the parameters 1 and 2
in the type); but since fusion o7 is typically understood using the same primitive as
parthood, a third primitive is not needed (whence the equality of the second and third
coordinates in the type). These theories typically represent an attempt to reconstruct
ordinary topological intuitions on top of a mereological basis. In fact, it is immedi-
ate from the definition that in this case C; corresponds to the notion of connection
of ordinary point-set topology: two regions are connected if the closure of one inter-
sects the other, or vice versa. Moreover, P; is typically assumed to satisfy the relevant
extensionality and inclusion principles.

Thus, a minimal theory of this kind is typically axiomatised using (C1;), (C2;),
(P1;), (P2;), (P3;), (P512). If a fusion principle is added, the result is a mereotopol-
ogy subsuming what is known as classical extensional mereology [189, 27], in which
P. defines a complete Boolean algebra with the null element deleted. Further adding:

(A1) Pr(x, ce(x)).
(A2")  Pr(cr(cc (%)), Cr(x)).
(A3")  Er(cr(x) +7 Co(y), Cr(x +¢ y))

gives what may be called a full mereotopology, in which ¢, behaves like the standard
Kuratowski closure operator. ((A0) has no analogue due to the lack of a null element.)



A.G. Cohn, J. Renz 563

All of these theories, of course, must account in some way for the intuitive difficul-
ties that arise out of the notion of a boundary, and correspondingly of the distinction
between open and closed entities. For instance, Smith [57] considers various ways of
supplementing a full mereotopology with a rendering of the intuition that boundaries
are ontologically dependent entities [190], i.e., can only exist as boundaries of some
open entity (contrary to the ordinary set-theoretic conception). In the notation here the
simplest formulation of this intuition is given by the axiom:

(B1)  BP:(x,y) = 32(Op, (z) A BP:(x, ¢;(2))).

It is noteworthy that all theories of this sort have type (2, 1, 1). It is conjectured [49]
that this is indeed the only viable option.

Boundary-free theories

Though the idea of a uniform type appears to founder in the case of boundary-tolerant
theories, it has been taken very seriously in the context of boundary-free theories, i.e.,
theories that leave out boundaries from the universe of discourse in the intended mod-
els. Theories of this sort are rooted in [210, 56] and have recently become popular
under the impact of Clarke’s formulation [33, 34] (see also [96]). Clarke’s own is a
(1, 1, 1)-theory, and some later authors followed this account (e.g., [4, 5, 161]). How-
ever, one also finds examples of theories of type (2, 2, 2) (e.g., in [105, 156]) as well
as of type (3, 3, 3) (especially in the work of Cohn et al., [43, 48, 100, 163]) which
has led to an extended body of results and applications in the area of spatial reasoning;
see [81] for an independent example of a type (3, 3, 3) theory. Indeed, all boundary-
free theories in the literature appear to be uniformly typed: this is remarkable but not
surprising, since the main difficulties in reducing mereology to topology lies precisely
in the presence of boundaries. Now, by definition, a boundary-free 7-theory admits of
no boundary elements. In axiomatic terms, this is typically accomplished by adding a
further postulate to the effect that everything is a region (i.e., has interior parts):

(R) VxRg;(x)

which implies the emptiness of the relations BP; and BO,, hence of Bd;. So b (x) is
never defined in this case. It is worth noting that such theories typically afford some
indirect way of modelling boundary talk, e.g., as talk about infinite series of extended
regions (cf. [18, 34, 72]). In this sense, these theories do have room for boundary
elements, albeit only as higher-order entities. Note also the discussion of points and
regions above in Section 13.2.1.

Consider now the three main options mentioned in the previous section, where t
is a basic uniform type of the form (i, i, /). Unlike their boundary-tolerant counter-
parts, none of these options yields a collapse of the distinction between tangential and
interior parthood (TP, IP;) or between tangential and interior overlap (TO;, 10;).
However, the three options diverge noticeably with regard to the distinction between
open and closed regions (Op,, Cl;). The general picture is as follows.

(a) The case i = 1 allows for the open/closed distinction, yielding theories in
which the relation of abutting (A;) is a prerogative of closed regions (open regions
abut nothing). As a corollary, such theories determine non-standard mereologies that
violate the supplementation principle given above in Section 13.2.3. This is a feature
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that some authors have found unpalatable: as Simons [189] put it, one can discrimi-
nate regions that differ by as little as a point, but one cannot discriminate the point.
There are also some topological peculiarities that follow from the choice of Cy as a
connection relation. For instance, it follows immediately that no region is connected
to its complement, hence that the universe is bound to be disconnected. This was noted
in [4, 34], where the suggestion is made that self-connectedness should be redefined
accordingly:

Cnz (x) =ar YyVz(Er (x,y +r 2) = Cr(cc(¥), € (2))).

This, however, is just a way of saying that self-connectedness must be defined with
reference to a different notion of connection (namely, the notion obtained by taking
i =3).

(b) The case i = 2 also allows for the open/closed distinction, but yields theories
in which the relation of abutting may only hold between two regions one of which is
open and the other closed in the relevant contact area. This results in a rather standard
topological apparatus, modulo the absence of boundary elements. However, also in
this case the mereology is bound to violate (WSP). (Again, just take y open and x
equal to the closure of y.)

(c) The case i = 3 is the only one where the open/closed distinction dissolves: in
this case every region turns out to be t-equal to its interior as well as to its closure. This
follows from (P3;), i.e., equivalently, from (C3;) or (P4;). This means that t-theories
of this sort cannot be extensional—in fact, they yield highly non-standard mereologies.
However, this is coherent with the fundamental idea of a boundary-free approach. For
one of the main motivations for going boundary-free is precisely to avoid the many
conundrums that seem to arise from the distinction between open and closed regions
[100]. In addition, and for this very same reason, such theories can validate (SA3),
thereby eschewing the problem mentioned in (a) and (b) above.

The best known case of (¢), i.e., a mereotopology with type (3, 3, 3) was first pre-
sented in [163], and elaborated subsequently in a series of papers including [43, 48,
100, 44], which has been called the Region Connection Calculus (RCC).
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Figure 13.3: 2D illustrations of the relations of RCC-8 calculus and their continuous transitions (concep-
tual neighbourhood).

9Galton [92] coined this name.
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In particular, a set of eight JEPD relations has been defined within the RCC
mereotopology and this is now generally known as RCC-8, see Fig. 13.3.10 The re-
lation names used here differ from the relations defined above, but correspond thus
(assuming the type is (3, 3, 3) in each case): DC: —C, EC: A, PO: PO, TPP: TP A —E,
NTPP: IP, EQ: E; TPPi and NTPPi are simply the inverses of TPP and NTPP. The
definitions of RCC-8 symbols, in particular k(x), differ from that given above—see
[163], and in particular the discussion in [13, Section 3.3.3].

Examples of non-uniformly typed boundary-free theories are much rarer. How-
ever, one may imagine that such theories could also alleviate some of the unpalatable
properties of the uniformly typed mereotopologies mentioned in (a) and (b) above. For
example, a type of the form (1, 3, k) would correspond to a mereotopology in which a
type-1 notion of connection is combined with a type-3 parthood relation that satisfies
the supplementation principle (WSP). Similarly with a type of the form (2, 3, k). An
example of a theory with a type 3 connection relation interpreted in boundary free
models and a separate parthood relation is [128]—influenced by [177] this generalises
the RCC system and the discrete mereotopology of Galton [91] to allow for discrete
models of RCC (not possible in the standard theory cited above).

Topology via “n-intersections”

An alternative approach to representing and reasoning about topological relations has
been promulgated via a series of papers including [65, 64, 69]. Three sets of points
are associated with every region—its interior, boundary and complement. The rela-
tionship between any two regions can be characterised by a 3 x 3 matrix'! called the
9-intersection model, in which every entry in the matrix takes one of two values, de-
noting whether the intersection of the two point sets is empty or not; for example, the
matrix in which every entry takes the non-empty value corresponds to the PO relation
above.!? Although it would seem that there are 2° = 512 possible matrices, after tak-
ing into account the physical reality of 2D space and some specific assumptions about
the nature of regions, it turns out that the there are exactly 8 remaining matrices, which
correspond to the RCC-8 relations. Note, however, that the 9-intersection model only
considers one-piece regions without holes in two-dimensional space, while RCC-8 al-
lows much more general domains. Therefore, even though the two sets of relations
appear similar, their computational properties differ considerably and reasoning in
RCC-8 is much simpler than reasoning in the 9-intersection model [166]. One can
also use the 9-intersection calculus to reason about regions which have holes by clas-
sifying the relationship not only between each pair of regions, but also the relationship
between each hole of each region and the other region and each of its holes [68].

107 simpler, purely mereological calculus (usually called RCC-5), in which the distinctions between
TPP and NTPP, TPPi and NTPPi, and DC and EC are collapsed has also been defined and investigated [127,
117].

1 Actually, a simpler 2 x 2 matrix [65] known as the 4-intersection featuring just the interior and the
boundary is sufficient to describe the eight RCC relations. However the 3 x 3 matrix allows more expressive
sets of relations to be defined as noted below since it takes into account the relationship between the regions
and its embedding space.

12The RCC-8 relations have different names in the 9-intersection model, in fact English words such as
“overlap” instead of PO.



566 13. Qualitative Spatial Representation and Reasoning

Different calculi with more JEPD relations can be derived by changing the under-
lying assumptions about what a region is and by allowing the matrix to represent the
codimension of intersection. For example, one may derive a calculus for representing
and reasoning about regions in Z2 rather than R? [71]. Alternatively, one can extend
the representation in each matrix cell by the specifying dimension of the intersection
rather than simply whether it exists or not [36]. This allows one to enumerate all the
relations between areas, lines and points and is known as the “dimension extended
method” (DEM). A very large number of possible relationships may be defined in this
way and a way termed as the “calculus based method” (CBM) to generate all these
from a set of five polymorphic binary relations between a pair of spatial entities x and
y: disjoint, touch, in, overlap, cross has been proposed [41]. A complex relation be-
tween x and y may then be formed by conjoining atomic propositions formed by using
one of the five relations above, whose arguments may be either x or y or a boundary or
endpoint operator applied to x or y. For the most expressive calculus (either the CBM
or the combination of the 9-intersection and the DEM) there are 9 JEPD area/area re-
lations, 31 line/area relations, 3 point/area relations, 33 line/line relations, 3 point/line
relations and 2 point/point relations giving a total of 81 JEPD relations [41].

13.2.5 Between Mereotopology and Fully Metric Spatial
Representation

Mereology and mereotopology can be seen as perhaps the most abstract and most qual-
itative spatial representations. However, there are many situations where mereotopo-
logical information alone is insufficient. The following subsections explore the dif-
ferent ways in which other qualitative information may be represented. After this, in
Section 13.2.6 we look at how easily a spatial representation with a coordinate system
and thus the full power of a geometry can be defined from qualitative primitives.

Direction and orientation

Direction relations describe the direction of one object to another, and can be defined
in terms of three basic concepts: the primary object, the reference object and the frame
of reference. Thus, unlike the mereotopological relations on spatial entities described
in the preceding sections, a binary relation is not sufficient; i.e., if we want to specify
the orientation of a primary object with respect to a reference object, then we need to
have some kind of a frame of reference. This characterisation manifests itself in the
display of qualitative direction calculi to be found in the literature: certain calculi have
an explicit triadic relation while others presuppose an extrinsic frame of reference
(such as the cardinal directions of E,N, S, W) [86, 112], or assume that objects have
an intrinsic front (so that we can talk, for example, of being to the left of a person or
vehicle); in this case we normally speak of orientation calculi, being the special case
of a direction calculus when the primary object has an intrinsic front.

Of those with explicit triadic relations, a common scheme is to define (assuming
attention is restricted to a 2D plane—as is usually the case in the literature) three
relations between triples of points, denoting, clockwise, anti-clockwise or collinear
ordering [184, 186, 176]. Schlieder developed a calculus [185] for reasoning about
the relative orientation of pairs of line segments. Another triadic calculus is [116]
which first defines binary relations on directed line segments using left/right relations
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Figure 13.4: Different STAR calculi, the left one is defined using eight intersecting lines which result in
33 JEPD relations, the right one using four intersecting lines resulting in 17 JEPD relations. The STAR
calculus allows any number and orientation of intersecting lines.

based on the intrinsic directedness of the line, and then defines ternary relations in
terms of these, giving a 24 JEPD relation set, from which relations defining clockwise,
anticlockwise and collinear can be recovered via disjunction.

For those calculi that use an extrinsic frame of reference, it is most common to
use a given reference direction. This allows the orientation between two objects to be
represented with respect to the reference direction using just binary relations. The first
approaches described the directions of points in a 2D space. Frank [86] distinguished
different ways of defining sectors for the different direction relations, cone-based and
projection based (also called the cardinal direction algebra [130]), which both divide
the plane into sectors relative to a point by using lines that intersect at the corre-
sponding point. These calculi were later generalised for direction sectors generated
by an arbitrary number of intersecting lines and form the STAR algebra [171] shown
in Fig. 13.4. Interestingly, it turned out that once more than two intersecting lines are
used for defining sectors, it is possible to generate a coordinate system and thus the
distinction between qualitative and quantitative representation disappears. The solu-
tion to this dilemma is not to consider the lines as separate relations but to integrate
them with sectors.

Most calculi for direction and orientation are based on points rather than regions,
as calculi become rather coarse grained in the latter case. There are exceptions, for
example, [101] or [135] in which directions within regions are considered (London is
in the south of England). Directions for extended regions have mainly been developed
for objects whose boundaries are parallel to the axes of the frame of reference, for ex-
ample, the reference direction and the axis orthogonal to the reference direction, or by
using a minimal bounding box which is parallel to the axes [8, 152]. A calculus which
combines regions, mereotopology and a simple notion of unidimensional direction is
the occlusion calculus of [164].
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Distance and size

Spatial representations of distance can be divided into two main groups: those which
measure on some “absolute” scale, and those which provide some kind of relative
measurement. Of course, since traditional Qualitative Reasoning [209] is primarily
concerned with dealing with linear quantity spaces, the qualitative algebras and the
transitivity of such quantity spaces mentioned earlier can be used as a distance or size
measuring representation, see Chapter 9.

Also of interest in this context are the order of magnitude calculi [140, 158] de-
veloped in the QR community. Most of these traditional QR formalisms are of the
“absolute” kind of 1representations,13 as in the delta calculus of [216]—which intro-
duces a triadic relation: x(>, d)y to note that x is larger/bigger than y by an amount
d; terms such as x (>, y)y mean that x is more than twice as big as y.

Of the “relative” representations specifically developed within the qualitative spa-
tial reasoning community, perhaps the earliest is the triadic CanConnect(x, y, z) prim-
itive [S6]—which is true if body x can connect y and z by simple translation (i.e.,
without scaling, rotation or shape change). From this primitive it is easy to define no-
tions such as equidistance, nearer than and farther than. This primitive allows a metric
on the extent of regions to be defined: one region is larger than another if it can con-
nect regions that the other cannot. Another method of determining the relative size of
two objects relies on being able to translate regions (assumed to be shape and size in-
variant) and then exploit topological relationships—if a translation is possible so that
one region becomes a proper part of another, then it must be smaller [143]; this idea is
exploited in [51] to represent and reason about object location.

Of particular interest is the framework for representing distance [113] which has
been extended to include orientation [40]. A distance system is composed of an or-
dered sequence of distance relations and a set of structure relations which give addi-
tional information about how the distance relations relate to each other. Each distance
has an acceptance area; the distance between successive acceptance areas defines se-
quence of intervals: 81, &2, . ... The structure relations define relationships between
these §;. Typical structure relations might specify a monotonicity property (the §; are
increasing), or that each §; is greater than the sum of all the preceding §;. The struc-
ture relationships can also be used to specify order of magnitude relationships, e.g.,
that §; + 8; ~ §; for j < i. The structure relationships are important in refining the
composition tables.'* In a homogeneous distance system all distance relations have
the same structure relations; however this need not be the case in a heterogeneous dis-
tance system. The proposed system also allows for the fact that the context may affect
the distance relationships: this is handled by having different frames of reference, each
with its own distance system and with inferences in different frames of reference being
composed using articulation rules (cf. [115]).

One obvious effect of moving from one scale, or context to another, is that qualita-
tive distance terms such as “close” will vary greatly; more subtly, distances can behave
in various “non-mathematical” ways in some contexts or spaces: e.g., distances may

13Actually it is straightforward to specify relative measurements given an “absolute” calculus: to say that
X >y, one may simply write x — y = +.
148ection 13.3.2 introduces composition tables.
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not be symmetrical.'> Another “mathematical aberration” is that in some domains the
shortest distance between two points may not be a straight line (e.g., because a lake or
a building might be in the way), or the “Manhattan Distance” found in typical North
American cities laid out in a grid system.

Shape

Shape is perhaps one of the most important characteristics of an object, and partic-
ularly difficult to describe qualitatively. In a purely mereotopological theory, very
limited statements can be made about the shape of a region: e.g., whether it has holes,
or interior voids, or whether it is one piece or not. It has been observed [92] that
one can (weakly) constrain the shape of rigid objects by topological constraints using
RCC-8 relations.

However, if an application demands finer grained distinctions, then some kind of
semi-metric information has to be introduced.'® For an explicit qualitative shape de-
scription one needs to go beyond mereotopology, introducing some kind of shape
primitives whilst still retaining a qualitative representation. Of course, as [39] note:
the mathematical community have developed many different geometries which are
less expressive than Euclidean geometry, for example, projective and affine geome-
tries, but have not necessarily investigated reasoning techniques for them (though see
[7, 10, 35]).

A dichotomy can be drawn between representations which primarily describe the
shape via the boundary of an object compared to those which represent its interior.
Approaches to qualitative boundary description have been investigated using a variety
of sets of primitives. The work of Meathrel and Galton [141] generalises much of this
work. The basic idea is to consider the tangent at each point on the boundary of a 2D
shape—it is either defined (D) or undefined (U)—in this latter case the boundary is at
a cusp or kink point. If it is defined, then the rate of change of the tangent at that point
can be considered (assuming a fixed (anticlockwise) traversal of the boundary), as can
all the higher order derivatives (until it becomes undefined). Each derivative takes one
of the qualitative values +, 0, —, and at the level of the first derivative denotes whether
the shape is locally convex, straight or concave. Depending on how many higher or-
der derivatives are considered, the description becomes progressively more and more
detailed, and a greater variety of different shapes can be distinguished. The values +
and — can only hold over a boundary segment, whereas 0 and U can hold at a single
boundary point. Thus the description of a boundary starts at a particular point, and
then proceeds, anticlockwise, to label maximal boundary segments having a particular
qualitative value, and isolated points that may separate these. There are constraints on
what sequences of descriptions are possible, and the rules for construction a Token
Ordering Graph (which is an instance of the continuity networks/conceptual neigh-
bourhoods discussed in Section 13.4 below) have been formulated. For example, a +
segment cannot directly transition to a — segment without passing through a U /0 point
or a 0 segment.

15E.g., because distances are sometimes measured by time taken to travel, and an uphill journey may
take longer than a return downhill journey [113].

160f course, orientation and distance primitives as discussed above already add something to pure topol-
ogy, but as already mentioned these are largely point based and thus not directly applicable to describing
shape of a region.
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Shape description by looking at global properties of the region rather than its
boundary has been investigated too, for example, the work of [39] describes shape
via properties such as compactness and elongation by using the minimum bounding
rectangle of the shape and the order of magnitude calculus of [140]: elongation is
computed via the ratio of the sides of the minimum bounding rectangle whilst com-
pactness by comparing the area of the shape and its minimum bounding rectangle. The
medial axis can also be used as a proxy for shape, and has been used extensively in the
computer vision community, and within a KR setting in [179] for distinguishing lakes
from rivers. The notion of a Voronoi hull has also been used (e.g., [63]).

Combinations of different aspects

Although we have attempted to present various aspects of spatial representation sepa-
rately, in general they interact with each other. For example, knowing the relative size
of two regions (smaller, larger, equal) can effect which mereotopological relationships
are possible [95]. There is also a relationship between distance and the notion of orien-
tation: e.g., distances cannot usually be summed unless they are in the same direction,
and the distance between a point and a region may vary depending on the orienta-
tion. Thus it is perhaps not surprising that there have been a number of calculi which
are based on a primitive which combines distance and orientation information. One
straightforward idea [86] is to combine directions as represented by segments of the
compass with a simple distance metric (far, close). A slightly more sophisticated idea
is to introduce a primitive which defines the position of a third point with respect to
a directed line segment between two other points [217] (generalised to the 3D case
in [150]). Another approach that combines knowledge about distances and positions
in a qualitative way—through a combination of the Delta-calculus [216] and orien-
tation is presented in [215]. Liu [134] explicitly defines the semantics of qualitative
distance and qualitative orientation angles and formulates a representation of quali-
tative trigonometry. A example of a combined distance and position calculus is [75].
A discussion of different ways to combine different aspects can be found in [174].

13.2.6 Mereogeometry

Just as mereotopology extends mereology with topological notions, so mereogeome-
try extends mereology with geometrical concepts. In principle one could add any of
the notions of orientation or distance/size discussed above to mereology, but most of
those are defined on points rather than regions which mereology presumes. In the style
of [49] for mereotopology, Borgo and Masolo [22] compare and contrast a range of
mereogeometries. The benchmark system is Region Based Geometry (RBG) [14, 16]
which builds on the earlier work of Tarski [195]. This uses P(x, y) and S(x) (x is
a sphere) as primitives, and captures full Euclidean geometry, in a region based set-
ting. RBG is axiomatised in second order logic, and has been shown to be categorical
[14]. Three other systems [21, 148, 56, 57] are shown to be equivalent, and all are
termed Full Mereogeometries; these other systems have different sets of primitives,
for example, the CanConnect primitive mentioned above in Section 13.2.5 or the prim-
itive CG(x, y) (x is congruent to y). A fifth system [200, 6], which uses the primitive
Closer(x, y, z) (x is closer to y than to z) reported there to be slightly weaker, is in fact
also a full mereogeometry, a result which follows as an immediate consequence of the
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results in [54]. It is conjectured in [22] that the theory obtained by adding a convex
hull primitive to mereotopology (as in extensions of RCC [43]) is strictly weaker. In
fact, in [54] it is shown that this is indeed the case since such a language is invariant
under affine transformations, and thus unable to express properties such as S(x) which
is not invariant. This followed on from an earlier result, in which it was shown that in
a constraint language [55] the primitives for adjacency, parthood and convexity are
sufficient in combination to provide an affine geometry. A similar result is provided
in [156] where it is demonstrated that the first order language with parthood and con-
gruence of primitives also enables the distinction of any two regions not related by an
affine transformation. Moreover, it is shown that a coordinate system can be defined in
this language, thus raising the question of whether it deserves the label qualitative—
and indeed this result and question also apply to any full mereogeometry. A similar
observation has already been made above for the STAR calculus [171] described in
Section 13.2.5, and also indeed for the affine mereogeometries based on convexity
mentioned just above [54].

An application of a mereogeometry based on congruence and parthood to reason-
ing about the location of mobile rigid objects is [51]. A simple constraint language
whose four primitives combine notions of congruence and mereology has been de-
fined and investigated from a computational viewpoint [50]—the primitives are EQ,
CGPP, CGPPi (congruent to a proper part, and the inverse relation), and CNO (where
none of the other relations hold).

13.2.7 Spatial Vagueness

The problem of vagueness permeates almost every domain of knowledge represen-
tation. In the spatial domain, this is certainly true, for example, it is often hard to
determine a region’s boundaries (e.g., “southern England”).

Vagueness of spatial concepts can be distinguished from that associated with spa-
tially situated objects and the regions they occupy. An adequate treatment of vagueness
in spatial information needs to account for vague regions as well as vague relationships
[46]. Although there has been some philosophical debate concerning whether vague
objects can exist [76], formal theories dealing with vagueness of extent are not well-
established.

Existing techniques for representing and reasoning about vagueness such as super-
valuation theory have been extended and applied in a spatial context [179] and [15],
which also specifically addresses the issue of the preservation of object identity in the
face of loss of ‘small” parts.

There have also been extensions of existing spatial calculi specifically designed
to address spatial indeterminacy. In particular there have been extensions of both the
RCC calculus [45, 46] (called the “egg-yolk” calculus) and the 9-intersection [37];
the broad approach in each of these is essentially the same—to identify a core region
which always belongs to the region in question (the yolk in the terminology of for-
mer), and an extended region which might or might not be part of it (together forming
the egg). It turns out that if one generalises RCC-8 in this way [46] there are 252
JEPD relations between non-crisp regions which can be naturally clustered into 40
equivalence classes, and 46 JEPD relations, clustered into 13 equivalence classes in
the case of the extension to the purely mereological RCC-5. The axiomatic presenta-
tion of the egg-yolk calculus in [46] extends the ontology of crisp regions with vague



572 13. Qualitative Spatial Representation and Reasoning

(non-crisp) ones and relies on an additional binary relation, ‘x is crisper than region
y’. An application of the egg-yolk calculus to reasoning about a non-spatial domain,
class integration across databases, is [127].

It has been shown [38] that the extension of the 9-intersection model to model
regions with broad boundaries can be used to reason not just about regions with inde-
terminate boundaries but also can be specialised to cover a number of other kinds of
regions including convex hulls of regions, minimum bounding rectangles, buffer zones
and rasters. (This last specialization generalises the application of the n-intersection
model to rasters previously undertaken [71].)

Another notion of indefiniteness relates to locations. Bittner [19] deals with the
notion of exact, part and rough location for spatial objects. The exact location is the
region of space taken up by the object. The notion of part location (as introduced by
[26]) relates parts of a spatial object to parts of spatial regions. The rough location of
a spatial object is characterised by the part location of spatial objects with respect to a
set of regions of space that form regional partitions. Consequently, the notion of rough
location links parts of spatial objects to parts of partition regions.

Bittner [19] argues that the observations and measurements of location in physical
reality yield knowledge about rough location: a vaguely defined object o is located
within a regional partition consisting of the three concentric regions: ‘core’, ‘wide
boundary’ and ‘exterior’. In this context, the notion of rough location within a partition
consisting of the three concentric regions coincides with the notion of vague regions
introduced by [45].

It is worth noting the similarity of these ideas to rough sets [60], though the exact
relationship has yet to be fully explored, though see, for example, [154, 20]. Other ap-
proaches to spatial uncertainty are to work with an indistinguishability relation which
is not transitive and thus fails to generate equivalence classes [199, 118], and the de-
velopment of nonmonotonic spatial logics [188, 3].

13.3 Spatial Reasoning

In the previous section we described some approaches to representing spatial informa-
tion and gave different examples of spatial representations from the vast literature
on this topic. For some purposes it is enough to have a representation for spatial
knowledge, but what makes intelligent systems intelligent is their ability to reason
about given knowledge. There are different reasoning tasks an intelligent system might
have to perform. These include deriving new knowledge from the given information,
checking consistency of given information, updating the given knowledge, or finding
a minimal representation. Even though these reasoning problems are quite different,
they can be transformed into each other, and algorithms developed for one reasoning
problem can often easily be modified to solving other reasoning problems. Much of
the research on spatial reasoning has therefore focused on one particular reasoning
problem, the consistency problem, i.e., given some spatial information, is the given
information consistent or inconsistent.

In principle, reasoning about spatial knowledge given in the form of a logical
representation is not different from reasoning about other kinds of knowledge. How-
ever, much of the qualitative spatial knowledge we are dealing with is of a very
particular form and can be represented as relations between spatial entities. We are
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usually considering binary and sometimes ternary relations which can be represented
as constraints restricting the spatial properties of the entities we are describing. This
constraint-based representation gives us the possibility to develop reasoning algo-
rithms which are much more efficient than standard logical deduction, albeit less
powerful.

A constraint-based representation of spatial knowledge takes the form of an ex-
istentially quantified first-order logical expression: 3x; ... 3x, A; ; V rea R(xi, x;),
where x1, ..., x, are variables over the domain of spatial entities, A is the set of avail-
able base relations, and R(x;, x;) is a binary constraint which restricts the possible
instantiations of x;, x; to the tuples of R. Solving this formula is basically a constraint
satisfaction problem (CSP) as described in Chapter 4. One of the major differences of
spatial relations and spatial constraints to those constraints described in Chapter 4 is
that the domain of spatial entities is usually infinite, i.e., there is an infinite number of
spatial entities that can be assigned to the variables x, ..., x, and which might have
to be tested when deciding consistency of spatial information. While standard CSPs
over finite domains are in general NP-complete, spatial CSPs over infinite domains are
potentially undecidable.

Spatial reasoning with constraints and relations mainly relies on algebraic opera-
tors on the relations, the most important being the composition operator. Two relations
R and § are composed according to the following definition: R o § = {(x, y) | 3z:
(x,z) € R and (z, y) € S}. Composition has to be computed using the formal seman-
tics of the relations. Due to the infinite domains, computing composition can be an
undecidable problem. If the compositions of the base relations can be computed, they
can be stored in a composition table and reasoning becomes a matter of table look-ups.

The main research topics in spatial reasoning in the past decade include the fol-
lowing:

e determining the complexity of reasoning over different spatial calculi,

e proving that a formalism is decidable and if so, possibly identifying tractable or
even maximal tractable subsets of spatial calculi,

e finding representations of qualitative spatial knowledge which allow for more
efficient reasoning,

e developing efficient algorithms for spatial reasoning as well as approximation
methods and heuristics which lead to faster solutions in practice,

e developing methods for proving tractability,
e computing composition tables and verifying their correctness,

e determining whether a qualitative spatial description is realisable, i.e., whether
a planar interpretation exists.

In this section we give an overview of some of the main achievements in this area.
It is worth mentioning that some of these research questions originated in the area
of temporal reasoning and most methods can be applied to both spatial and temporal
reasoning (see Chapter 12).
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13.3.1 Deduction

If the properties of the spatial relations and entities under consideration are represented
axiomatically in a logical formalism, then of course a standard deduction mechanism
for the formalism could be used for reasoning about the spatial knowledge so repre-
sented. As described in Section 13.2.4, the Region Connection Calculus was defined
in first-order logic [163]. Even though reasoning in this first order representation of
RCC (or indeed any first order mereotopology) is undecidable [104], first order theo-
rem proving has been used to verify a number of theorems including those relating to
the RCC-8 composition table [162] and its conceptual neighbourhood [110].

In order to create a decidable reasoning procedure, Bennett developed encodings of
the RCC-8 relations first in propositional intuitionistic logic [11] and later an advanced
encoding in propositional modal logic [12]. The encoding does not reflect the full
expressive power of the first order RCC-8 theory, but does enable a decision procedure
to be built. In the modal encoding, regions are represented as propositional atoms and
a modal operator I is used to represent the interior of a region, i.e., if X represents a
region, then IX represents the interior of X. The interior operator is an S4 modality
and goes back to work by Tarski [194]. The usual propositional operators are used to
represent intersection, union, or complement or regions. In addition, Bennett divides
the propositional formulas into two types, model constraints which have to hold in
all models of the encoding, and entailment constraints which are not allowed to hold
in any model of the encoding. The model and entailment constraints are combined
to a single formula using another modal operator [J which Bennett calls a strong S5
modality.

When encoding spatial relations in different logics, it is important to not only en-
code the properties of the relations, but also the properties of the spatial entities that
are being used. Bennett’s initial encodings were missing the regularity property of re-
gions which was later added to the encoding [172]. The extended modal encoding was
shown to be equivalent to the intended interpretation of the RCC-8 relations [149].

The intuitionistic and modal encodings were not only useful for providing a de-
cidable decision procedure for reasoning about spatial information represented using
RCC-8 relations, but also formed the basis for the subsequent computational analysis
of RCC-8. Nebel [145] used the intuitionistic encoding for showing that the RCC-8
consistency problem is tractable if only base relations are used.!” Renz and Nebel
[172] used Bennett’s modal encoding and transformed it into a classical propositional
encoding. As well as performing actual spatial reasoning on an RCC-8 representation,
the propositional encoding has also been used for analysing the computational proper-
ties of RCC-8. Since modern SAT solvers are extremely efficient, it might be possible
that deductive reasoning can be used for obtaining efficient solutions to spatial reason-
ing problems. A similar analysis has been done by Pham et al. [153] who compared
reasoning over the interval algebra using constraint-based reasoning methods with
deductive reasoning using modern SAT solvers. First results indicate that deductive
reasoning can be more efficient in some cases than constraint based reasoning.

"Due to the missing regularity conditions in the intuitionistic encoding, Nebel’s result turned out to be
incomplete.
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There have been several extensions of the modal encoding of RCC-8 to deal with
more expressive spatial and also with spatio-temporal information. BRCC-8 gen-
eralises the RCC-8 modal encoding to also cover Boolean combinations of spatial
regions [212]. S4,, which is the propositional modal logic S4 extended with the uni-
versal modalities is the most general version and contains both BRCC and RCC-8 as
fragments [213]. Several of these fragments have been combined with different tem-
poral logics and compared with respect to their expressiveness and their complexity
[89]. Modal logics are closely related to Description Logics, and in this context, we
note that some research has been on spatial description logics [106].

Some work has also investigated constraint languages more expressive than
mereotopology: it has been shown that the constraint language of EC(x, y), PP(x, y)
and conv(x) is intractable (it is at least as hard as determining whether a set of alge-
braic constraints over the reals is consistent) [55].

13.3.2 Composition

Given a domain of spatial entities D, spatial relations are subsets of the cross-product
of D and may contain an infinite number of tuples, i.e., R  {(a, b) | a, b € D}, since
D may itself be infinite. Having a set of jointly exhaustive and pairwise disjoint base
relations A and considering the powerset 24 of the base relations as the set of possible
relations, the algebraic operations union, intersection, and complement of relations are
straightforward to compute. If the set of base relations is chosen in a way such that
the converse relations of all base relations are also base relations, then the converse
operator is also easy to compute. The most important algebraic operator which is the
basis for reasoning over spatial relations is the composition operator which is defined
as RoS ={(x,y)|3z: (x,z) € Rand (z, y) € S} for two relations R and S. If com-
position is known for all pairs of base relations, then composition of all relations can
be computed as the union of the pairwise compositions of all base relations contained
in the relation, i.e., Ro§S = {R; 0o §; | R;,S; € A, R, C R, S; € S}. Therefore,
if the composition and the converse of all base relations are known and if they are all
contained in 2“4, 1.e., if 24 is closed under composition and converse, then it is pos-
sible to reason about spatial relations without having to consider the tuples contained
in the relations. The relations can then be treated as symbols that can be manipulated
using the algebraic operators. In the following section we describe how this can be
done using constraint-based reasoning methods.

The question remains how the composition of base relations can be computed if the
domains are infinite. While it is possible to compute composition in situations where
the domains can be ordered or are otherwise well-structured (for example, domains
based on linear orders such as the Directed Interval Algebra [168] or the rectangle
algebra [8]), in many cases it is not possible to compute composition effectively. This
includes RCC-8 where it is possible to find example scenarios which show that the
given composition table is not correct. One example given by Diintsch [61] considers
three regions A, B, C in two-dimensional space where A is a doughnut and B its
hole. It is not possible to find a region C which is externally connected to A and B
and therefore the tuple (A, B) which is contained in the relation EC is not contained
in EC o EC. So the composition of EC with EC does not contain EC even though
this is specified in the RCC-8 composition table. In cases where it is not possible to
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compute composition or where a set of relations is not closed under composition, it is
necessary to resort to a weaker form of composition in order to apply constraint-based
reasoning mechanisms. Diintsch [61] proposed using weak composition. The weak
composition of two relations R, § € 27" is the strongest relation of 24 which contains
the actual composition, i.e., Ro, S = {B | B € A, BN (R o S) # @}. It is clear that
any set 2A is always closed under weak-composition and therefore constraint-based
reasoning methods can be applied to these relations. The RCC-8 composition table
[162] is actually a weak composition table.

If only weak composition can be used, some of the inferences made by compos-
ing relations are not correct and might lead to wrong results. It has been shown that
correctness of the inferences does not depend on whether composition or only weak
composition is used, but on a different property, namely, whether a set of relations is
closed under constraints [170]. A set of relations 24 is closed under constraints if for
none of its base relations R € A there exists two sets @1, ®, of constraints over 2A
which both contain the constraint x Ry such that the following property holds: ®; and
®, refine the constraint x Ry to the constraints x R1y and x R, y, respectively, where
Ri, R» € R and R N Ry = @. That is none of the atomic relations can be refined to
two non-overlapping sub-atomic relations by using arbitrary sets of constraints.

13.3.3 Constraint-based Spatial Reasoning

Using constraint-based methods for spatial reasoning gives the possibility to capture
much of spatial reasoning within a unified framework. Even though qualitative spatial
information is very diverse and covers different spatial aspects, it is usually expressed
in terms of spatial relations between spatial entities which can be expressed using
constraints. As mentioned in the introduction of this section, many different spatial
reasoning tasks can be reduced to the consistency problem, on which we will focus on
in this section.

Definition 1. Let A be a finite set of JEPD binary relations and over a (possibly
infinite) domain D and S C 2A. The consistency problem CSPSAT(S) is defined as
follows:

Instance: A finite set V of variables over the domain D and a finite set ® of binary
constraints xRy, where R € Sand x,y € V.

Question: Is there an instantiation of all variables in ® with values from D such
that all constraints in © are satisfied?

Constraint-based reasoning uses constraint propagation in order to eliminate values
from the domains which are not consistent with the constraints (see Chapter 4). Since
the domains used in spatial and temporal reasoning are usually infinite, restricting
the domains is not feasible. Instead, it is possible to restrict the domains indirectly
by restricting the relations that can hold between the spatial entities. This can only
be done if there is a finite number of relations and an effective way of propagating
relations, which is the case if we have a set of relations S C 24 which is closed under
intersection, converse and weak composition. These operators are the only means we
have for propagating constraints. While it is possible to use composition of higher
arity, usually only binary composition is used for propagating constraints.
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The best known constraint propagation algorithm for spatial CSPs is the path-
consistency algorithm [136] (see also Chapter 4 of this Handbook). It is a local
consistency algorithm which makes all triples of variables of @ consistent by suc-
cessively refining all constraints using the following operation until either a fixed
point is reached or one constraint is refined to the empty relation: Vx, y, z.x{R}y :=
x{R}yN(x{S}zoz{T}y). If the empty relation occurs, then ® is inconsistent, otherwise
the resulting set is called path-consistent. If 24 is closed under composition, intersec-
tion and converse, then the path-consistency algorithm terminates in cubic time.

Path-consistency is equivalent to 3-consistency [88] which holds if for every con-
sistent instantiation of two variables it is always possible to find an instantiation for
any third variable such that the three variables together are consistent. 3-consistency
can be generalised to k-consistency which holds if for any consistent instantiation of
k — 1 variables there is always a consistent instantiation for any kth variable. In or-
der to compute k-consistency, it is necessary to have (k — 1)-ary composition. In the
following we restrict ourselves to 3-consistency and the associated path-consistency
algorithm which uses binary composition.

In many cases, composition cannot be computed and only weak composition is
available. In these cases, the path-consistency algorithm cannot be applied and a
weaker algorithm, the algebraic-closure algorithm must be used [132]. Both algo-
rithms are identical except that the path-consistency algorithm uses composition while
the algebraic-closure algorithm uses weak composition. If the algebraic closure algo-
rithm is applied to a set of constraints and a fixed point is reached, the resulting set
is called algebraically closed or a-closed. It is clear that unless weak-composition is
equivalent to composition, an a-closed set is usually not 3-consistent.

Local consistency algorithms such as path-consistency and algebraic-closure, and
possible variants of these algorithms which make use of composition of higher arity,
are the central methods that constraint-based reasoning offers to solving the consis-
tency problem. It is highly desirable that for a given set of relations 24 the consistency
problem for the base relations, i.e., CSPSAT(.A), can be decided using a local consis-
tency algorithm. It has been shown that algebraic-closure decides CSPSAT(.A) if and
only if 2 is closed under constraints [170]. While this is mainly useful for show-
ing that algebraic closure does not decide CSPSAT(.A), the other direction has to be
manually proven for each set A and for each domain D. If a decision procedure for
CSPSAT(A) can be found, then the consistency problem for the full set of relations
is also decidable and can be decided by backtracking over all sub-instances which
contain only base relations.

The basic backtracking algorithm takes as input a set of constraints & over a set of
relations S C 2“4, selects an unprocessed constraint x{ R}y of @, splits R into its base
relations By, ..., By, replaces x{ R}y with x{B;}y and repeats this process recursively
until all constraints are refined. If the resulting set of constraints is consistent, which
can be shown using the local consistency algorithm, then @ is consistent. Otherwise
the algorithm backtracks and replaces the last constraint with the next possible base re-
lation x{B;}y. If all possible refinements of @ are inconsistent, then ® is inconsistent.
The backtracking algorithm spans a search tree where each recursive call is a node and
each leaf is a refinement of ® which contains only base relations. If CSPSAT(A) can
be decided in polynomial time, then CSPSAT(24) is in NP and the runtime of the
backtracking algorithm is exponential in the worst case.
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There are several ways of improving the performance of the backtracking algo-
rithm. The easiest way is to apply the local consistency algorithm at every recursive
step. This prunes the search tree by removing base relations that cannot lead to a so-
lution. Nebel [147] has shown that the interleaved application of the path-consistency
algorithm does not alter the outcome of the backtracking algorithm, but considerably
speeds up its performance. The performance can also be improved by using heuristics
for selecting the next unprocessed constraint and for selecting the next base relations.
The first choice can reduce the size of the search tree while the second choice can
help finding a consistent sub-instance earlier. While the basic backtracking algorithm
refines a set ® to sets containing only base relations, it is also possible to use any other
set of relations 7" which contains all base relations and for which there is an algorithm
which decides consistency for this set. If CSPSAT(7") can be decided in polynomial
time, 7 is a tractable subset of 2A . A tractable subset is a maximal tractable subset,
if adding any other relation not contained in the tractable subset leads to an intractable
subset. Tractable subsets can be used to improve backtracking by splitting each con-
straint x{R}y € © into constraints x{T1}y, x{T>}, ..., x{Ts}y such that | J; T; = R
and all 7; € 7, and by backtracking over these constraints. This considerably reduces
the branching factor of the search tree. Instead of splitting each relation into all of its
base relations, they can be split into sub-relations contained in 7 [126]. The average
branching factor of the resulting search tree depends on how well 7 splits the relations
of 24 The lower the average branching factor, the smaller the search tree.

It has been shown in detailed empirical analyses [173] that large tractable subsets
combined with different heuristics can lead to very efficient solutions of the con-
sistency problem. While it is not possible to determine in advance which choice of
heuristics will be most successful for solving an instance of a spatial reasoning prob-
lem, it is clear that having large tractable subsets will always be an advantage. A lot
of research effort has therefore been spent on identifying tractable subsets of spatial
calculi.

The methods described above of using constraint propagation for determining local
consistency and using backtracking for solving the general consistency problem can be
applied to all kinds of spatial information if the spatial relations used are constructed
from a set of base relations and the information is expressed in the form of constraints
over these relations. This has the advantage that general methods and algorithms can
be applied and that results for one set of spatial relations can be carried over to other
sets. One problem with this approach is that spatial entities are treated as variables
which have to be instantiated using values of an infinite domain. How to integrate
this with settings where some spatial entities are known or can only be from a small
domain is still unknown and is one of the main future challenges of constraint-based
spatial reasoning.

13.3.4 Finding Efficient Reasoning Algorithms

As discussed in the previous section, large tractable subsets of spatial calculi are the
most important part of efficient spatial reasoning. In order to find tractable subsets, or
even maximal tractable subsets, several ingredients have to be provided:

1. One ingredient is a method for proving the complexity of a given subset, or
slightly weaker, a sound method for proving that a given subset is tractable.
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2. The second ingredient is a way of finding subsets that might be tractable sub-
sets and for which the method described above can be used. A set of n base
relations contains 2" relations and 22" different subsets. It is impossible to test
all subsets for tractability, so the number of candidate sets should be made as
small as possible.

3. In order to show that a tractable subset is a maximal tractable subset, it must be
shown that any relation which is not contained in the tractable subset leads to
an NP-hard subset when added to the tractable subset. For this it is necessary to
have a method for proving NP-hardness of a given subset.

4. For a complete analysis of tractability, it must be shown that the identified
tractable subsets are maximal tractable subsets and that no other subset which
is not contained in one of the maximal tractable subsets is tractable.

In this section we are interested in finding tractable subsets of 2A for efficiently
solving the consistency problem CSPSAT(.A). We are therefore only interested in find-
ing tractable subsets which contain all base relations as only these subsets can be used
as split-sets in our backtracking algorithm. There has been a series of papers on finding
tractable subsets of the Interval Algebra (e.g., [122]) and also of RCC-5 [117] which
do not contain all base relations and which are mainly interesting for a theoretical
understanding of what properties lead to intractability.

The number of subsets which have to be considered for analysing complexity can
be greatly reduced by applying the closure property [172]: the closure of aset S C 2A
under composition, intersection and converse has the same complexity as S itself.
For finding tractable subsets this means that only subsets which are closed under the
operators have to be considered, as all subsets of a tractable set are also tractable. This
can only be applied if a set is closed under composition. Since in many cases only weak
composition is known, it is not obvious that the closure under weak composition has
the same complexity. It has only recently been shown [170] that whenever algebraic-
closure decides consistency of CSPSAT(A), i.e., for atomic CSPs, then the closure
under weak composition preserves complexity.

There have been several methods for finding tractable subsets of NP-hard sets of
relations. The most obvious way is to find a polynomial one-to-one transformation
of CSPSAT to another NP-hard problem for which tractable subclasses are known.
The most popular problem is certainly the propositional satisfiability problem SAT for
which two tractable subclasses are known, HORNSAT where each clause contains at
most one positive literal, and 2SAT where each clause contains at most two literals. If
CSPSAT(ZA) can be reduced to SAT and it is possible to find relations of 2A which
lead to Horn clauses (HORNSAT) or Krom clauses (2SAT), respectively, then the set
of all these relations is tractable. This method has first been applied by Nebel and
Biirckert [146] for the Interval Algebra and later also by Nebel [145] and by Renz and
Nebel [172] for RCC-8.

A different method has been proposed by Ligozat [129] who transformed the re-
lations of the Interval Algebra to regions on a plane and to the lines that separate the
regions. The dimension of a relation is the dimension to which a relation is trans-
formed to, a two-dimensional region, a one-dimensional line, or a zero-dimensional
point (the intersection of lines). Ligozat showed that the set of those relations that can
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be transformed to a convex set are tractable (the convex relations), and also those re-
lations which do not yield a convex region but a region for which the convex closure
adds only relations of lower dimension (the preconvex relations). This method has also
been applied to other sets of relations, in particular those which are somehow derived
from the interval algebra [131], but it seems that the preconvexity method cannot be
generalised for every algebra.

These methods have in common that they can only be used for proving tractabil-
ity of one or maybe two different particular subsets, but not for showing tractability
for arbitrary subsets. Another method that has been proposed, the refinement method
[167], is more general and can be applied to any subset. The refinement method takes
as input a refinement strategy, which is a mapping of every relation of the to be tested
subset S to a subset 7 for which it is known that algebraic closure decides consistency
in polynomial time. The mapping must be a refinement, i.e., every relation S € & must
be mapped to a relation T € 7 such that T C S. The refinement method then checks
every a-closed triple of relations over S and tests whether making the refinements
leads to an inconsistency. If none of the original refinements nor the new refinements
obtained by applying the method result in an inconsistency, then algebraic closure
also decides consistency for S and therefore S is a tractable subset. The refinement
method relies upon finding a suitable refinement strategy. It has been shown that using
the identity refinement strategy, i.e., removing all identity relations, was successful for
all the tested subsets of RCC-8 and the interval algebra [167].

Even though the refinement method is very general, it does not help with finding
candidate sets to which it can be applied. All candidates have in common that they
must be closed under (weak) composition, converse and intersection and they must
not contain any relation which is known to be an NP-hard relation. Therefore we also
need methods for identifying NP-hard relations, i.e., relations that make the consis-
tency problem NP-hard when combined with the base relations. In order to show NP-
hardness of a set of relations N/ C 2“4, it is sufficient to find a known NP-hard problem
which can be polynomially reduced to CSPSAT(N). This is a difficult problem and
might require a different transformation from a different NP-hard problem for each dif-
ferent set /. However, since CSPSAT has a common structure for all sets of relations,
namely, a constraint graph where the labels on the edges are unions of base relations,
it is possible to generate the transformations with computer assisted methods.

Renz and Nebel [172] proposed a scheme for transforming 3SAT variants to
CSPSAT by translating variables, literals and clauses to a set of spatial constraints
and to relations R;, Ry € 24 which correspond to variables and literals being true
(R;) or false (Ry). For example, each variable p is transformed to the constraints
x;{R,, Ry} y;; and xlj{R,, Ry} Yp where the first constraint is refined to the relation
R; if p is true and the second one to Ry if p is true. In order to ensure this, additional
polarity constraints between the remaining pairs of x;, X, y;; and y, are needed.
Clause constraints which ensure that the requirements imposed by the clauses hold for
the spatial variables are also needed. The relations R; and R as well as the relations
contained in the polarity and clause constraints can be found by exhaustive search over
all possible relations. If an assignment of relations of 2 to this constraint schema can
be found and if it can be shown that the transformation preserves consistency, then the
set \V of all relations used in this schema is NP-hard.
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Based on this NP-hard subset N/, it is possible to identify other NP-hard subsets
using the closure property and a computer assisted enumeration of different subsets.
Every subset of 24 whose closure contains A is also an NP-hard subset. Easier to
compute and more useful is the property that for a known tractable subset 7 and every
relation R € 24 which is not contained in 7, 7 U {R} is NP-hard if its closure contains
a known NP-hard set. This property can be used to compute whether a tractable subset
is a maximal tractable subset, namely, if every extension of the set is NP-hard.

By combining the presented methods, the closure property, the refinement method,
the transformation schema and computer assisted enumerations, a complete analy-
sis of tractability can be made. This has been demonstrated for RCC-8 [167] where
three maximal tractable subsets were identified. These subsets combined with differ-
ent backtracking heuristics lead to very efficient solutions of the RCC-8 consistency
problem and most of the hardest randomly generated instances were solved very effi-
ciently [173].

In a recent paper, Renz [169] extended the refinement method and presented a
procedure which automatically identifies large tractable subsets given only the base re-
lations .4 and the corresponding weak composition table. The sets generated by Renz’s
procedure are guaranteed to be tractable if algebraic-closure decides CSPSAT(A). The
procedure automatically identified all maximal tractable subsets of RCC-8 in less than
5 minutes and for the Interval Algebra in less than one hour.

13.3.5 Planar Realizability

Given a metric spatial description it is a simple matter to display it. But given a purely
qualitative spatial configuration then finding a metric interpretation which satisfies it is
not, in general, trivial. A particular problem of interest here is whether mereotopolog-
ical descriptions have planar realizations, where all the regions are simply connected;
clearly this is not possible in general, since it is easy to specify a 5-clique using a set of
externally connected regions, and a 5-clique graph is not realisable in the plane. This
problem has been studied, initially in [103]'® which considers an RCC-8 like calcu-
lus and two simpler calculi and determines which of a number of different problem
instances of relational consistency and planar realizability are tractable and which are
not—the latter is the harder problem. Planar realizability is of particular interest for
the 9-intersection calculus since it is defined for planar regions. Until recently it was
unknown if the consistency problem for the 9-intersection calculus is decidable at all
and it has only recently been shown that the problem is NP-complete [182].

13.4 Reasoning about Spatial Change

So far we have concentrated purely on static spatial calculi (although we briefly men-
tioned the combination of modal spatial and temporal logics above in Section 13.3.1).
However it is important to develop calculi which combine space and time in an in-

18Claim 24 in this paper is subsequently admitted not to hold [28]; further work on this problem, gener-
ally known as the “map graph” recognition problem can be found in [29, 30, 197, 31].
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tegrated fashion. We do not have the space here to deal with this topic in any detail.
Galton’s book [93] is an extended treatment of this topic.

As discussed in Chapter 9, an important aspect of qualitative reasoning is the
standard assumption that change is continuous. A simple consequence is that while
changing, a quantity must pass through all the intermediate values. For example, in
the frequently used quantity space {—, 0, 4}, a variable cannot transition from ‘—’ to
‘4’ without going through the intermediate value 0. In the relational spatial calculi
we have concentrated on in this chapter, this requirement manifests itself in knowing
which relations are neighbours in the sense that if the predicate holds at a particu-
lar time, then there is some continuous change possible such that the next predicate
to hold will be a neighbour. Continuity networks defining such neighbours are often
called conceptual neighbourhoods in the literature following the use of the term [87]
to describe the structure of Allen’s 13 JEPD relations [2] according to their concep-
tual closeness!® (e.g., meets is a neighbour of both overlaps and before). Most of the
qualitative spatial calculi reported in this paper have had conceptual neighbourhoods
constructed for them,20 for example, Fig. 13.3 illustrates the case for RCC-8. Con-
tinuity networks have been used as the basis of qualitative spatial simulations and
reasoning about motion [52, 159, 67, 201, 202]. Continuity networks are presented
essentially as axioms in most calculi; however there has been some work on inferring
these from first principles [53, 110, 93].

There are two main approaches to spatio-temporal representation; in one, snap-
shots of the world at different instants of time are considered; alternatively, a true
spatio-temporal ontology, typically a 4D region based representation is used, with time
being one of the dimensions. Grenon and Smith discuss this snap-scan ontology [102]
in more detail. Examples of 4D approaches to spatio-temporal representation include
[144, 110, 111, 109].

13.5 Cognitive Validity

An issue that has not been much addressed yet in the QSR literature is the issue of
cognitive validity. Claims are often made that qualitative reasoning is akin to human
reasoning, but with little or no empirical justification. One exception to this is the
study made of a calculus for representing topological relations between regions and
lines [138]. Another study is [120] that has investigated the preferred Allen relation
(interpreted as a 1D spatial relation) in the case that the composition table entry is a
disjunction. Perhaps the fact that humans seem to have a preferred model explains why
they are able to reason efficiently in the presence of the kind of ambiguity engendered
by qualitative representations. In [119, 175] they extend their evaluation to topological
relations.

19Note that one can lift this notion of closeness from individual relations to entire scenes via the set
of relations between the common objects and thus gain some measure of their conceptual similarity as
suggested by [23].

207 closely related notion is that of “closest topological distance” [67]—two predicates are neighbours
if their respective n-intersection matrices differ by fewer entries than any other predicates; however the
resulting neighbourhood graph is not identical to the true conceptual neighbourhood or continuity graph—
some links are missing.
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13.6 Final Remarks

In this paper we have presented some of the key ideas and results in the QSR litera-
ture, but space has certainly not allowed an exhaustive survey. A handbook on spatial
logics [1] will cover some of the topics briefly described here in much more detail.
As in so many other fields of knowledge representation it is unlikely that a single uni-
versal spatial representation language will emerge—rather, the best we can hope for
is that the field will develop a library of representational and reasoning devices and
some criteria for their most successful application. What we have outlined here are the
major axes of the space of qualitative spatial representation and reasoning systems,
and in particular the dimensions of variability, such as the choice of representational
formalism (e.g., first order logic, modal logic, relation algebra), the ontology of spatial
entities (e.g., points, lines, regions), the primitive relations and operators (such as the
various JEPD sets of relations discussed above), and the different kinds of reasoning
techniques (such as constraint based spatial reasoning).

As in the case of non-spatial qualitative reasoning, quantitative knowledge and
reasoning must not be ignored—qualitative and quantitative reasoning are comple-
mentary techniques and research is needed to ensure they can be integrated—for
example, by developing reliable ways of translating between the two kinds of for-
malisms?! —this problem naturally presents itself when spatial information is acquired
from sensors, in particular image/video data—i.e. how qualitative symbolic spatial
representations are grounded in sensory and sensorimotor experience. Of particular
interest is how to automatically learn appropriate spatial abstractions and representa-
tions, for example see [124, 90]. Equally, interfacing symbolic QSR to the techniques
being developed by the diagrammatic reasoning community [97] is an interesting and
important challenge.

In many situations, a hierarchical representation of space is desirable, for exam-
ple, in robotics. Kuipers has promulgated the “Spatial Semantic Hierarchy” [123] as
one such hierarchical model which consists of a number of distinct levels. Simply put,
the “control level” is composed of sensor values, from which local 2D geometry and
control laws can be determined. The next level is the “causal level’—a partially deter-
mined network in which actions determine transitions between states identified at the
previous control level. The “topological level” describes space as being composed of
paths, regions and places with relations between them such as we have described in
this chapter. Being at a place corresponds to a distinct state of the causal layer. Finally
the “metrical level” augments the topological level with metric information such as
distance and orientation. There has also been work on hierarchical spatial reasoning in
the context of a particular kind of spatial information, such as direction relations [151].

Another important part of future work in this area is to find general ways of
combining different spatial calculi and analysing combined calculi. Most applica-
tions require more than just one spatial aspect. Even though many calculi are using
constraint-based reasoning methods, combining constraints over different relations is
a difficult problem as the relations have infinite domains. That means their interac-
tions must be taken care of on a semantic level. This might require defining new
relations which can negatively or positively affect properties of the combined cal-
culi [95, 94, 74].

21Some existing research on this problem includes [82, 80, 192].
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