
On Secure Distributed Data Storage Under Repair

Dynamics

Sameer Pawar
Salim El Rouayheb
Kannan Ramchandran

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-18

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-18.html

February 17, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

On Secure Distributed Data Storage Under Repair Dynamics

Sameer Pawar
University of California, Berkeley
Email: spawar@eecs.berkeley.edu

Salim El Rouayheb
University of California, Berkeley
Email: salim@eecs.berkeley.edu

Kannan Ramchandran
University of California, Berkeley
Email: Kannanr@eecs.berkeley.edu

Abstract— We address the problem of securing a dynamic
distributed data storage system against a passive eavesdropper
that can observe a fixed number of storage nodes. Distributed
data storage system experiences node failures over time due
to various reasons. These failed nodes are repaired in order
to maintain the availability of data with certain fixed relia-
bility. If an eavesdropper accesses a node while it is being
added to the system to repair it from a failure, it will have
access to all the data communicated to that node, which can
potentially compromise the entire data stored in the system.
We are interested in determining the secrecy capacity of such
dynamic systems, i.e., the maximum amount of data that can
be made reliably available to a legitimate user in the face of
node failures and repairs in presence of eavesdropper without
revealing any information to it about the data. We use the
information flow graph to model these systems as multicast
networks with compromised nodes. We provide a general upper
bound on the secrecy capacity and show that this bound is
tight in the bandwidth limited regime which is of significant
importance for practical systems such as Internet-based peer-
to-peer distributed storage systems.

I. INTRODUCTION

Data storage devices have evolved significantly since the
days of punched cards. Nevertheless, storage devices, such
as hard disks or flash drives, are still bound to fail after long
periods of usage, risking the loss of valuable data. To solve
this problem and to increase the reliability of the stored data,
multiple storage nodes can be networked together to redun-
dantly store the data, thus forming a distributed data storage
system. Applications of such systems are innumerable and
include large data centers and peer to peer storage systems
such as OceanStore [1], Total Recall [2] and DHash++ [3]
that use a large number of nodes spread widely across the
Internet to store files.

Codes for protecting data from erasures have been well
studied in classical channel coding theory, and can be used
here to increase the reliability of distributed storage sys-
tems. Fig. 1 illustrates an example where maximal distance
separable (MDS) codes are used to store a file F of 4
symbols (a1, a2, b1, b2) ∈ F4

5 distributively on 4 different
nodes, v1, . . . , v4, each of capacity 2 units. The MDS code
implemented here ensures that any user, also called data
collector, connecting to any 2 storage nodes can obtain the
whole file F . However, what distinguishes the scenario here
from the erasure channel counterpart is that when a storage
node fails, it needs to be repaired or replaced by a new node
in order to maintain a desired level of system reliability. A
straightforward repair mechanism would be to add a new
replacement node of capacity 2, and make it act as a data
collector by connecting, for this example, to 2 active, i.e.,
non-failed, nodes, so that it can download the whole file,
construct the lost part of the data and store it. Another repair
scheme that consumes less bandwidth is depicted in Fig. 1

v2

v3

v4α = 2

α

α

α

v5

v1

β = 1

β

β

∞

∞
DC

File F
a1, a2, b1, b2

a1, a2

b1, b2

a1 + b1, a2 + b2

a1 + a2, a1 + 4a2

a1 + 2b1, 2a2 + b2

Fig. 1. An example of a distributed data storage system under repair. Node
v1 fails and is replaced by a new node v5 that downloads (b1 + b2), (a1 +
a2 +b1 +b2) and (a1 +4a2 +2b1 +2b2) from v2, v3 and v4 respectively
to compute and store (a1 + a2, a1 + 4a2). A data collector connecting to
nodes v2 and v4 to recover the stored file is also depicted.

where node v1 fails and is replaced by node v5. By making
node v5 connect to 3 nodes instead of 2, it is possible to
decrease the total repair bandwidth from 4 to 3 units. Note
that v5 does not need to store the exact data that was on v1;
the only required property is that the data stored on all the
active nodes v2, v3, v4 and v5 form an MDS code.

The above important observation was the basis of the
original work of [4] where the authors showed that there
exists a fundamental tradeoff between the amount of storage
used at each node and the amount of bandwidth needed for
repair. In other words, for a fixed repair bandwidth there
is a minimal value beyond which the node storage capacity
cannot be decreased, and vice versa. In this tradeoff, two
optimal operational regimes were defined: Minimum Storage
Regeneration (MSR) and Minimum Bandwidth Regeneration
(MBR). When storing a file of size M , the first regime
corresponds to the smallest possible storage space on each
node which is M

k which corresponds to using an MDS code.
The second regime is characterized by an operating point
that has minimum repair bandwidth that can be achieved by
storing slightly more than M

k at each node.
When a distributed data storage system is formed using

nodes widely spread across the Internet, e.g. Internet based
peer to peer system, individual nodes may not be secure and
hence may fall victim to eavesdropping. This paper focuses
on such scenarios where an eavesdropper can gain access to a
certain number of storage nodes. If a node is compromised by
an eavesdropper, its stored content as well as any incoming
or outgoing messages to and from the compromised node are
observed by the eavesdropper. The eavesdropper is assumed
to be passive that is, has the ability to observe the data
but not to modify it. The distributed storage system that
is being compromised is always assumed to be dynamic
with nodes continually failing and being repaired. Thus, the

compromised nodes can belong to the original set of storage
nodes that the system starts with, or even include some of
the replacement nodes which might be observed while being
repaired. Under this setting, it is interesting to see how much
data can still be stored in the system while revealing no
information about it to the eavesdropper, and what schemes
can achieve this goal.

To answer this question, we follow the approach of [4] and
model the distributed storage system as a multicast network
that uses network coding. Under this model, the eavesdropper
is an intruder that can access a fixed number of the network
nodes of his or her choice. This eavesdropper model is
natural for distributed storage systems and comes in contrast
with the wiretapper model studied in the network coding
literature [5]-[7] where the intruder can access network edges
instead of nodes. Under this setting, we define the secrecy
capacity of a given distributed storage system and make
the following contributions. First, we give a general upper
bound on the secrecy capacity as a function of the node
storage capacity α and the repair bandwidth γ. Second,
we demonstrate that this upper bound is achievable for an
important regime that we call the bandwidth limited regime
where the repair bandwidth of the system γ is limited to a
fixed number Γ but no cap is set on the storage capacity α
of the nodes.

This paper is organized as follows. In Section II we
describe the system and security model, then we define the
problem and give a summary of our results in Section III.
In Section IV, we illustrate two special cases of distributed
storage systems that are illuminative in understanding the
general problem. In Section V, we derive an upper bound
on the secrecy capacity of a distributed storage system. In
Section VI we present a scheme that achieves this upper
bound for the case of bandwidth limited regime, which is the
operating regime of interest for most practical applications.
We conclude in Section VII.

II. MODEL

A. Distributed storage system
A distributed storage system (DSS) is a dynamic network

of storage nodes. These nodes include a source node that has
an incompressible data file F of M symbols, or units, each
belonging to a finite field Fq . The source node is connected to
n storage nodes v1, . . . , vn, each having a storage capacity of
α units which may be utilized to save coded parts of the file
F . The storage nodes are individually unreliable and may fail
over time. To guarantee a certain desired level of reliability,
we assume that the DSS is required to always have n active,
i.e., non-failed, storage nodes that are in service. Therefore,
when a storage node fails, it is immediately replaced by a
new node with same storage capacity α. The DSS should be
designed in such a way as to allow any legitimate user, that
we also call data collector, that connects to any k out of the
n active storage nodes available at any given time, to be able
to reconstruct the original file F . We term this condition as
the “reconstruction property” of distributed storage systems.

We assume that nodes fail one at a time, and we denote by
vn+i the new replacement node added to the system to repair
the i-th failure. In this work we focus on only symmetrical
repair: new node connects to some d nodes, d ≥ k, chosen,
possibly randomly, out of the remaining active n− 1 nodes

and downloads β units of data from each node i.e., γ = dβ.
The process of replenishing redundancy to maintain the
reliability of a DSS is referred to as the “regeneration” or
“repair” process. Note that a new replacement node may
download more data than what it actually stores. Moreover,
the stored data can possibly be different than the one that
was stored on the failed node, as long as the “reconstruction
property” of the DSS is retained. A distributed storage
system D is thus characterized as D(n, k). For instance,
the DSS depicted in Fig. 1 corresponds to D(4, 2) which
is operating at the MSR operation point (α, γ) = (2, 3).

B. Flow Graph Representation

We adopt the same representation structure as in [4] where
a DSS is cast as an information flow graph G. The graph G
is a directed acyclic graph with capacity constrained edges
that consists of three kinds of nodes: a single source node
s, input storage nodes xi

in and output storage nodes xi
out

and data collectors DCj for i, j ∈ {1, 2, . . . }. The source
node s holds an information source S which has a specific
realization the file F . Each storage node vi in the DSS
is represented by two nodes xi

in and xi
out. To account for

the storage capacity of vi, these two nodes are joined by a
directed edge of capacity α (see Fig. 2).

The repair process that is initiated every time a failure
occurs, causes the DSS, and consequently the flow graph, to
be dynamic and evolve with time. At any given time, each
node in the graph is either active or inactive depending on
whether it has failed or not. The graph G starts with only the
source node s, the nodes x1

in, . . . , xn
in connected respectively

to the nodes x1
out, . . . , x

n
out. Initially, only the source node

s is active and is connected to the storage input nodes
x1

in, . . . , xn
in by outgoing edges of infinite capacity. From

this point onwards, the source node s becomes and remains
inactive, and the n input and output storage nodes become
active. When a node vi fails in a DSS, the corresponding
nodes xi

in and xi
out become inactive in G. If a replacement

node vj joins the DSS in the process of repairing a failure and
connects to d active nodes vi1 , . . . , vid

, the corresponding
nodes xj

in and xj
out with the edge (xj

in, xj
out) are added to

the flow graph G, and node xj
in is connected to the nodes

xi1
out, . . . , x

id
out by incoming edges of capacity β each. A

data collector is represented by a node connected to k active
storage output nodes through infinite capacity links enabling
it to reconstruct the file F by downloading all the data stored
on these nodes. The graph G constitutes a multicast net-
work with the data collectors as destinations. An underlying
assumption here is that the flow graph corresponding to a
distributed storage system depends on the sequence of failed
nodes. As an example, we depict in Fig. 2 the flow graph
corresponding to the DSS D(4, 2) of the previous section
(see Fig. 1) when node v1 fails.

C. Eavesdropper Model

In addition to the model adopted in [4], we assume the
presence of an intruder “Eve” that can access up to l, l < k,
nodes of its choice among all the storage nodes, v1, v2, . . . ,
possibly at different time instances as the system evolves.
In the flow graph model, Eve is an eavesdropper that can
access a fixed number l of nodes chosen from the storage
input nodes x1

in, x2
in, Notice that while a data collector

x5
outx5

in

β = 1

β

∞

∞

∞

∞

∞
DC1

x1
in

x3
in

x4
in

x1
out

x2
outx2

in

x3
out

x4
out

α = 2

α = 2

α = 2

α = 2

α = 2

S

β

∞

Eve

Fig. 2. The flow graph model of the DSS of Fig. 1 with l = 1. Eve
accesses input node x5

in of the storage node v5.

observes output storage nodes, i.e., the data stored on the
nodes it connects to, Eve, has access to input storage nodes,
and thus can observe, in addition to the stored data, all
incoming messages to these nodes. We also assume that Eve
has complete knowledge of the storage and repair scheme
implemented in the DSS, thus, she can choose some of the
l nodes among the initial n storage nodes, and, maybe, if it
deems to her more profitable, wait till a certain failure occurs
and then eavesdrops on the replacement node to observe its
downloaded data. We assume that Eve is passive and can
only observe the data without modifying it.

III. PROBLEM STATEMENT AND RESULTS

A. Secrecy Capacity
Under the presence of an eavesdropper, our objective is to

maximize the utilization of the DSS for the data collectors by
storing as much data as possible while guaranteeing perfect
secrecy, i.e., making sure that no information is revealed to
Eve. We start with few definitions. Let S be a vector taking
arbitrary values in FM

q . S represents the incompressible data
file of size M at the source node i.e., H(S) = M . Let
Vin := {x1

in, x2
in, . . . } and Vout := {x1

out, x
2
out, . . . } be the

sets of input and output storage nodes respectively. For a
storage node vi, let Di and Ci be the random variables
representing its downloaded messages and stored content
respectively. Thus, Ci represents the data that can be acquired
by a data collector when connecting to node vi, while Di

represents the total data revealed to Eve when it accesses
node vi. In general, the stored data Ci is a function of the
downloaded data Di.

Let V a
out be the collection of all subsets of Vout of

cardinality k consisting of nodes that are simultaneously
active together at a certain instant in time. For any subset
B of Vout, define CB := {Ci : xi

out ∈ B}. Similarly for
any subset E of Vin, define DE := {Di : xi

in ∈ E}. The
reconstruction property can be written as

H(S|CB) = 0 ∀B ∈ V a
out, (1)

and the perfect secrecy condition implies

H(S|DE) = H(S), ∀E ⊂ Vin and |E| ≤ l. (2)

Given a DSS D(n, k) with l compromised nodes, its
secrecy capacity, denoted by Cs(α, γ, is then defined to
be the maximum amount of data that can be stored in this
system such that the reconstruction property and the perfect
secrecy condition are simultaneously satisfied for all possible
data collectors and eavesdroppers i.e.,

Cs(α, γ) := max
H(S|CB) = 0 ∀B

H(S|DE) = H(S) ∀E
H(S) (3)

where B ∈ V a
out, E ⊂ Vin and |E| ≤ l.

B. Results

The main objective of this paper is to determine the
secrecy capacity of distributed storage systems. Under the
flow graph model described above, the problem can be
recast as finding the secrecy capacity of a special family
of multicast networks implementing network coding where
a certain collection of nodes is vulnerable to eavesdropping.
Using this approach, we prove two main results. The first
consists of an upper bound on the secrecy capacity of a DSS:

Theorem 3.1: [Upper Bound] For a distributed data stor-
age system D(n, k) with l < k compromised nodes, the
secrecy capacity is upper bounded by

Cs(α, γ) ≤
k−1∑

i=l

min{(d− i)β, α}. (4)

where d, β are such that k ≤ d ≤ n− 1, γ = dβ.
We also consider an important operational regime namely

the bandwidth limited regime. In a bandwidth limited regime
the repair bandwidth γ = dβ is capped to a fixed amount
Γ (although one has a choice of d, β) while no constraint
is imposed on the node storage capacity α. The secrecy
capacity in this regime is defined as

CBL
s (Γ) := max

γ ≤ Γ
α

Cs(α, γ)

For a fixed Γ the upper bound of Theorem 3.1 on the secrecy
capacity can be shown to be maximized for the choice of
d = n − 1. In section VI, we demonstrate that this upper
bound for d = n−1 can be achieved for a bandwidth limited
regime. Thus establishing the following theorem,

Theorem 3.2: [Bandwidth Limited Regime] For a dis-
tributed data storage system D(n, k) with l < k compro-
mised nodes, the secrecy capacity for bandwidth limited
regime is given by

CBL
s (Γ) =

k−1∑

i=l

((n− 1)− i)
Γ

n− 1
,

and is achieved with a storage capacity α∗ = Γ.

IV. SPECIAL CASES

Before we proceed to present the proofs of Theorems 3.1
and 3.2, we analyze two specific cases of distributed storage
systems which help shed some light on the general problem.

A. Static Systems

A static version of the problem studied here corresponds
to a DSS with ideal storage nodes that do not fail, and hence
there is no need for any repair in the system. The flow
graph of this system constitutes then a well-known multi-
cast network studied in network coding theory called the
combination network. Therefore, the static storage problem
can be regarded as a special case of wiretap networks [5],
[6], or equivalently, as the erasure-erasure wiretap-II channel
studied in [10]. The secrecy capacity for such systems is
Cs(α) = (k − l)α, and can be achieved using either nested
MDS codes [10] or the coset codes of [9], [6].

Even though the above proposed solution is optimal for
the static case, it can have a very poor security performance
when applied directly to dynamic storage systems with
failures. For instance one naive way for an MDS code to
repair a lost coded symbol would be to download the whole
file on the new replacement node and then generate the
specific lost data. In this case if Eve accesses the new
replacement node while it is downloading the whole file
it will be able to reconstruct the original data. Hence, no
secrecy scheme will be able to hide any part of the data
from Eve and the secrecy rate for this scheme would be
zero. However theorem 3.2 suggests that for some systems
we can have a positive secrecy capacity.

This example highlights the new dimension that the repair
process brings into the distributed storage picture. The dy-
namic nature of the DSS renders it intrinsically different from
the static counterpart making the repair process a key factor
that should be carefully designed in order not to jeopardize
the whole stored data.

B. Systems Using Random Network Coding

Using the flow graph model, the authors of [4] showed
that random linear network codes over a large finite field
can achieve any point (α, γ) on the optimal storage-repair
bandwidth tradeoff curve with a high probability. Consider
an example of random linear network codes used in a
compromised DSS D(4, 3) which stores M = 6 symbols
and operates at the MBR regime (see Eq. (5)) corresponding
to d = 3, β = 1 and α = 3. In this case, each of the initial
nodes v1, . . . , v4 stores 3 independently generated random
linear combinations of these M = 6 symbols. Assume now
that node v4 fails and is replaced by a new node v5 that
connects to v1, v2 and v3 and downloads from each one of
them β = 1 random linear combination of their stored data.
Assume that after some time, node v5 fails and is replaced
by node v6 in a similar fashion. Now if Eve accesses nodes
v5 and v6 i.e., (l = 2) while they were being repaired, it will
observe 6 linear combinations of the original data symbols.
If the field size is high enough (which is usually the case),
then with high probability the information observed by Eve
is independent, and she will be able to reconstruct the whole
file.

The above analysis shows that secrecy rate achieved
for this system by a random network coding is zero. But
according to Theorem 3.2 which we will prove in section VI,
secrecy capacity of the DSS D(4, 3) operating at MBR point
corresponding to d = 3, β = 1 and α = 3 is equal to
one unit when l = 2. While random network codes are
very appealing for use in distributed storage systems due

xn+2
out

xn+1
out

xn+k
out

xn+l
out

xn+1
in

xn+2
in

xn+k
in

xn+l
in

dβ

(d− 1)β

(d− k + 1)β

(d− l + 1)β

α

α

α

α

β

β

β

β

β
β

Fig. 3. Part of the flow graph corresponding to a DSS when nodes
v1, . . . , vk fail successively and are repaired by nodes vn+1, . . . , vn+k .
Nodes vn+1, . . . , vn+l are compromised by Eve while they were being
repaired.

to their decentralized nature and low complexity, the above
analysis shows that this may not always be the case when
security is a desired property. This also is in contrast with
the case of multicast networks where an intruder can access a
fixed number of edges instead of nodes [5], wherein, random
network coding performs as good as any deterministic secure
code [7].

V. UPPER BOUND ON SECRECY CAPACITY

In this section we derive the upper bound of Theorem 3.1.
Consider a DSS D(n, k) with l < k, operating at point (α, γ)
with dβ = γ, k ≤ d ≤ n− 1. Consider a specific cut in the
flow graph G of a DSS. Assume that the nodes v1, v2, . . . , vk

have failed consecutively and were replaced during the repair
process by the nodes vn+1, vn+2, . . . , vn+k respectively as
shown in Fig. 3.

Now suppose that Eve accesses nodes in E =
{vn+1, vn+2, . . . , vn+l} while they were being repaired,
and consider a data collector connected to the nodes in
B = {vn+1, vn+2, . . . , vn+k}. The reconstruction property
implies H(S|CB) = 0 by Eq. (1), and the perfect secrecy
condition implies H(S|DE) = H(S) by Eq. (2). We can
therefore write

H(S) = H(S|DE)−H(S|CB)
(1)

≤ H(S|CE)−H(S|CB)
(2)
= H(S|CE)−H(S|CE , CB\E)
= I(S, CB\E |CE)
≤ H(CB\E |CE)

=
k∑

i=l+1

H(Cn+i|Cn+1, . . . , Cn+i−1)

(3)

≤
k∑

i=l+1

min{(d− i + 1)β, α}

Inequality (1) follows from the fact that the stored data
CE is a function of the downloaded data DE , (2) CB\E :=
{Cn+l+1, . . . , Cn+k}, (3) follows from the fact that each
node can store at most α units, and for each replacement
node we have H(Ci) ≤ H(Di) ≤ dβ, also from the

topology of the network (see Fig. 3) where each node xn+i
in

is connected to each of the nodes xn+1
out , . . . , xn+i−1

out by an
edge of capacity β. The upper bound of Theorem 3.1 then
follows directly from the definition of Eq. (3).

VI. BANDWIDTH LIMITED REGIME

In most distributed data storage systems, such as Internet-
based peer-to-peer systems, storage is an inexpensive re-
source while inter-node communication is costly. Such sys-
tems usually have an upper limit Γ on the amount of repair
bandwidth consumed γ, while can be optimized with no
constraint on the storage α.

In this section we focus on such scenario and will prove
Theorem 3.2. Let d = n − 1. As the examples studied in
Section IV pointed out, the main difficulty of this problem
is due to the dynamic nature of the network. We will
demonstrate that in a bandwidth limited regime for d = n−1,
with careful choice of the network code it is possible to
transform the problem of secrecy over a dynamic DSS into
a static problem of secrecy over point to point channel
equivalent to the erasure-erasure wiretap channel-II [10].
Then we show that using nested MDS codes at the source one
can achieve the secrecy capacity of the equivalent wiretap
channel.

A. Exact Regeneration Codes
Let d = n − 1, β = Γ/d and α = dβ which corresponds

to an MBR operating point. It was shown in [8] that exact
regeneration codes, i.e., codes that allow any new node to
store the same data as the failed one it is replacing, can
be constructed for this regime. This result is essential to
establish our proof. Next, we summarize this construction.
For a DSS (n, k) operating at the MBR point if the file size
is M then we have following relation between α, β, d, k,M
[4]:

(α, β) = (
2Md

2kd− k2 + k
,

2M

2kd− k2 + k
) (5)

We will show an achievable scheme for β = 1 which implies
M = kd − k(k−1)

2 and α = d. For any larger values of β
required, the file can be split into chunks of size M , each of
which can be separately encoded using the construction for
β = 1.

Denote the source symbols of the file by the column vector
S = (s1, s2, . . . , sM)T . Let θ = d(d + 1)/2 = (n − 1)n/2.
The construction of [8] involves using an (θ,M) MDS code
that encodes the information vector S into θ coded symbols
denoted by Y = (y1, . . . , yθ). The exact regeneration code
can be easily described using an auxiliary complete graph
over n vertices u1, . . . , un that consists of θ edges. Suppose
the edges are indexed by the coded symbols y1, . . . , yθ. The
code then consists of storing on the node vi the indexes of
the edges adjacent to vertex ui in the complete graph.

This complete graph endows the code with a special
property that every coded symbol is stored on exactly two
storage nodes and any pair of two nodes have exactly
one edge and hence exactly one distinct coded symbol in
common. This property ensures that any data collector can
download exactly M coded symbols by connecting to k
nodes and thus recover the data since code is (θ,M) MDS
code. Moreover since α = d = n − 1 any new replacement
node can download one coded common symbol from each

of the remaining n − 1 active nodes which guaranties the
exact regeneration of the failed node.

B. Equivalence to a Wiretap Channel
Given the previous construction of exact regeneration

codes, we can now explain the transformation of the dynamic
storage system into a static point-to-point channel. Towards
that end, we make the following observations. First, since
the exact regeneration codes described here are operating at
the MBR point, all the data communicated during the repair
process is stored at the new replacement node without any
further compression. Thus accessing a node during repair
process (i.e., downloaded data) is equivalent to accessing it
after the repair process i.e. stored data. Second, the exact
regeneration codes by definition restore a failed node with
the exact lost data. So, even though there are failures and
repair, the data storage system looks exactly the same at any
point of time.

By the property of the used exact code, the ith node
accessed by the data collector or Eve shares i − 1 symbols
with the previously observed (i− 1) nodes and, as a result,
will only reveal (α− (i− 1)) = (d− (i− 1)) new symbols.
An Eve accessing l distinct nodes will therefore observe
some µ :=

∑l
i=1(d − (i − 1)) symbols out of θ encoded

ones. Similarly, a data collector accessing k nodes will
observe some ν :=

∑k
i=1(d − (i − 1)) symbols out of

θ. Thus, the exact regeneration codes have transformed the
problem of secrecy over a dynamic DSS with repair into a
problem of secrecy over the equivalent point to point static
erasure-erasure wiretap channel. In this equivalent channel
source transmits θ symbols. A legitimate receiver observes
the transmitted θ symbols over an erasure channel with
θ−ν erasures. The transmitted symbols are also observed by
an eavesdropper/wiretapper through another erasure channel
with θ − µ erasures. This channel is similar to the erasure-
erasure wiretap channel of type-II studied in [10] with slight
difference. In the channel studied in [10] erasures can occur
at any locations while in this equivalent channel erasures of
only certain combinations can occur. Nevertheless we can
only do worse by assuming that erasures are completely
random with all possible combinations. Since we are showing
achievability the above assumption is valid. From [10], we
know that if the (θ, M) MDS code we used in constructing
exact regeneration codes is an nested MDS code it can
achieve the secrecy rate of ν − µ, i.e.,

k∑

i=1

(d− (i− 1))−
l∑

i=1

(d− (i− 1)) =
k−1∑

i=l

((n− 1)− i)

This rate is achieved for every 1 unit of β. Thus, the total
secrecy rate achieved for β = Γ/(n− 1) is,

k−1∑

i=l

((n− 1)− i)
Γ

n− 1

thus completing the proof of Theorem 3.2.

VII. CONCLUSION

In this paper we considered dynamic distributed data
storage systems that are subject to eavesdropping. Our main
objective was to determine the secrecy capacity of such
systems, i.e., the maximum amount of data that these systems

can store without revealing any information to the intruder.
Modeling such systems as multicast networks with com-
promised nodes, we gave an upper bound on the secrecy
capacity and showed that it can be achieved in the practically
important bandwidth limited regime where the nodes have a
sufficient storage capacity. Finding the general expression
of the secrecy capacity of distributed storage systems, and
more generally of multicast networks with a fixed number of
compromised nodes, remains an open problem that we hope
to address in future work.

REFERENCES

[1] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and
J. Kubiatowicz, “Maintenance-free global data storage,” IEEE Internet
Computing, pp. 4049, September 2001.

[2] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker,
“Total recall: System support for automated availability management,”
in NSDI, 2004.

[3] F. Dabek, J. Li, E. Sit, J. Robertson, M. Kaashoek, and R. Morris,
“Designing a dht for low latency and high throughput,” 2004.

[4] A. Dimakis, P. Godfrey, Y. Wu, M. Wainright and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Trans. Inform.
Theory, 2005.

[5] N. Cai and R. W. Yeung, “Secure network coding,” in IEEE Internat.
Symp. Inform. Th. (ISIT02), Jun. 2002.

[6] S. E. Rouayheb and E. Soljanin, “On wiretap networks II,” in IEEE
Internat. Symp. Inform. Th. (ISIT’08), 2007.

[7] D. Silva and F. R. Kschischang, “Security for wiretap networks via
rank-metric codes,” in IEEE Internat. Symp. Inform. Th. (ISIT’08),
2008.

[8] Rashmi K.V, N. B. Shah, P. V. Kumar and K. Ramchandran,“Exact
Regenerating Codes for Distributed Storage,” Submitted on Arxiv.

[9] L. H. Ozarow and A. D. Wyner,“Wire-Tap Channel-II,” AT&T Bell
lab tech. journal.

[10] Arunkumar S, S. W. Mclaughlin, “MDS codes on erasure-erasure wire-
tap channel,” arXiv:0902.3286v1.

