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Abstract The potential of mobile offloading has contributed towards the flurry of re-
cent research activity known as mobile cloud computing. By instrumenting the mo-
bile applications with offloading mechanisms, a mobile device can save its energy
and increase its performance. However, existing offloading mechanisms lack from
efficient decision models for augmenting the mobile device with cloud resources on
the fly. This problem is caused by the large amount of system’s parameters and their
scattered values that need to be considered and characterized merely by the device
depending on its contextual needs. Thus, the offloading process still suffers from
deficiencies that do not allow a device to maximize the advantages of going cloud-
aware. In this chapter, we explore the challenges and opportunities of a new kind of
mobile architecture, namely evidence-aware mobile cloud architecture, which relies
on crowdsensing to diagnose the optimal configuration for migrating mobile func-
tionality to cloud. The key insight is that by using the massive parallel infrastructure
of the cloud to process big data, it is possible to collect offloading evidence from
large amount of devices that is later analyzed in conjunction to infer an efficient
configuration to execute a smartphone app for a particular device.
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1 Introduction

Mobile and cloud computing are two of the biggest forces in computer science [1].
Nowadays, a user relies either on the mobile or the cloud to perform most of the soft-
ware aid activities, e.g., e-mail, video streaming, image editing, document editing,
web browsing, payment, messaging, games, among many others. While the cloud
provides to the user the ubiquitous computational and storage platform to process
any complex task, the smartphone grants to the user the mobility features to process
simple tasks, anytime and anywhere. Therefore, it is logical that the convergence
of these two domains into Mobile Cloud Computing (MCC) will lead to the next
generation of mobile applications [2, 3].

Generally, mobile devices are able to consume cloud services through specialized
Web APIs in a service-oriented manner [4, 5], e.g. REST. A back-end server located
in the cloud is a common component of a mobile application, e.g., push notification,
Web service, etc. In fact, since the cloud grants dynamic features to the back-end
of a mobile architecture, e.g., scalability on the fly, new paradigms such as MBaaS
(Mobile Back-end as a Service) are on the rise [1, 6]. Thus, a logical question to
answer is how the cloud can assist the smartphone in creating the post-pc era?

Since the mobility of the smartphones imposes many limitations in the mobile
resources, e.g., processing, storage and energy, among others, several work pro-
poses to offload opportunistically computational tasks from the mobile device to the
cloud [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Offloading is a technique that allows
a low power device, e.g., smartphones, to outsource the processing of a task, e.g.,
code, service, job, etc., to a higher capabilities machine [17, 18, 19], e.g., cloud.
The potential of the approach for improving the performance and extending the
batterylife is widely accepted and proven feasible with latest mobile technologies.
However, the technique still suffers from deficiencies caused from the large amount
of parameters that need to be configured correctly to optimize the binding between
mobile and cloud resources [20], for instance, since last generation smartphones
are as powerful as some cloud servers, it is reasonable to bind those devices with
even higher capabilities machines, such that the performance is increased instead of
decreased. While the offloading gains are improved even further when optimizing
the configuration in which a mobile device migrates the tasks to the cloud, it is not
a trivial task to find the optimal configuration to offload, mainly because the large
amount of possibilities available.

To counter the deficiencies in the offloading process, we explore a new kind of
mobile architecture that relies on crowdsensing in order to diagnose the optimal
configuration to migrate tasks for a particular device. The key insight is that traces
(aka evidence) from the offloading process are collected from the huge amount of
devices that outsource tasks to the cloud (community). By using the massive parallel
infrastructure to process big data [22, 23, 24], the cloud analyzes the evidence to
infer the optimal configuration and injects it into each device. Naturally, since the
approach relies on data, the improvements are incremental and adaptive based on the
amount of data collected. Thus, this type of architecture is defined as an Evidence-
aware Mobile Cloud Architecture (EMCA).
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In this chapter, we start by providing a literature review about how the cloud can
assist the smartphone to overcome the limitations imposed by mobility. We then
make a comparison of existing solutions and we highlight the differences with our
proposed EMCA. Next, we explore the challenges, technical problems and oppor-
tunities of an EMCA. Lastly, we discuss about the benefits and drawbacks of the
architecture along with our future directions.

2 Mobile Cloud Offloading

Mobile cloud offloading (aka computational offloading, cyber-foraging) has been
re-discovered as a technique to empower the computational capabilities of mobile
devices with elastic cloud resources. Computational offloading refers to a technique,
in which a computational operation is extracted from a local execution workflow,
later, that operation is transported to a remote surrogate for being processed exter-
nally, and lastly, the result of that processing is synchronized back into the local
workflow [17]. Computational offloading has evolved considerably from cloudlets
to code offloading.

2.1 Cloudlets

Cloudlets [25] is one of the initial work that propose the augmentation of mobile
computational resources with nearby servers in proximity, e.g. hot spots. Cloudlets
overcome the problem of connecting to high latency remote servers by bridging
the cloud infrastructure closer to the mobile user. The motivation of reducing the
latency between mobile device and cloud is to enrich the functionality of the mo-
bile applications without degrading its perception and interaction in environments
where network communication changes abruptly. Figure 1 shows a basic cloudlet
architecture. The architecture consists of two parts, a client and a server located in
proximity, which means that there is no network hopping between the device and
the server. A nearby server is managed by a service provider using virtual machines.
A virtual machine is migrated from the cloud of the service provider to the nearby
server, so that cloud service provisioning (create, launch or delete) for the mobile
can occur from the nearby server. Alternatively, the service provider also can mi-
grate a service to other types of infrastructure, e.g. base stations, in order to reduce
the communication latency with the device [18].

While a cloudlet overcomes the problems that arise from high communication
latency, the deployment of a cloudlet is a complex task, as involves to introduce spe-
cialized components or modify existent ones at low level of granularity, e.g., hard-
ware. Thus, its adaptation is neither flexible nor scalable. As a result, many other
solutions have been proposed [19]. The goal of these solutions is to optimize the
delegation of computational tasks by relying on higher manipulation of the source
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Fig. 1: Components and functionality of a cloudlet system

code of the applications. In this process, computational tasks are delegated to pow-
erful machines at code level as explained in subsection 2.2. Notice that a cloudlet
also can be equipped with strategies to offload code [18]. However, the only advan-
tage of using code offloading techniques in a cloudlet model is that the processing
of a task can be splitted to multiple devices in a fine-grained fashion, e.g., Method.

2.2 Mobile Code Offloading

Code offloading leverages the small amount of data transferred and the opportunis-
tic high speed connectivity to cloud infrastructure for augmenting the capabilities
of the mobile devices [3]. The potential of technique lies in the ability for mak-
ing the battery life of the smartphones last longer and shortening the response time
of mobile applications. Mobile applications are instrumented with code offloading
mechanisms for moving a computational task at code level from one place to an-
other. The decision whether to move or not the task from the device for harnessing
dedicated external infrastructure is done in the device by analyzing the multiple pa-
rameters that can influence the decision to be beneficial or not for the device [10].
The evaluation of the code requires to consider different aspects, for instance, what
code to offload, e.g., method name; when to offload, e.g. RTT (Round Trip Times)
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thresholds; where to offload, e.g. type of cloud server; how to offload, e.g. split code
into n processes, etc.

Most of the proposals in the field do not cover all these aspects, and thus we
describe a basic offloading architecture, which is shown in Figure 2. The architecture
consists of two parts: a client and a server. The client is composed of a code profiler,
system profilers and a decision engine. The server contains the surrogate platform
to invoke and execute code. Each component is described in detail as follows:

1. Code Profiler is in charge of determining what to offload. The profiler character-
izes the effort required for the device to execute a portion (C) of code —Method,
Thread or Class. This includes the time of execution and amount of energy re-
quired. Based on this characterization, the profiler identifies the code (OC) that
is candidate to offload. Code can be profiled at different development stages of
a mobile application. Thus, we define two types of profilers, manual and auto-
mated. Manual profilers are the developers, who select explicitly the portions
of code that can be offloaded, e.g., with a code annotation (application is not
installed in the device). Automated profilers are runtime processes that analyze
the code during runtime using different approaches, e.g., static analysis, history
data, etc., and determine the portions of code that are intensive or not for the
device (application is already installed in the device).
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Fig. 2: A code offloading architecture: components and functionalities
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2. System profilers are responsible for monitoring, sampling and characterizing
multiple parameters of the smartphone during runtime, such as available band-
width, data size to transmit, energy required to execute the code, surrogate com-
putational capabilities, etc. These parameters are utilized to quantify whether
offloading or not OC introduces energy or performance gains for the mobile
device.

3. Decision engine is a reasoner that infers when to offload to cloud. The engine re-
trieves the characterized data obtained by the profilers, and applies certain logic
over them, e.g. linear programming, fuzzy logic, markov chains, etc., so that the
engine can measure whether the handset obtains or not a concrete benefit from
offloading to cloud. The amount of parameters considered in the decision pro-
cess define the opportunistic context in which a mobile task is offloaded. This
suggests that based on the combination of multiple parameters, it is possible to
obtain different gains in performance and energy [20]. Proof of this is the way
in which existing frameworks characterize with different amount of parameters,
the opportunistic moments in which a device offloads to cloud.

4. Surrogate platform is the computational service located in the proximity of the
device or in the cloud, which contains the environment to execute the interme-
diate code sent by the mobile, e.g. Android-x86, .Net, etc. The computational
capabilities of the server are important in an offloading architecture as deter-
mine the level in which the task is accelerated [21]. This information is critical
to adjust the response time of applications based on the type of device. Ideally,
a mobile application must accelerate its execution when offloading rather than
slowing down performance.

3 Mobile Offloading Frameworks

In this section, we provide a literature review of frameworks to offload to cloud. Ta-
ble 1 describes most relevant proposals in code offloading. The table compares the
key features of the offloading architectures, namely the main goal, how code is pro-
filed, the adaptation context, the characterization of the offloading process, and how
code offloading is exploited from mobile and cloud perspectives. From the table, the
main goal defines what is the actual benefit for using the associated framework. The
mechanism used to profile code provides information about the flexibility and inte-
grability of the system. The adaptation context specifies the considerations taken by
the system to offload. The characterization means whether the offloading system has
a priori knowledge or not about the effects of code offloading for the components
of the system. Finally, the exploitation highlights the mobile benefits obtained from
going cloud-aware, and the features of the cloud that are leveraged to achieve those
benefits. Moreover, we can also observe that currently, most of the effort has been
focused on providing the device with an offloading logic based on its local context.

MAUI [11] proposes a strategy based on code annotations to determine which
methods from a Class must be offloaded. An annotation is a form of metadata that



Table 1: Code offloading approaches from a mobile and cloud perspectives

Code offloading strategies Mobile perspective Cloud perspective
. Offloading adaptation Offloading . Features exploited
Framework Main goal | Code profiler context characterization Applications effect (Besides server)
. Manual Mobile Low resource consumption,
MAUT ] Energy-saving annotations (what, when) None Increased performance None
Odessa [26] |Responsiveness Automated Mobile None Applications are up None
process to 3x faster
CloneCloud [12] Transparer.lt Automated Mobile None Accelerate responsiveness None
code migration| process (what, when)
. . - Manual Mobile + Cloud Dynamic allocation and
ThinkAir [13] Scalability annotations (what, when, how) None Increased performance destruction of VMs
Transparent .
COMET [15] |code migration Automated Mobile None Aver.age speed None
(DSM) process (what, how) gain 2.88x
Dynamic allocation and
Energy—sgymg, Automated Mobile + Cloud Based on historical Based on context . d§stmct10n of VMS’
EMCO [14] Scalability . (Low resource consumption, | Big data processing,
) process (what, when, where, how, etc.)|crowdsourcing data|. 5 S
(Multi-tenancy) increased responsiveness, etc.)| Characterization-based
utility computing
. Manual Mobile Increased performance by Resource allocation
COSMOS [16] | Responsiveness process what None choosing right surrogate decided by user
. . Resource allocation
HyMobi [28] | Energy-saving Manual Mobile None Energy. saving ba.sed on based on user’s
process what social interaction .
social context
Other work [3, 2] |Responsiveness Manugl Mobile None Increased performance None
annotations what, when
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can be agregated into the source code, e.g. classes, methods, etc. An annotation
allows the compiler to apply extra functionality to the code before its called, e.g.
override annotations. MAUI uses annotations to identify methods that are resource-
intensive for the device. Annotations are introduced within the source code by rely-
ing on the expertise of the software developer. Once the code is annotated, MAUI
transforms all the annotated methods into an offloadable format. This format equips
the methods with RMI capabilities. Since MAUI targets Windows Phones, it is de-
veloped using .NET framework. Thus, RMI happens by using the WFC (Windows
Communication Framework). During application runtime, the MAUI profiler col-
lects contextual information, e.g. energy, RTT, etc., if the MAUI profiler detects a
suitable context to offload code, then the execution of the code is delegated to a
remote server instead of being performed by the device. While MAUI is successful
in saving energy and shortening the response time of the mobile applications, it suf-
fers from many drawbacks. Since MAUI uses code annotations, it is unable to adapt
the execution of code in different devices. Thus, the developer is forced to adapt an
application to a specific device, which is considered a brute-force approach. More-
over, MAUI suffers from scalability, which means that each mobile that implements
MAUI requires to be attached to one specific server acting as a surrogate.

Similarly, CloneCloud [12] encourages a dynamic approach at OS level, where a
code profiler extrapolates pieces of bytecode of a given mobile component to a re-
mote server. Unlike MAUI, CloneCloud offloads code at thread level. CloneCloud
uses static analysis to partition code, which is an improvement over the annotation
strategy proposed by MAUI. By using a static analyzer, code can be annotated dy-
namically. Thus, code to offload is adapted based on the type of device without
modifying or changing any implementation of the application. However, code pro-
filing is complicate as its execution is non-determistic. Thus, it is difficult to verify
the runtime properties of the code, which can cause unnecessary code offloading
or even offloading overhead. Moreover, many other parameters also influence when
choosing a portion to code to offload, e.g. the serialization size, latency in the net-
work, etc.

COMET [15] is another framework for code offloading, which follows a similar
approach as CloneCloud. COMET strategy puts emphasis on how to offload rather
than what and when. COMET’s runtime system allows unmodified multi-threaded
applications to use multiple machines. The system allows threads to migrate freely
between machines depending on the workload. COMET is a realization built on top
of the Dalvik Virtual Machine and leverages the underlying memory model of the
runtime to implement distributed shared memory (DSM) with as few interactions
between machines as possible. COMET makes use of VM-synchronization primi-
tives. Multi-thread offloading accelerates even further the execution of applications
in which code can be parallelized.

ThinkAir [13] framework is one which is targeted at increasing the power of
smartphones using cloud computing. ThinkAir tries to address MAUT’s lack of scal-
ability by creating virtual machines (VMs) of a complete smartphone system on
the cloud. Moreover, ThinkAir provides an efficient way to perform on-demand re-
source allocation, and exploits parallelism by dynamically creating, resuming, and
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destroying VMs in the cloud when needed. However, since the development of mo-
bile application uses annotations, the developer must follow a brute-forced approach
to adapt his/her application to a specific device. Moreover, resource allocation in
the cloud seems to be static from the handset as the device must be aware of the
infrastructure with anticipation. Thus, the approach is neither flexible nor fault tol-
erant. The scalability claimed by ThinkAir is not multi-tenancy, the system creates
multiple virtual machines based on Android-x86 within the same server for code
parallelization.

Odessa [26] is a framework that focuses on improving the perception of aug-
mented reality applications, in terms of accuracy and responsiveness. The frame-
work relies on automatic parallel partitioning at data-flow level to improve the per-
formance of the applications, so that multiple activities can be executed simulta-
neously. However, the framework does not consider dynamic allocation nor cloud
provisioning on demand, which is a key point in a cloud environment.

History-based approaches are also proposed to determine what code to of-
fload [27]. However, the weak point of history-based approaches is the large amount
of time required to collect data, which is needed to produce accurate results. More-
over, these strategies are sensitive to changes, which means that when the device
suffers drastic changes, e.g. more applications are installed, the history mechanisms
need to gather new data to calibrate again. The size of the data collected in the
mobile can also be counterproductive for the device as it steals storage space and
processing power [32].

COSMOS [16] is a framework that provides code offloading as a service at
method level using Android-x86. The framework introduces an extra layer in a
traditional offloading architecture to solve the mismatch between how individual
mobile devices demand computing resources and how cloud providers offer them.
However, it is not clear how the offloading process is encapsulated as SOA. More-
over, the framework is compared with CloneCloud, which is an unfair comparison
as CloneCloud mechanisms offload code at thread level. Other frameworks for com-
putational offloading also are proposed [3], but they do not differ significantly from
basic implementation or concept [8, 2, 3]. Other frameworks focus on different is-
sues, such as stability [30] and D2D (Device-to-Device) cooperation [28] among
others.

We claim that the instrumentation of apps alone is insufficient to adopt computa-
tional offloading in the design of mobile architectures that relies on cloud. Computa-
tional offloading on the wild is shown mostly to introduce more computational effort
to the mobile rather than reduce processing load [29]. In this context, CDroid [29]
is a framework that attempts to improve offloading in real scenarios. However, the
framework focuses more on data offloading than computational offloading. As a re-
sult, we propose EMCA, which attempts to overcome the issues of computational
offloading in practice. EMCA automates the process of infering the right match-
ing between mobile and cloud considering multiple levels of granularity using big
data [14, 31].
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4 Towards an Evidence-aware Mobile Cloud Architecture

While the need to offload or not for mobile applications is debatable [19], the effec-
tiveness of code offloading implementation in practice shows to be mostly unfavor-
able for the device outside controlled environments. In fact, the utilization of code
offloading in real scenarios shows to be mostly negative [20], which means that the
device spends more energy on the offloading process compared to the actual energy
that is saved. Consequently, the technique is far away from being adopted in the
design of future mobile architectures. In section, we present our EMCA solution.
EMCA relies on the smartphones to connect to cloud to characterize all the com-
ponents of the architecture (Figure 3a), e.g., network communication, cloud-based
servers and type of devices, among others at different granularity levels, e.g., code,
location, hardware specifications, etc. Once enough data is collected, then it is char-
acterized in the cloud, such that the characterization can be used to create custom
configurations for each particular device (Figure 3b).

4.1 Challenges and Technical Problems

Our goal is to highlight the challenges and technical obstacles of developing an
EMCA. The issues are described as follows:

o Code partitioning approaches —Code profiling is one of the most challenging
problems in an offloading system, as the code has a non-deterministic behavior
during runtime, which means that it is difficult to estimate the running cost of
a piece of code considered for offloading. A portion of code becomes intensive
based on multiple factors [20], such as user input that triggers the code, type of
the device, execution environment, available memory and CPU, etc. Moreover,
once code is selected as OC, it is also influenced by many other parameters of the
system that come from multiple levels of fine-granularity, e.g. communication
latency, data size transferred, etc. As a result, code offloading suffers from a
sensitive tradeoff that is difficult to evaluate, and thus, code offloading can be
productive or counterproductive for the device [33]. Most of the proposals in
the field are unable to capture runtime properties of code, which makes them
ineffective in real scenarios.

o Instrumentation complexity in the mobile applications —The adaptation of
code offloading mechanisms within the mobile development lifecycle depends
on how easily the mechanisms are instrumented within the applications and how
effective is the approach in releasing the device from intensive processing. How-
ever, implementation complexity does not necessarily correlate with effective
runtime usage. In fact, some of the drawbacks that make code offloading to fail
are introduced at development stages, for example, in the case of manual code
partitioning that relies on the expertise of the software developer, portions of
code are annotated statically, which may cause unnecessary code offloading that
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Fig. 3: Evidence-aware Mobile Cloud Architecture. (a) Characterization process of each compo-
nent. (b) Diagnosis for each device posteriori to the characterization.

drains energy [34]. Moreover, annotations can cause poor flexibility to execute
the app in different mobile devices. Similarly, automated strategies are shown to
be ineffective and require major low-level modifications in the core system of the
mobile platform, which may lead to privacy and security issues.

e Dynamic configuration of the system —Next generation mobile devices and the
vast computational choices in the cloud ecosystem makes the offloading process
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a complex task as depicted in Figure 4. Although the savings in energy that can
be achieved by releasing the device from intensive processing, a computational
offloading request requires to meet the requirements of user’s satisfaction and ex-
perience, which is measured in terms of responsiveness of the app. Consequently,
in the offloading decision, a smartphone has to consider not just potential savings
in energy, but also it has to ensure that the acceleration in the response time of the
request will not decrease. This is an evident issue as the computational capabil-
ities of the latest smartphones are comparable with some servers running in the
cloud, for instance, consider two devices, Samsung Galaxy S (19000) and Sam-
sung Galaxy S3 (19300), and two Amazon instances, m1.xlarge and c3.2xlarge. In
terms of mobile application performance, offloading intensive code from 19000
to m1.xlarge increases the responsiveness of a mobile application at comparable
rates to an i9300. However, offloading from 19300 to m1.xlarge does not pro-
vide same benefit. Thus, to increase responsiveness is necessary to offload from
19300 to c3.2xlarge. It is important to note, however, that constantly increasing
the capabilities of the back-end do not always speed up the execution of code ex-
ponentially, as in some cases, the execution of code depends on how the code is
written, for instance, code is parallelizable for execution into multiple CPU cores
(parallel offloading) or distribution into large scale GPUs (GPU offloading).

Cloud-based instance ecosystem

L]
[ ]

Compute

Memory optimized
General optimized server

purpose server
server

Different mobile resources

Fig. 4: Characterization of the offloading process that considers the smartphones diversity and the
vast cloud ecosystem
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o Offloading as a service —Typically, in a code offloading system, the code of a
smartphone app must be located in both, the mobile and server as in a remote
invocation, a mobile sends to the server not the intermediate code, but the data
to reconstruct that intermediate representation so that it can be executed. As a
result, an offloading system requires the surrogate to have similar execution en-
vironment as the mobile. To counter this problem, most of the offloading systems
proposed to rely on the virtualization of the entire mobile platform in a server, e.g.
Android-x86, .Net framework, etc., which tends to constrain the CPU resources
and slows down performance. The reason is that a mobile platform is not de-
veloped for large-scale service provisioning. As a result, offloading architectures
are designed to support one user at the time, in other words, one server for each
mobile [13, 16, 39]. This restrains the features of the cloud for multi-tenancy and
utility computing. Moreover while a cloud vendor provides the mechanisms to
scale Service-Oriented Architectures (SOA) [4, 35, 40] on demand, e.g. Amazon
autoscale, it does not provide the means to adapt such strategies to a computa-
tional offloading system as the requirements to support code offloading are dif-
ferent. The requirements of a code offloading system are based on the perception
that the user has towards the response time of the app [36]. The main insight is
that a request should increase or maintain certain quality of responsiveness when
the system handles heavy loads of computational requests. Thus, a code offload-
ing request cannot be treated indifferently. The remote invocation of a method
has to be monitored under different system’s throughput to determine the lim-
its of the system to not exceed the maximum number of invocations that can be
handled simultaneously without losing quality of service. Furthermore, from a
cloud point of view, allocation of resources cannot occur indiscriminately based
on processing capabilities of the server as the use of computational resources are
associated with a cost. Consequently, the need of policies for code offloading
systems are necessary considering both, the mobile and the cloud.

e Utility model for code offloading —A code offloaded task is accelerated dif-
ferently based on the different underlying computational resources that can be
acquired in the cloud [21]. While the cost of a server is charged by the cloud
vendor based on time usage, e.g., an hour, it is unfeasible to create a bill for
computational offloading following the same standard utility model. Since a task
can have different levels of resource intensiveness, e.g., Chess, it requires differ-
ent servers to deal with its specific processing requirements. As a result, a cloud
deployment for code offloading comprises not one, but many servers that provi-
sioning their computational resources to a mobile device. In this context, since
a particular mobile application can use different cloud servers as surrogates in a
single app session, then each offloading task that is offloaded needs to be charged
based on the type of server that processed it. Naturally, this implies to change the
current utility model of servers to one based on request-type, which introduces
an extra level of complexity as it requires the execution of code to be segregated
based on runtime properties, e.g., amount of acceleration required.

e Evidence usage within the mobile applications —Since the characterization pro-
cess is incremental based on data collected from the community of devices,
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evidence about the optimal configuration that is required to execute a mobile
application needs to be transferred from the cloud periodically. Consequently,
mechanisms to deliver and aggregate evidence need to be developed. Ideally,
evidence should be delivered to the mobile device without introducing extra en-
ergetic overhead that harms its daily usage. Thus, evidence should be delivered
by piggybacking data retrieval from other applications and services.

5 Discussion

In this section, we discuss about the opportunities and drawbacks of exploiting an
EMCA.

1. Energy-aware offloading as a service for IoT (Internet of Things): —
It is well known that the main goal of MCC is to augment the processing ca-
pabilities and energetic resources of low-power devices, e.g., smartphones. To
achieve this, applications installed in the devices are instrumented with offload-
ing mechanisms, e.g., code offloading. However, despite of this instrumentation,
applications are not aware about the productive or counterproductive effect that
can be influenced in the mobile resources by outsourcing a task. For instance,
how much the code should be accelerated?, how much energy can be saved?
etc.
In this chapter, we explore how to overcome the problem of determining the
context required to offload a task by analysis in the cloud the runtime history
of code execution from a community of devices. By relying on the massive
computational resources of the cloud to process big data, we aim to exploit the
knowledge of the crowd. However, many other sources of information collected
from a community of devices can provide insight about how to configure the
offloading process, e.g., sensor information, user’s interaction, etc. To illustrate
this, let’s consider the following cases:
Case 1: a smartphone that calculates and transmits its GPS coordinates every
time the user uses an application. If the frequency of app usage is high, then the
device will run out of energy quickly, e.g., facebook. If we assume that the end
service in the cloud stores the data received, the data can be analyzed to build
a prediction model in the cloud that suggests when the user changes his/her lo-
cation. In this manner, the cloud service can be aware about the user’s location
and can configure the mobile app to recalculate and transmit GPS data when
drastic changes of user’s location are detected by the model. By implementing
this approach, the device can save significant amounts of energy as the compu-
tational tasks of calculating and transmitting GPS data are not tied to app usage,
but user’s movement that is monitored by the cloud.
Case 2: alow-power device, e.g., Arduino microcontroller, that monitors an en-
vironment via sensors, e.g., temperature. Since a client that connects to the mi-
crocontroller expects to obtain real time information, the microcontroller senses
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the environment regularly. Moreover, in order to provide scalability for multi-
ple users, the environmental information is sent to the cloud, such that any user
can access it from there. Naturally, this process requires considerable amount
of energy of the device. However, by analyzing the collected data, it is able to
equip the cloud service with the awareness to schedule the sensing process of
the microcontroller based on opportunistic contexts, for instance, sensing data
is likely to be replaced by other sensing data from a nearby device, sensing data
can be predicted based on history data stored in the cloud, etc., in any situa-
tion, the main goal is to schedule from the cloud, the behaviour of the device,
so that the device can be alleviated from unnecessary computational effort. Un-
doubtedly, it is expected that the change of behavior won’t change the quality
of service or experience of the user.

2. Tuning the fidelity of smartphone apps with mobile crowdsourcing: — By
characterizing the servers in the cloud, it is possible to identify multiple levels
in which offloaded code is accelerated. Thus, we envisioned an approach to
accelerate the response time of a mobile application dynamically. The ultimate
goal of the approach is to enhance the QoE of the mobile apps in terms of
fidelity, e.g., face recognition [41]. By improving the QoE, we aim to engage
the user in order to increase application usage [43, 37].

Changing fidelity of mobile apps has been proved to be feasible by collecting
data locally in the device [38]. However, this process is slow, because history
data is required, and sensitive to changes, because the device is constantly up-
grading and installing new apps. Thus, in order to overcome these problems, we
envisioned fidelity tuning via data analytics from a community of devices.

Our idea is that apps are instrumented with mechanisms that capture their lo-
cal execution at high level, e.g., method name, etc. This data is uploaded to the
cloud for analysis. Based on the analysis, the cloud can perform individual diag-
nosis to each device and suggest optimal fidelity execution of each app installed
in the device.

3. The effect of computational offloading in large scale provisioning scenar-
ios: — While the technique has been proved to be feasible with latest mobile
technologies [14], still there are a lot of open issues regarding cloud deploy-
ment and provisioning in real scenarios. Previous work have proposed a one
server per each smartphone architecture [19], which is unrealistic in practice if
we consider the amount of smartphones nowadays and the provisioning cost of
constantly running a server for a particular user.

Besides a few works that focus on scaling up (vertical scaling) a server to paral-
lelize the code of computational requests [26], we have not found architectures
that can scale in an horizontal fashion. This clearly can be seen as current frame-
works do not take into consideration the utility computing features of the cloud,
which is translated into server selection based on provisioning cost.

We are interested on analysis whether it is possible to support large scale provi-
sioning for computational offloading? As a result, we want to study the capacity
that cloud servers have to process multiple requests at once while maintaining
requirements in code acceleration, which influences directly the response of a
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smartphone app. Moreover, we also want to analyze the effect of code acceler-
ation in different cloud servers in order to foster surrogate selection based on
utility computing, which can highlight new directions for the design of future
mobile architectures supported by cloud computing, e.g., GPU offloading.
Context-aware hybrid computational offloading: — Computational offloading
is a promising technique to augment the computational capabilities of mobile
devices. By connecting to remote servers, a mobile application can rely on code
offloading to release the device from executing portions of code that requires
heavy computational processing [42]. Yet, computational offloading is far away
to be adopted as a mechanism within the mobile architectures, mainly due to
drastic changes in communication latency to remote cloud can cause energy
draining rather than energy saving for the device [29, 14]. Moreover, in the
presence of high communication latency, the responsiveness of the mobile ap-
plications is degraded, which suggests that in order to avoid collateral effects,
the benefits of computational offloading can just be exploited in low latency
proximity using rich nearby servers [28], which are also known as cloudlets.
Fortunately, 5G is arising as a promising solution to overcome the problem of
high latency communication in cellular networks. 5G fosters the utilization of
Device to Device (D2D) communication [30] to release the network from data
traffic, and accelerate the transmission of data in end-to-end scenarios. By rely-
ing on D2D, and extrapolating features from remote cloud and cloutlets models,
we envisioned a context-aware hybrid architecture for computational offload-
ing. Our hybrid architecture introduces the concepts of network and cloud as-
sistance, which can be utilized to coordinate the proximal devices in order to
create a D2D infrastructure. Since the computational capabilities of next gen-
eration smarphones are comparable with some servers running in the cloud, we
believe that multiple mobile devices can be merged together via D2D in order
to create dynamic infrastructure in proximity that can be utilized by the devices
themselves to share the load of processing heavy computational tasks. Natu-
rally, this introduces new challenges mainly associated to social participation
and collaboration.

Network assistance can be provided by cellular towers (Mobile Edge and Fog
Computing [28]). The towers besides routing the communication between end-
to-end points can be equipped with the logic to determine which devices are
connected geographically close. When devices in proximity are detected, the
tower can induce the devices to transmit data via D2D instead of using the
cellular tower. The cellular towers can also be utilized to determine closer in-
frastructure (e.g., base stations), in which the device should be connected to
reduce the communication latency, like in the cloudlet model. Similarly, cloud
assistance can be utilized to group devices in a D2D cluster. Since devices are
offloading to cloud-based servers (e.g., Amazon), the cloud can be equipped
with the logic to determine which devices shared a common location. Cloud
assistance introduces an extra level of complexity in the system than network
assistance, due to a device is forced to send as part of the offloading process, the
information about its location (e.g., GPS). However, cloud assistance alleviates
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completely the cellular network from computational offloading traffic, as all the
process is managed entirely by the cloud.

6 Summary

Mobile and cloud computing convergence is shifting the way in which telecommu-
nication architectures are designed and implemented. Several work have proposed
different mobile offloading strategies to empower the smartphone apps with cloud
based resources. Yet, the utilization of code offloading is debatable in practice as
the approach has been demonstrated to be ineffective in increasing remaining bat-
tery life of mobile devices. The effectiveness of an offloading system is determined
by its ability to infer opportunistically where the execution of code (local or remote)
represents less computational effort to the mobile, such that by deciding what, when,
where and how to offload correctly, the device obtains a benefit. Code offloading is
productive when the device saves energy without degrading the normal response
time of the apps, and counterproductive when the device wastes more energy exe-
cuting a computational task remotely rather than executing it locally. Existing work
offer partial solutions that ignore the majority of these considerations in the infer-
ence process. Thus, the approach suffers from many deficiencies, which are easily
trackable in practice.

By characterizing the offloading process via crowdsensing, we explore the chal-
lenges and technical problems to overcome for developing an offloading architecture
that learns to diagnose the optimal offloading process of a mobile application.
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