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A major ambition of artificial intelligence lies in translating patient data to successful therapies.
Machine learning models face particular challenges in biomedicine, however, including handling
of extreme data heterogeneity and lack of mechanistic insight into predictions. Here, we argue
for ‘‘visible’’ approaches that guide model structure with experimental biology.
Like many fields, biomedicine is in the

midst of a data revolution. Comprehen-

sive molecular and clinical datasets—

including complete human genomes,

gene expression profiles, high-resolution

imaging, metabolomics, electronic medi-

cal records, and so on—are no longer

isolated to a few study participants; in a

few years, we will have such comprehen-

sive information for millions of patients

(Torkamani et al., 2017). Multiple analysis

approaches have been advanced to

transform patient data into successful

therapies, each with their particular

benefits and limitations (Figure 1). Most

prominently, the field of machine learning

has seen dramatic advances in the past

few years (LeCun et al., 2015) with much

excitement around the use of many-

layered, ‘‘deep,’’ artificial neural net-

works, inspired by actual neural networks

and how the brain processes patterns. Af-

ter training over many examples, artificial

neural networks learn to predict the cor-

rect answer—or output—that should be

returned for the many possible input pat-

terns. Deep learning approaches have

been used to recognize objects in images

like dogs, people, and faces and to distin-

guish good from bad moves in games like

chess and Go (Silver et al., 2016).

Given the parallel advances in biomed-

ical data and computer science, a key

question is the extent to which current

machine-learning models will be effective

at interpreting the massive streams of

biomedical information. In particular, will

large patient datasets, provided as

inputs to deep neural networks or related
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methods, be sufficient to create the next

generation of reliable and precise intelli-

gence infrastructure for understanding

and treating disease?

Here, we argue that the answer is no—

that the very high complexity of biological

systems will intrinsically limit applications

of current ‘‘black box’’ machine learning in

patient data. As one path forward, we

highlight a new generation of ‘‘visible’’

approaches that aim to guide the struc-

ture of machine-learning models with an

increasingly extensive knowledge of

biological mechanism. That is, machine

learning will not replace the need for

experimental cell and tissue biology; it

will be substantially enabled by such

knowledge, given the right visible intelli-

gence infrastructure.

Dual Challenges of Data
Heterogeneity and Lack of
Mechanistic Interpretation
Machine-learning systems face two

recognized challenges that become

particularly acute in biomedical applica-

tions. The first is input heterogeneity.

Nearly all types of statistical analysis rely

on identifying recurrent patterns in data,

which provide rules by which future

predictions are made. Problems arise,

however, when the same outcomes

may result from vastly different inputs.

Although such input heterogeneity is a

property ofmany and perhaps all complex

systems, biological systems are almost

certainly more complex than those

addressed by machine learning in other

areas. For example, cancer can arise as
ed by Elsevier Inc.
the result of many different combinations

of genetic alterations involving many po-

tential genes, any one of which may be

mutated only rarely; as a consequence,

each new patient presents a distinct

constellation of molecular changes never

before seen in nature (Alvarez et al.,

2016; Kourou et al., 2014). Similar hetero-

geneity arises in patient data from nearly

all common diseases, including cardio-

vascular, metabolic, and neurodevelop-

mental disorders, in which recurrent

patterns are elusive, making it difficult

to make reliable predictions (Boyle

et al., 2017). Even rare, presumably

Mendelian, disorders can be modified

by myriad genetic modifiers elsewhere.

Such heterogeneity has long posed a sig-

nificant challenge to genetic association

studies, which tend to be powered to

identify single-locus effects (Figure 1A); it

is also a significant challenge for machine

learning.

One might consider a brute-force

solution to the problem of heterogeneity

by profiling evermore subjects to increase

the total volume of data. Certainly, tech-

nologies like DNA sequencing are now

powerful and inexpensive enough that

we may soon have complete genomes

for most new patients. The total number

of patients is finite, however. Even for

common conditions like cancer and heart

disease, the number of available datasets

will saturate at a few million patient exam-

ples. While a million may seem large, this

number is modest compared to the

amounts of data often needed to train a

statistical model, compounded by the
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Figure 1. Current Approaches Relevant to Analysis of Big Biomedical Data
First subheading (blue): what each of four approaches (A)–(D) accomplish. Second subheading (orange):
limitations and challenges for these approaches. Box: this commentary argues for the synthesis of two
approaches in particular—machine learning (B) and experimental cell and tissue biology (C)—resulting in
an infrastructure for visible intelligence.
as-yet-unknown, but undoubtedly high,

complexity of biological systems. As a

consequence, even after obtaining the

genome sequence of every patient, the

genetic patterns driving disease may

still remain undiscovered by current statis-

tical methods. In contrast, in many other

applications of machine learning such as

game playing, if the machine runs out of

test games for learning, more examples

can readily be generated without bound.

A second well-known challenge is

that modern machine learning models,

including deep neural networks, are black

boxes, devices which focus on predicting

outputs from inputs without regard for

the mechanism or rationale by which

a particular outcome is brought about.

The game-playing system known as Al-

phaGo can beat human Go players (Silver

et al., 2016), but an examination of its

internal structure gives little insight into its

moves. Its neural network is subject to

extensive mathematical optimization dur-

ing training, leading to a denseweb of neu-

ral connections neither tied to an actual

system nor based on human reasoning.

Similarly, in biomedicine, many machine-

learning methods are being developed to

predict patient outcomes (Kourou et al.,

2014), but these approaches typically do

not link predictions to underlying mecha-

nisms (Figure 1B). This is a missed oppor-

tunity, as causal mechanistic insights

are key to identifying drug targets and

advancing basic biological knowledge.
Toward Visible Engines for Machine
Learning
A popular toy in the 1950’s was a working

model of an automobile engine called the

Visible V8, versions of which are still avail-

able today (Figure 2A). As with many toy

models of cars, the engine turned a crank-

shaft, useful for driving a car forward.

However, the main draw of the Visible

V8 was not this final engine output, but

its faithful simulation of interacting engine

components necessary to bring about

this result. The engine was correctly sub-

divided into parts such as the engine

block, cylinder heads, distributor, cooling

fan, alternator, and both intake and

exhaust manifolds. The block and heads,

in turn, contained working models of pis-

tons, spark plugs, cams, and camshafts.

Importantly, all these aspects were clearly

visible because the entire engine case

and its hierarchy of constituent parts

were transparent.

Like man-made engines, biological

systems are also complex machines

whose outputs emerge from a hierarchy

of internal components (Simon, 1962).

DNA nucleotides assemble to form

sequence domains and genes; linear

gene sequences encode 3-dimensional

protein structures; proteins assemble

to create molecular complexes and

pathways; pathways occur within organ-

elles and cells; and cells and cell types

assemble to form tissues, organs, and

individuals. Mapping such structures
has classically been the domain of cell

and tissue biology, which has developed

a spectrum of experimental measurement

techniques to characterize biological

machines at each scale (Figure 1C). To

name a few of the relevant approaches,

protein structures are determined using

technologies like cryo-electron micro-

scopy; multimeric protein complexes

are cataloged systematically by affinity

purification tandem mass spectrometry;

larger cell structures are tracked dynami-

cally by advanced light microscopy; and

the multicellular architecture of tissues

is determined increasingly rapidly by

single-cell RNA sequencing. Prior infor-

mation about cell and tissue biology

can also be mined from indirect sources

such as literature, although consistent

literature curation is a difficult problem

and misses the large amount of human

biology that we do not yet know

(Figure 1D).

Unfortunately, basic experimental data

types are not usually well connected to

analysis of patient data. It is nonetheless

easy to see how prior knowledge of bio-

logical structure might provide distinct

advantages to models capable of incor-

porating this information—what we here

call visible learning—and recent research

has begun to prove the concept.

Groundwork toward Visible
Machine Learning in Biology
Visible learning relates to a topic called

model interpretation, an active research

area in the field of artificial intelligence.

Generally, model interpretation tries to

explain a model’s internal logic after a

model has been trained (Ribeiro et al.,

2016) or to force the model to have fewer

parameters, which makes it easier to

interpret (Lei et al., 2016). In biology, the

particular need to understand internal

mechanisms, along with the ability to

probe these mechanisms, has inspired a

class of machine-learning models that is

guided by prior mechanistic knowledge.

This knowledge is often represented

by large molecular network structures,

which document known mechanistic as-

pects of cell biology such as interactions

among subunits of a protein complex, be-

tween receptors and kinases, or among

transcriptional regulatory proteins, en-

hancers, and genes. One way in which

these networks have been used to guide
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Figure 2. Visible Models
(A) The Visible V8 was a popular quarter-scale model of an internal combustion engine sold by Renwal Model Company starting in 1958. It conveys the concept
and value of visible machine learning. Photo: Trey Ideker.
(B) Guiding machine learning systems with visible multi-scale biological structure.
learning is in selection of a minimal set of

features for prediction, such as prioritizing

candidate disease genes based on

network proximity to other genes for

which sequence variations are strongly

associated with disease (Leiserson et al.,

2013). Network connections can also

nominate a set of genes whose input

data should be aggregated to create a

composite feature, such as pooling of

rarely altered genes in cancer into a

single pathway, which, viewed as a single

aggregate, is recurrently altered across a

patient population (Alvarez et al., 2016;

Chuang et al., 2007).

Models with hierarchical (multi-scale)

resolution of cell biology are also

emerging (Karr et al., 2012), an idea that

fits naturally with deep (multi-layered)

neural networks. For instance, in formu-

lating a neural network, one might specify

the architecture of the intermediate

layers—the number of layers, the number

of neurons per layer, and which connec-

tions between layers are allowed. These

neurons, usually hidden inside of the

black box, can be made visible by

attaching them to actual biological

components (Figure 2B). This idea was

recently explored by Lin et al. (2017),

who predicted cell type and state using
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a deep neural network for which the

structure was determined based on

the hierarchical organization of transcrip-

tional regulatory factors in the nucleus.

We extended such a strategy to assemble

DCell, a model of a basic eukaryotic cell

(Ma et al., 2018). DCell uses a deep neural

network to translate a list of mutated

genes (genotype input) to the resulting

cell proliferation rate (phenotype output).

Neurons are organized into banks, each

of which maps to a distinct biological

module within a large hierarchy of known

cellular components and processes. A

predicted change in cell phenotype can

then be interpreted by examining the

functional states of underlying cellular

components, internal to DCell, whose

neuron states are also highly affected.

In building these visible systems, care

must be taken to learn from the successes

and pitfalls of the vast body of work in

biological modeling over the past several

decades (Fisher and Henzinger, 2007).

For instance, an important lesson is that

increased model resolution (e.g., intro-

ducing many detailed biochemical pa-

rameters) may come at the expense of

model scope (e.g., the ability to address

all biological elements and generalize to

new patient cohorts).
Understanding Biomedical Data
with Visible Machine Learning
Visible machine learning offers two ad-

vantages in building intelligent models of

biomedical systems. First, prior knowl-

edge of biological structure can address

the problem of data heterogeneity,

since different input patterns, even when

entirely distinct from one another (i.e.,

without common patterns), converge

on common higher-order biological pro-

cessing units corresponding to discrete

modular components of cells and tissues.

All machine-learning systems perform this

type of data compression, or dimension-

ality reduction. In black-box models, the

configuration of hidden layers that is

required for sufficient data compression

is inferred during the training procedure,

typically requiring very large quantities of

training data. In contrast, direct incorpo-

ration of the biological structure of cells

and tissues, such as explored by Lin

et al. (2017) and Ma et al. (2018), leads

to a ready-made working model of how

biological inputs, such as genotype, are

compressed to determine outcomes.

Second, models guided by biological

structure can be interpreted mechan-

istically, informing our understanding of

the system and suggesting potential



therapeutic strategies. Given input pa-

tient data, execution of the model not

only produces a final output state; it

also reveals the states of internal biolog-

ical systems. The most striking of these

internal states provide hypotheses as to

the underlying mechanisms governing

patient phenotype, which is important

because many internal biological states

are difficult to measure through direct

experimental observations. For example,

Alvarez et al. (2016) used a transcrip-

tional regulatory network to translate

patient mRNA expression profiles to

activities of regulatory proteins, most of

which are difficult to interrogate experi-

mentally. Internal states of the model

may also indicate biological components

that can be targeted by therapeutic inter-

ventions or form the basis for in silico

testing of treatment combinations.

Goals and Milestones for the Near
Future
We conclude with a short summary

of milestones that research in visible

machine learning might seek to achieve

in the relatively near term. First is the

advent of diverse algorithms to inform

machine-learning systems with prior

knowledge of biological structure, along

with rigorous testing and validation of

such algorithms. These developments

may involve the application of existing

mathematical approaches, require new

frameworks, or both. Second, advances

in our understanding of complexity

are needed to assess and quantify

complexity in biological systems and

how it differs across the spectrum of

tasks to be addressed by biomedical

machine learning models. Third, invest-

ments in large-scale experimental biology

will greatly expand the type and coverage

of data that are available to map biolo-

gical structures within cells and tissues.

Generation of such data may involve

new technology development to increase

experimental throughput, such as ad-

vances in 3D cellular imaging or protein
interaction mapping, or scale-up of

existing technologies. Fourth, significant

advances in computation infrastructure

are needed to create high performance

computing environments, along with

web resources for community model

development and distribution. Finally,

early routes should be sought for embed-

ding visible machine learning models

in the clinic to begin evaluating best

practices and validating efficacy for pre-

dicting patient outcomes and therapies

within and across institutions. Notably,

funding agencies have begun to promote

research into some of these milestones

(e.g., the NIH Data Commons or the

DARPA Explainable Artificial Intelligence

program), although not always with a

focus on biomedicine. Parallel develop-

ment of these directions will enable a

new generation of biomedical machine

learning, replacing black-box models

that focus on isolated problem domains

with visible models that survey general

biological systems.
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