
This is a repository copy of Reintroducing Environmental Change Drivers in 
Biodiversity-Ecosystem Functioning Research.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/106947/

Version: Accepted Version

Article:

De Laender, Frederik, Rohr, Jason R, Ashauer, Roman orcid.org/0000-0002-9579-8793 et 
al. (11 more authors) (2016) Reintroducing Environmental Change Drivers in 
Biodiversity-Ecosystem Functioning Research. Trends in Ecology & Evolution. 905–915. 
ISSN 0169-5347 

https://doi.org/10.1016/j.tree.2016.09.007

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Opinion for Trends in Ecology and Evolution  1 

Title: Re-introducing environmental change drivers in biodiversity-ecosystem functioning 2 

research  3 

Authors: Frederik De Laendera, Jason R. Rohrb, Roman Ashauerc, Donald J. Bairdd, Uta 4 

Bergere, Nico Eisenhauerf,g, Volker Grimmg,h, Udo Hommeni, Lorraine Maltbyj, Carlos J. 5 

Meliànk, Francesco Pomatil, Ivo Roessinkm, Viktoriia Radchukg,n, Paul J. Van den Brinkm,o 6 

aResearch Unit in Environmental and Evolutionary Biology, University of Namur, Belgium. 7 

Frederik.delaender@unamur.be  8 

bDepartment of Integrative Biology, University of South Florida, USA. 9 

jasonrohr@gmail.com  10 

cEnvironment Department, University of York, UK. roman.ashauer@york.ac.uk  11 

dEnvironment Canada, Canadian Rivers Institute, University of New Brunswick, Canada. 12 

djbaird@unb.ca  13 

eInstitute of Forest Growth and Computer Sciences, Technische Universitaet Dresden (TU 14 

Dresden), Germany. uta.berger@tu-dresden.de  15 

fInstitute of Biology, Leipzig University, Germany.  16 

gGerman Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany. 17 

nico.eisenhauer@idiv.de 18 

hDepartment of Ecological Modelling, Helmholtz Centre for Environmental Research – UFZ, 19 

Germany. volker.grimm@ufz.de  20 

iFraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), 21 

Germany. udo.hommen@ime.fraunhofer.de  22 

jDepartment of Animal and Plant Sciences, The University of Sheffield, UK. 23 

l.maltby@sheffield.ac.uk  24 

kCenter for Ecology, Evolution and Biogeochemistry, Swiss Federal Institute of Aquatic 25 

Science and Technology, Switzerland. Carlos.Melian@eawag.ch  26 

lEawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic 27 

Ecology, 8600 Dübendorf, Switzerland. Francesco.Pomati@eawag.ch  28 

mAlterra, Wageningen University and Research centre, the Netherlands. ivo.roessink@wur.nl  29 

nDepartment of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research 30 

(IZW), Germany. radchuk.victoria@gmail.com  31 

oDepartment of Aquatic Ecology and Water Quality Management, Wageningen University, 32 

the Netherlands. paul.vandenbrink@wur.nl  33 

Keywords: Biodiversity, Richness, Environmental change, Traits, Modelling, Food-webs. 34 

mailto:Frederik.delaender@unamur.be
mailto:jasonrohr@gmail.com
mailto:roman.ashauer@york.ac.uk
mailto:djbaird@unb.ca
mailto:uta.berger@tu-dresden.de
mailto:nico.eisenhauer@idiv.de
mailto:volker.grimm@ufz.de
mailto:udo.hommen@ime.fraunhofer.de
mailto:l.maltby@sheffield.ac.uk
mailto:Carlos.Melian@eawag.ch
mailto:Francesco.Pomati@eawag.ch
mailto:ivo.roessink@wur.nl
mailto:radchuk.victoria@gmail.com
mailto:paul.vandenbrink@wur.nl


Corresponding author: Frederik De Laender, Rue de Bruxelles 61 - 5000 Namur, Belgium; 35 

Frederik.delaender@unamur.be, T: +32 478 42 97 61; F: +32 81 724 362 36 

The authors declare no conflict of interest. 37 

 38 

Abstract  39 

For the past 20 years, research on biodiversity and ecosystem functioning (B-EF) has only 40 

implicitly considered the underlying role of environmental change. We illustrate that 41 

explicitly re-introducing environmental change drivers in B-EF research is needed to predict 42 

the functioning of ecosystems facing changes in biodiversity. Next, we show how this re-43 

introduction improves experimental control over community composition and structure, 44 

which helps to obtain mechanistic insight about how multiple aspects of biodiversity relate to 45 

function, and how biodiversity and function relate in food-webs. We also highlight 46 

challenges for the proposed re-introduction, and suggest analyses and experiments to better 47 

understand how random biodiversity changes, as studied by classic approaches in B-EF 48 

research, contribute to the shifts in function that follow environmental change.  49 
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Predicting effects on ecosystem functions from changes in biodiversity: a brief history  69 

Various types of environmental change, such as climate change, habitat fragmentation, or 70 

chemical pollution, can profoundly alter multiple facets of biodiversity [1-4]. The past 25 71 

years have seen a rise in different empirical approaches to examine how such changes affect 72 

ecosystem functions and services [5, 6]. Many focus on altering biodiversity while observing 73 

corresponding changes in function [7]. These approaches can be first classified based on the 74 

nature of the manipulation, whether species densities are altered randomly or non-randomly 75 

(see ‘Glossary’). Random manipulations assume a random extinction or colonization order, 76 

while non-random manipulations are done based on the (presumed) response of species to 77 

environmental change [8], or based on the effects of species on function (e.g. species with a 78 

greater effect on function are removed first) [9]. A second distinction can be based on 79 

whether manipulations of biodiversity are direct or indirect (see ‘Glossary’). Direct 80 

biodiversity manipulations are performed by manually altering species densities [10], 81 

whereas with indirect manipulations, a relevant environmental change is introduced to alter 82 

biodiversity [11, 12]. 83 

 84 

Indirect and non-random manipulations of biodiversity make intuitive sense because they are 85 

rooted in a recognition that environmental change drivers (see ‘Glossary’) are often the cause 86 

of biodiversity alterations [3] and that these alterations are non-random [9, 13]. As a 87 

consequence, early research on biodiversity and ecosystem functioning (‘B-EF research’ [7]) 88 

often adopted indirect and non-random biodiversity manipulations [11, 12, 14]. However, 89 

such approaches were increasingly subject to controversy and disagreement. In his seminal 90 

paper, Huston [15] criticized indirect and non-random biodiversity manipulations for 91 

difficulties in separating ‘true’ biodiversity effects from the effects of ‘hidden treatments’. 92 

Huston argued that by indirectly altering biodiversity using an environmental variable, 93 

researchers precluded partitioning the biodiversity-mediated effects on ecosystem function 94 

from the many other effects environmental change can have on function (see ‘Glossary’). 95 

Non-random manipulations were also shown to suffer from inherent bias, because results 96 

were highly dependent on the chosen order of species removal or addition. Collectively, the 97 

critiques by Huston and others [15-18] pushed the field towards direct and random 98 

biodiversity manipulations [7, 10]. The advantage of this methodological shift was that the 99 

causal relationship between biodiversity and ecosystem functioning, a main research gap at 100 

that time, could be more rigorously established. Today, however, a main research gap in 101 

ecology is to understand how the data produced using random and/or direct manipulations of 102 



biodiversity can be used to meet two of ecology’s current challenges: (1) to support 103 

quantitative prediction of the ecological effects of anthropogenic activities [7]; and (2) to 104 

unravel the mechanisms linking community structure (relative abundances) and composition 105 

to ecosystem function [19, 20]. In the present contribution, we submit that re-introducing 106 

non-random and indirect manipulations of biodiversity using environmental change drivers 107 

[21-25] (1) is a prerequisite to predicting the functioning of ecosystems facing changes in 108 

biodiversity that are caused by environmental change (section 2); and (2) facilitates 109 

unravelling mechanistic insight into the connections between community structure and 110 

composition and ecosystem function (section 3).  111 

 112 

The re-introduction of environmental change drivers is needed to predict ecosystem 113 

functioning following changes in biodiversity  114 

In many ecosystems, environmental change causes biodiversity declines or increases [26-29]. 115 

Experiments that directly and randomly manipulate biodiversity are unlikely to predict 116 

function in these ecosystems (Fig. 1, shaded area). This is because biodiversity changes that 117 

are non-random with respect to species' contributions to function will affect ecosystem 118 

functioning more or less than do random biodiversity changes [9, 30]. In addition, 119 

environmental change can alter the effect species have on ecosystem functions by altering (1) 120 

per-capita contributions to function [31, 32], and (2) population density [33, 34]. Depending 121 

on the type of environmental change, these alterations can be mostly positive (e.g. nutrient 122 

enrichment [35]), mostly negative (e.g. drought [36] or pollution [37]), or negative for some 123 

species and positive for others (e.g. warming [38-40]). 124 

 125 

Trait-based frameworks are available to predict how non-random effects of environmental 126 

change on per-capita contributions to function, population densities, and biodiversity 127 

translate to changes in ecosystem function [9, 30]. A simple extension of this framework with 128 

species interactions (Box 1) and using richness as a biodiversity indicator illustrates two 129 

important points. First, environmental change can cause a variety of B-EF relationships (Fig. 130 

1). The shape of this relationship critically depends on (1) whether the responses elicited by 131 

the environmental change driver are positive or negative, and (2) the type of non-randomness 132 

exerted by the environmental change driver [29, 41] (Box 1). Second, changes in function are 133 

expected before any change in species richness is observed (Fig. 1A and D; levels 0-0.1), and 134 

– more generally – the variability of ecosystem function within one level of species richness 135 

is substantial (Box 1, Box 3, ‘Outstanding questions’). The ensemble of B-EF relationships 136 



constructed through direct and random biodiversity manipulation (Fig. 1, shaded area) does 137 

not capture the variation in B-EF shapes arising from indirect and non-random biodiversity 138 

manipulation, and can both over- (e.g. Fig. 1B) and underestimate variation of function 139 

within one biodiversity level (e.g. Fig. 1C). 140 

 141 

The re-introduction of environmental change drivers can augment mechanistic insight 142 

Many descriptors of biodiversity (e.g. richness and evenness, and based on traits, taxonomy, 143 

or genes), but also community structure and composition, total density (community size) and 144 

per-capita contributions to function, can affect ecosystem functioning [33, 42-45]. A main 145 

research theme in ecology is to understand their relative importance to functioning [7, 46, 146 

47]. Using environmental change drivers to indirectly manipulate biodiversity, community 147 

structure and composition, total density, and per-capita contributions to function facilitates 148 

such studies. This is because different environmental change levels trigger effects on 149 

different subsets of these variables (Fig. 1). For example, in Fig. 1A, environmental change 150 

levels between 0.25 and 0.7 will all lead to the same species richness, but will alter total 151 

density and per-capita contributions to function. In Fig. 1B, effects on richness are always 152 

more important than effects on total density or per-capita contributions to function. In Fig. 153 

1A and D, low levels of change only affect per-capita contributions to function and total 154 

density. In general, the fact that different levels of environmental change cause different 155 

effects offers greater control over the different mechanisms underlying change of function 156 

than do direct manipulations of biodiversity. Controlling per-capita contributions to function 157 

is by definition impossible through direct manipulations of biodiversity, since per-capita 158 

contribution to function is no descriptor of biodiversity. However, even community 159 

composition, structure, and richness will often be uncontrollable through direct 160 

manipulations. For example, in the model presented in Fig. 1, persistence of species 0 or 161 

dominance by any other species than species 9 is only possible in the continuous presence of 162 

an appropriate environmental change driver, i.e. through indirect manipulations. Without this 163 

presence, community structure will always converge to the one shown in Box 1, and richness 164 

will be 9, even when all 10 species are added to the initial community. Many examples 165 

illustrate community compositions and structures that only emerge in the presence of specific 166 

environmental change drivers and do not occur in their absence. For example, drought in 167 

streams reduces the relative density of large-bodied consumers, predators, and encrusting 168 

green algae [36]. Nitrogen enrichment in grasslands increases the relative density of nitrogen 169 

demanding grasses [35], while increased precipitation in grasslands increases the relative 170 



density of nitrogen-fixing forbs [48]. Even though most of the available studies are based on 171 

taxonomic diversity, case studies showing how environmental change drivers can cause loss 172 

or gain of genetic diversity are rapidly accumulating [29, 49].  173 

The relationship between biodiversity and functioning in multi-trophic communities (food-174 

webs) has been an important research theme in ecology since the 1990s [7, 50-52]. For 175 

example, the biodiversity of one food-web compartment can drive functions performed by 176 

other parts of the food-web [53], or both can be unrelated [54]. Using environmental change 177 

drivers to indirectly and non-randomly manipulate food-webs facilitates studying such links. 178 

This is because environmental change drivers often target specific food-web compartments so 179 

that it becomes possible to experimentally alter biodiversity and related functions of specific 180 

food-web compartments and measure corresponding changes in other compartments. For 181 

example, resource enrichment can be used to increase functions performed by basal species 182 

groups (e.g. bacterial decomposition, water purification, primary production), while 183 

desiccation can be used to target functions performed by non-basal species [36]. In addition 184 

to the well-known cases of resource addition or manipulation of climate variables, chemical 185 

stressors comprise an exceptionally useful group of experimental agents that can be used for 186 

both non-random manipulations as well as for manipulations that are random with respect to 187 

the effects species have on function. This is illustrated by the many studies that have exposed 188 

relatively complex food-webs composed of field organisms (typically primary producers and 189 

invertebrate grazers and predators) to concentration series of chemical stressors during 190 

several weeks to months (Fig. 2). For example, many pyrethroid insecticides will target 191 

arthropod consumers and predators [55, 56], while photosystem-inhibiting herbicides will 192 

target specific algal taxa [57, 58]. Certain biocides such as triphenyltin [59] and narcotic 193 

chemicals [60] are examples of chemical stressors that exert effects that are random with 194 

respect to the effects species have on function. Directly manipulating food-webs to 195 

persistently exclude certain trophic levels or functional groups (e.g. small-bodied benthic 196 

grazers, specific bacterial communities or, algal taxa) will be nearly impossible. Indirect non-197 

random manipulations might therefore be the only solution.  198 

 199 

Back to the future: methods to connect indirect and non-random manipulations with 200 

classic B-EF research 201 

Most classic B-EF designs focus on the effect of random biodiversity changes on ecosystem 202 

function through direct manipulations. To quantify the contribution of such effects to the 203 



functioning of ecosystems following environmental change (Box 3, ‘Outstanding questions’) 204 

[23] analysing available data is a useful starting point. The literature is replete with studies 205 

exposing communities to environmental gradients. When a sufficient number of change 206 

levels has been tested across a sufficiently broad gradient of change, the contributions of 207 

biodiversity-mediated effects can be separated from the other effects of environmental 208 

change on ecosystem function using available analytical techniques. One possible way to do 209 

so is by applying multivariate statistical techniques, such as structural equation modelling 210 

[61, 62] (Box 2). However, sophisticated structural equation models [21, 24] can also be used 211 

to partition the effects on function that are not mediated by biodiversity into their 212 

constituents. In addition, methods based on versions of the Price equation that do not require 213 

monoculture data but only need species contributions to function before and after 214 

environmental change can be used to separate the effects of species loss and gain that is 215 

random and non-random with respect to the effects species have on function from all other 216 

effects environmental change can have on function [42].  217 

 218 

Post-hoc analyses are a useful first step to quantify biodiversity-mediated effects on function. 219 

However, we recommend combining direct and indirect biodiversity manipulations as 220 

separate treatments in a single experiment. In a first design, we recommend using a well-221 

known environmental change driver to non-randomly manipulate a community, while setting 222 

up a second treatment where the same community is manipulated directly. Importantly, the 223 

direct manipulation should be done in the absence of the environmental change driver but 224 

aim to match the community resulting from the application of the environmental change 225 

driver, as observed in the first treatment, and should therefore be non-random. For example, 226 

in Fig. 1B, applying a level of change of 0.1 would constitute an indirect biodiversity 227 

manipulation that excludes species 1. Higher levels would exclude species 2, 3, and so on. 228 

Thus, the direct biodiversity manipulation treatments should represent the same gradient of 229 

community compositions, by consecutively excluding species 1, 2, 3, and so on. Next, the B-230 

EF relationship resulting from the indirect manipulation (e.g. Fig. 1B, ‘resulting B-EF’ panel) 231 

could be compared to the one resulting from direct species removal. If both were not 232 

significantly different, this would suggest that the chosen type of environmental change 233 

mainly acts upon ecosystem functioning through compositional effects. If B-EF relationships 234 

do differ, follow-up studies could examine in more detail the potential mechanisms 235 

explaining this difference, for example by inspecting the magnitude of effects on per-capita 236 

contributions to function [25], or by considering effects on community structure. However, 237 



we recognize that this design can be challenging because, as mentioned in section 3, certain 238 

community compositions are impossible to reconstruct without the use of environmental 239 

variables. This problem could be addressed by statistically testing if per-capita contributions 240 

to function (functional contribution of a species, e.g. its total biovolume divided by its 241 

population density) differ between the direct and indirect biodiversity treatment. If the 242 

inferred values of per-capita contributions to function do not differ between both treatments, 243 

this suggests that the selected type of environmental change impacts on ecosystem 244 

functioning through other mechanisms than effects on per-capita contributions to function.   245 

 246 

A second design consists of a factorial experiment where the presence or absence of a direct 247 

biodiversity manipulation that aims to match the community structure resulting from the 248 

indirect biodiversity manipulation is crossed with the presence and absence of an 249 

environmental change driver [63]. If all the effects of the driver on ecosystem functioning are 250 

mediated by biodiversity changes, then the combination of direct biodiversity manipulation 251 

and the environmental change treatment should display the same level of ecosystem 252 

functioning as both the direct manipulation alone and the environmental change treatment 253 

alone. If this were not the case, then it would suggest non-biodiversity-mediated effects on 254 

ecosystem functioning. Interestingly, the same design has been recently proposed by Vellend 255 

[64], yet motivated by a different objective. Vellend proposed to use this design to test if a 256 

community structure shaped by environmental change maximizes function under that same 257 

type of environmental change, a prediction based on the analogy between community 258 

ecology and population genetics. 259 

 260 

Challenges of re-introducing environmental change drivers in B-EF research 261 

Although we advocate re-introducing environmental change drivers in B-EF research, there 262 

are at least two challenges that need to be addressed for successful application. First, in the 263 

approach we advocate, we implicitly assume that environmental change does not affect per-264 

capita species interactions (the ߙ in Box 1). In our model, the effects of species interactions 265 

on a focal species are only altered through changes in the density of species with which it 266 

interacts. This assumption has been shown to prevail in some systems [65], but not in others 267 

[66, 67]. Arguably the best-known example of environmental effects on per-capita 268 

interactions is the ‘stress gradient hypothesis’, where there is a shift from competitive (i.e. 269 

negative) to facilitative (i.e. positive) interactions as the level of stress increases [66, 67]. 270 

Such effects can lead to a variety of effects of stress on community structure and composition 271 



and ecosystem function, depending on the type of stress factor and species traits [68]. Suttle 272 

et al. [48] found that sustained increased precipitation eventually caused negative interactions 273 

among plant species that were not apparent before the treatment. In alfalfa communities, 274 

Barton and Ives [69] found that reduced precipitation changed interactions between spotted 275 

aphids and their ladybeetle predators through dietary shifts of the latter. These examples 276 

make clear that species interactions prevailing in the pre-change system cannot always be 277 

used to predict the chain of secondary and higher-order effects occurring after the change. In 278 

such cases, knowledge about shifts of per-capita species interactions is needed to gain control 279 

over community structure and composition in experiments (Box 3, ‘Outstanding questions’), 280 

and to correctly interpret the observed effects of environmental change on biodiversity and 281 

ecosystem functioning.  282 

 283 

Second, we have discussed environmental change drivers eliciting either positive or negative 284 

responses that change monotonically as the level of environmental change increases, and stay 285 

constant through time. However, many environmental change drivers can elicit positive 286 

responses in some species but negative responses in others (e.g. temperature [38]), and many 287 

responses are non-monotonic, with the sign of the response depending on the level of 288 

environmental change (e.g. [47]). In addition, depending on the life history of the considered 289 

species, populations can genetically adapt [49], which can alter their response to 290 

environmental change through time. While these features do not threaten the general 291 

principle of our thesis, they do indicate that community structure and composition can be 292 

harder to interpret and predict, and therefore also more difficult to control in experiments, for 293 

certain combinations of environmental change drivers and ecosystem types.  294 

 295 

Opportunities for ecosystem assessment and management 296 

Novel tools for biological monitoring will substantially increase the amount of biodiversity 297 

data [70, 71]. However, linking monitored biodiversity trends to ecosystem functions remains 298 

a major difficulty for ecosystem assessment, as has been discussed in the framework of 299 

several environmental regulations worldwide [72, 73]. Re-introducing environmental change 300 

drivers in B-EF research could help ecosystem assessors by realistically translating observed 301 

biodiversity trends to trends of ecosystem function for a suite of well-studied environmental 302 

change drivers. Studies compiling and comparing different types of environmental change 303 

[22, 74] will be instrumental to ask if knowledge about one type of environmental change can 304 

be transposed to other types of environmental change (Box 3, ‘Outstanding questions’). 305 



Following ecosystem assessments, predicted changes of ecosystem functions could be used to 306 

inform management as well, for example by triggering mitigating measures if needed. In 307 

addition, ecosystem managers could propose critical levels of biodiversity change that, when 308 

exceeded, lead to unacceptable loss of ecosystem functioning. The connection of B-EF 309 

research to applied science has often been debated [75]. Re-introducing the use of 310 

environmental change drivers to B-EF research can reinforce this connection.  311 

 312 

Concluding remarks 313 

We have identified two reasons why environmental change drivers should be re-introduced in 314 

B-EF research. First, the amount of ecosystem function loss or gain following biodiversity 315 

change depends on the type of underlying environmental change driver(s). Second, 316 

environmental change drivers can serve as experimental agents to control various aspects of 317 

biodiversity and community composition and structure. These features facilitate studying to 318 

what extent changes in ecosystem function are caused by biodiversity change and which 319 

aspects of biodiversity are most important to ecosystem function.  320 

 321 

Re-introducing environmental change drivers into B-EF research can be realised by analysing 322 

existing data of well-known environmental change drivers and through novel experimental 323 

designs. Designs combining direct and indirect biodiversity manipulations constitute a 324 

particularly useful research avenue as they allow to directly test how biodiversity, 325 

environmental change, and ecosystem function relate. However, unexpected effects of 326 

environmental change on per-capita species interactions and the variety of species’ responses 327 

to such change are two main challenges to the use of environmental change drivers in B-EF 328 

research. Opportunities include an improved capacity to assist ecosystem assessment and 329 

management, by translating monitored biodiversity trends to trends of ecosystem function, 330 

which are rarely monitored. We conclude that re-introducing environmental change drivers in 331 

B-EF research is a prerequisite for predicting shifts of ecosystem function in a changing 332 

world, facilitates understanding the mechanisms causing these shifts, and strengthens the 333 

connections between B-EF research and applied ecology. 334 
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 374 

Box 1: Non-random and indirect vs. random and direct biodiversity manipulations. We 375 

simulate richness and ecosystem functioning in a community of 10 species responding to a 376 

level l of an environmental change driver and contributing to an ecosystem function F [9]:  377 ௗேௗ௧ ή ଵே ൌ ሺ݈ሻߤൣ  σ ǡߙ ή ܰଵଵ ൧   (based on [50]) 378 ܨ ൌ σ ݂ሺ݈ሻ ή ܰכଵଵ   379 

The Įi,j are per-capita effects of species j on species i (Įi,j = Įj,i = -0.2; intraspecific effects Įi,i 380 

are set to -1). ܰ is the density of species i (asterisks denote equilibrium densities); ߤሺ݈ሻ and 381 ݂ሺ݈ሻ are growth rates and per-capita contributions to F as a function of l:   382 ߤሺ݈ሻ ൌ ǡ௫ߤ ή ሺͳ  ݎ ή ݈ሻ    383 

݂ሺ݈ሻ ൌ ݂ǡ௫ ή ሺͳ  ʹȀݎ ή ݈ሻ    384 

where ݎ represents the response of species i to environmental change and the division by two 385 

ensures per-capita contributions to function responds more strongly than density [76]. All 386 

species have ݂ǡ௫ ൌ ͳͲ, respond differently to environmental change (Fig. I), have different 387 

growth rates (Fig. I) and therefore different competitive strengths (Fig. II).   388 

We manipulated richness indirectly and non-randomly by exposing the community to levels l 389 

between 0 (no change) and 1 (100% increase or decrease of ߤ of the most responsive 390 

species), and measured the corresponding F (Fig. 1, colored symbols). When dominants 391 

respond most negatively (Fig. 1A), function decreases but richness is higher with than 392 

without environmental change because of competitive release of species 0. Thus, 393 

environmental change promotes co-existence and richness only decreases at high levels of 394 

change. The resulting B-EF relationship is therefore non-monotonic. When environmental 395 

change mostly elicits negative responses of subordinates (Fig. 1B), richness decreases already 396 

at low levels of change because subordinates (species 1) combine a low density, which makes 397 

them inherently prone to competitive exclusion, with a large negative response. In this case, a 398 

monotonic positive B-EF relationship emerges. When environmental change elicits positive 399 

responses, negative (Fig. 1C) or positive B-EF relationships (Fig. 1D) emerge from exactly 400 

the same mechanisms as in Fig. 1A and 1B.  401 

 402 

We also manipulated richness directly and randomly by removing all possible combinations 403 

of 1 to 5 species from the community and measuring the corresponding F while setting l=0 404 

(Fig. 1, shaded area, identical for all four scenarios). 405 



 406 

 407 

Figure I: Environmental change elicits negative (left panels) or positive responses (right 408 

panels) that are strongest for species with high (top row) or low (bottom row) growth rates, 409 

i.e. species that are dominant and subordinate in pre-change conditions, respectively (Fig. II). 410 

Numbers give species identity.  411 

 412 

Figure II: Equilibrium densities in absence of environmental change.  413 
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Box 2: Separating biodiversity-mediated effects on ecosystem functioning. Structural 425 

equation models (SEMs) can be used to compare biodiversity-mediated effects on ecosystem 426 

functioning with the other effects environmental change can have on function. A SEM is 427 

described as “the use of two or more structural [cause-effect] equations to model multivariate 428 

relationships”, which allows for an intuitive graphical representation of complex causal 429 

networks [61, 62]. Most notably, a SEM cannot only be used to isolate biodiversity-mediated 430 

effects on ecosystem functioning, but also to investigate the partial contributions of correlated 431 

explanatory variables to test alternative hypotheses [61].  432 

For illustrative purposes, we analysed data from a previously published microcosm study 433 

evaluating the effects of chemical stress (a mixture of insecticides) on aquatic invertebrate 434 

richness and decomposition in a ditch community [77, 78] with a simple structural equation 435 

model. We also present previously published effects of nitrogen and carbon dioxide 436 

enrichment on plant richness and biomass production in grasslands [23]. These analyses show 437 

that richness-mediated effects on function are negative for environmental change drivers that 438 

have negative effects on richness, and that these richness-mediated effects can be partly 439 

compensated by other effects of environmental change. Many examples in the literature 440 

support the conclusion that environmental change studies can be successfully analysed with 441 

SEMs, including SEMs with more extended effect pathways [21, 24]. In more replicated 442 

experimental setups [61], different biodiversity and community metrics could be tested in 443 

parallel to extract the most relevant biodiversity metric causing alterations in ecosystem 444 

functioning. 445 

  446 

Figure I. A: Environmental change drivers can affect functions by altering biodiversity or 447 

through other mechanisms [23]. B: Structural equation models for three environmental 448 

change drivers. All effects are significant (P < 0.05) except when indicated (n.s.). The 449 

variance of diversity and function explained by the model (R²) for the case of chemical stress 450 

was 68% and 65%, respectively. Effects are standardized path coefficients [62]. Details on 451 

the analysis for the other two drivers can be found in the original publication [23]. 452 
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Glossary 454 

Environmental change driver: An environmental variable that exhibits long-term changes, 455 

often as a result of anthropogenic activities. Examples include nutrient deposition, climate 456 

warming, habitat fragmentation, and chemical pollution.  457 

Direct biodiversity manipulation: If biodiversity is manipulated directly, communities with 458 

different biodiversity levels are composed, e.g. by taking different subsets of a species pool in 459 

case of richness.  460 

Indirect biodiversity manipulation: If biodiversity is manipulated indirectly, one applies 461 

different levels of an environmental change driver to create a biodiversity gradient. Indirect 462 

biodiversity manipulations are by definition non-random with respect to species responses to 463 

environmental change.  464 

Random biodiversity manipulation: If biodiversity is manipulated randomly, community 465 

composition or structure is varied within a diversity level. By doing so, one can statistically 466 

control for effects of community composition or structure on ecosystem function.  467 

Non-random biodiversity manipulation: Non-random biodiversity manipulations are done 468 

based on known or presumed extinction or colonization orders (non-random with respect to 469 

species responses to environmental change), or based on the contribution of species to 470 

function (non-random with respect to species effects on ecosystem functions).  471 

Biodiversity-mediated effect of environmental change on ecosystem function: Effects 472 

occurring through changes in any aspect of biodiversity (mostly richness or evenness).   473 

Other effects of environmental change on ecosystem function: Effects occurring through 474 

mechanisms other than biodiversity changes. Examples include changes of community 475 

composition or structure, of total density (community size), of per-capita contributions to 476 

function ( ݂ሺ݈ሻ in Box 1, e.g. physiological responses to warming), or of the bioavailability of 477 

macronutrients such as carbon, nitrogen, or phosphorous [79].  478 

 479 
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Figure titles and legends 488 

Figure 1: Indirect and non-random manipulations of biodiversity can result in a multitude of 489 

biodiversity-ecosystem function relationships (‘Resulting B-EF’, simulated from the model in 490 

Box 1; l is the level of environmental change and colours represent a scale from l=0 (yellow) 491 

to l=1 (red), the value for l=0 is indicated with a ‘x’ for clarity). These relationships emerge 492 

as a consequence of effects on richness, per-capita contributions to function (average effect 493 

across all species), and total density (sum of all species). The strength of these effects 494 

depends on l (‘level-dependent effects’) and the shape of the resulting B-EF critically 495 

depends on whether dominants (A and C) or subordinates (B and D) respond more strongly to 496 

environmental change, and on whether the elicited responses are negative (A and B) or 497 

positive (C and D). The shaded area indicates the expected B-EF under direct and random 498 

biodiversity manipulations.  499 

 500 

Figure 2: Chemical stressors can be used to non-randomly and indirectly manipulate food-501 

webs. This is illustrated by empirically observed effects of continuous exposure of freshwater 502 

ditch food-webs to chemical stressors in published micro- and mesocosm experiments. A: 503 

Predators, herbivores and detritivores are separated into arthropod (Arth) and non-arthropod 504 

(Non-arth) species; primary producers are separated into macrophytes (Macro) and algae; 505 

Det. represents detrital material and its associated microflora. B: Results for exposure to 506 

50µg•L linuron, a photosystem (‘PS’) inhibitor [57, 58]. C: Results for exposure to 35 µg•L 507 

chlorpyrifos, a pyrethroid insecticide [55, 56]. Significant primary responses by the 508 

corresponding chemical stressor are shown in red, secondary effects mediated by species 509 

interactions are shown in green. White circles indicate that there was no effect. The relative 510 

sizes of the coloured and dotted circles indicate whether the effect was positive (increase in 511 

abundance - coloured circle larger than dotted circle) or negative (decrease of abundance - 512 

coloured circle smaller than dotted circle).  513 

 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 



References 522 

1. Bellard, C. et al. (2012) Impacts of climate change on the future of biodiversity. Ecology 523 
Letters 15 (4), 365-377. 524 
2. Thomas, C.D. et al. (2004) Extinction risk from climate change. Nature 427 (6970), 145-525 
148. 526 
3. Malaj, E. et al. (2014) Organic chemicals jeopardize the health of freshwater ecosystems 527 
on the continental scale. Proceedings of the National Academy of Sciences of the United 528 
States of America 111 (26), 9549-54. 529 
4. Aguilar, R. et al. (2006) Plant reproductive susceptibility to habitat fragmentation: review 530 
and synthesis through a meta-analysis. Ecology Letters 9 (8), 968-80. 531 
5. Hooper, D.U. et al. (2012) A global synthesis reveals biodiversity loss as a major driver of 532 
ecosystem change. Nature 486 (7401), 105-8. 533 
6. Worm, B. et al. (2006) Impacts of Biodiversity Loss on Ocean Ecosystem Services. 534 
Science 314 (5800), 787-790. 535 
7. Tilman, D. et al. (2014) Biodiversity and Ecosystem Functioning. Annual Review of 536 
Ecology, Evolution, and Systematics 45 (1), 471-493. 537 
8. Zavaleta, E.S. and Hulvey, K.B. (2004) Realistic species losses disproportionately reduce 538 
grassland resistance to biological invaders. Science 306 (5699), 1175-7. 539 
9. Suding, K.N. et al. (2008) Scaling environmental change through the community-level: a 540 
trait-based response-and-effect framework for plants. Global Change Biology 14 (5), 1125-541 
1140. 542 
10. Cardinale, B.J. et al. (2011) The functional role of producer diversity in ecosystems. 543 
American Journal of Botany 98 (3), 572-92. 544 
11. McNaughton, S.J. (1993) Biodiversity and function of grazing ecosystems. In Biodiversity 545 
Ecosystem Functioning (Schulze, E.D. and Mooney, H.A. eds), pp. 361–384., Springer. 546 
12. Tilman, D. and Downing, J.A. (1994) Biodiversity and stability in grasslands. Nature 367, 547 
363-365. 548 
13. Voigt, W. et al. (2003) Trophic levels are differentially sensitive to climate. Ecology 84, 549 
2444–2453. 550 
14. Hector, A. and Hooper, R. (2002) Darwin and the First Ecological Experiment. Science 551 
295 (5555), 639-640. 552 
15. Huston, M.A. (1997) Hidden treatments in ecological experiments: re-evalutating the 553 
ecosystem function of biodiversity. Oecologia 110, 449–460. 554 
16. Aarssen, L.W. (1997) High productivity in grassland ecosystems: effected by species 555 
diversity or productive species? Oikos 80, 183–184. 556 
17. Grime, J.P. (1997) Biodiversity and ecosystem function: the debate deepens. Science 557 
277, 1260-1261. 558 
18. Givnish, T.J. (1994) Does diversity beget stability? Nature 371 (6493), 113-114. 559 
19. Eisenhauer, N. et al. (2016, in press) Biodiversity–ecosystem function experiments 560 
reveal the mechanisms underlying the consequences of biodiversity change in real world 561 
ecosystems. Journal of Vegetation Science, -. 562 
20. Wardle, D.A. (2016) Do experiments exploring plant diversity–ecosystem functioning 563 
relationships inform how biodiversity loss impacts natural ecosystems? Journal of 564 
Vegetation Science 27 (3), 646-653. 565 
21. Halstead, N.T. et al. (2014) Community ecology theory predicts the effects of 566 
agrochemical mixtures on aquatic biodiversity and ecosystem properties. Ecology Letters 17 567 
(8), 932-41. 568 
22. Hautier, Y. et al. (2015) Anthropogenic environmental changes affect ecosystem stability 569 
via biodiversity. Science 348 (6232), 336-40. 570 
23. Isbell, F. et al. (2013) Nutrient enrichment, biodiversity loss, and consequent declines in 571 
ecosystem productivity. Proceedings of the National Academy of Sciences of the United 572 
States of America 110 (29), 11911-6. 573 
24. McMahon, T.A. et al. (2012) Fungicide-induced declines of freshwater biodiversity 574 
modify ecosystem functions and services. Ecology Letters 15 (7), 714-22. 575 



25. Mensens, C. et al. (2015) Stressor-induced biodiversity gradients: revisiting biodiversity-576 
ecosystem functioning relationships. Oikos 124 (6), 677-684. 577 
26. Dornelas, M. et al. (2014) Assemblage Time Series Reveal Biodiversity Change but Not 578 
Systematic Loss. Science 344, 296-299. 579 
27. McGill, B.J. et al. (2015) Fifteen forms of biodiversity trend in the Anthropocene. Trends 580 
in Ecology & Evolution 30 (2), 104-113. 581 
28. Gonzalez, A. et al. (2016) Estimating local biodiversity change: a critique of papers 582 
claiming no net loss of local diversity. Ecology 97 (8), 1949-1960. 583 
29. Sax, D.F. and Gaines, S.D. (2003) Species diversity: from global decreases to local 584 
increases. Trends in Ecology & Evolution 18 (11), 561-566. 585 
30. Diaz, S. et al. (2013) Functional traits, the phylogeny of function, and ecosystem service 586 
vulnerability. Ecology and Evolution 3 (9), 2958-75. 587 
31. Chalifour, A. and Juneau, P. (2011) Temperature-dependent sensitivity of growth and 588 
photosynthesis of Scenedesmus obliquus, Navicula pelliculosa and two strains of 589 
Microcystis aeruginosa to the herbicide atrazine. Aquatic Toxicology 103, 9-17. 590 
32. Vitousek, P.M. et al. (1997) Human alteration of the global nitrogen cycle: sources and 591 
consequences. Ecology 7 (3), 737–750. 592 
33. Hillebrand, H. et al. (2008) Consequences of dominance: a review of eveness effects on 593 
local and regional ecosystem processes. Ecology 89, 1510–1520. 594 
34. Winfree, R. et al. (2015) Abundance of common species, not species richness, drives 595 
delivery of a real-world ecosystem service. Ecology Letters 18 (7), 626-35. 596 
35. Wedin, D.A. and Tilman, D. (1996) Influence of Nitrogen Loading and Species 597 
Composition on the Carbon Balance of Grasslands. Science 274 (5293), 1720-1723. 598 
36. Ledger, M.E. et al. (2013) Drought alters the structure and functioning of complex food 599 
webs. Nature Clim. Change 3 (3), 223-227. 600 
37. Schwarzenbach, R.P. et al. (2006) The challenge of micropollutants in aquatic systems. 601 
Science 313 (5790), 1072-7. 602 
38. Brose, U. et al. (2012) Climate change in size-structured ecosystems. Philosophical 603 
Transactions of the Royal Society of London B: Biological Sciences 367 (1605), 2903-2912. 604 
39. García Molinos, J. et al. (2015) Climate velocity and the future global redistribution of 605 
marine biodiversity. Nature Clim. Change advance online publication. 606 
40. Woodward, G. et al. (2010) Climate change and freshwater ecosystems: impacts across 607 
multiple levels of organization. Philosophical Transactions of the Royal Society B: Biological 608 
Sciences 365 (1549), 2093-2106. 609 
41. Cahill, A.E. et al. (2012) How does climate change cause extinction? Proceedings of the 610 
Royal Society of London B: Biological Sciences 280: 20121890 (1750). 611 
42. Fox, J.W. and Kerr, B. (2012) Analyzing the effects of species gain and loss on 612 
ecosystem function using the extended Price equation partition. Oikos 121 (2), 290-298. 613 
43. Loreau, M. (2010) Linking biodiversity and ecosystems: towards a unifying ecological 614 
theory. Philosophical Transactions of the Royal Society of London B: Biological Sciences 615 
365 (1537), 49-60. 616 
44. Crutsinger, G.M. et al. (2006) Plant Genotypic Diversity Predicts Community Structure 617 
and Governs an Ecosystem Process. Science 313 (5789), 966-968. 618 
45. Hughes, A.R. et al. (2008) Ecological consequences of genetic diversity. Ecology Letters 619 
11 (6), 609-623. 620 
46. Hillebrand, H. and Matthiessen, B. (2009) Biodiversity in a complex world: consolidation 621 
and progress in functional biodiversity research. Ecology Letters 12 (12), 1405-19. 622 
47. Pomati, F. and Nizzetto, L. (2013) Assessing triclosan-induced ecological and trans-623 
generational effects in natural phytoplankton communities: a trait-based field method. 624 
Ecotoxicology 22 (5), 779-94. 625 
48. Suttle, K.B. et al. (2007) Species Interactions Reverse Grassland Responses to 626 
Changing Climate. Science 315 (5812), 640-642. 627 
49. Doi, H. et al. (2010) Genetic diversity increases regional variation in phenological dates 628 
in response to climate change. Global Change Biology 16 (1), 373-379. 629 



50. Eklof, A. and Ebenman, B.O. (2006) Species loss and secondary extinctions in simple 630 
and complex model communities. Journal of Animal Ecology 75 (1), 239-246. 631 
51. Naeem, S. et al. (1995) Empirical evidence that declining species diversity may alter the 632 
performance of terrestrial ecosystems. Philos Trans R Soc Lond B Biol Sci 347, 249–262. 633 
52. Petchey, O.L. et al. (1999) Environmental Warming Alters Food-Web Structure and 634 
Ecosystem Function. Nature 402 (6757), 69-72. 635 
53. Bardgett, R.D. and van der Putten, W.H. (2014) Belowground biodiversity and 636 
ecosystem functioning. Nature 515 (7528), 505-511. 637 
54. Radchuk, V. et al. (2016) Biodiversity and ecosystem functioning decoupled: invariant 638 
ecosystem functioning despite non-random reductions in consumer diversity. Oikos 125 (3), 639 
424-433. 640 
55. Brock, T.C.M. et al. (1992) Fate and effects of the insecticide Dursban®4E in indoor 641 
Elodea-dominated and macrophyte-free freshwater model ecosystems: I. Fate and primary 642 
effects of the active ingredient chlorpyrifos. Archives of Environmental Contamination and 643 
Toxicology 23, 69-84. 644 
56. Brock, T.C.M. et al. (1992) Fate and effects of the insecticide Dursban®4E in indoor 645 
Elodea-dominated and macrophyte-free freshwater model ecosystems: II. Secondary effects 646 
on community structure. Archives of Environmental Contamination and Toxicology 23, 391-647 
409. 648 
57. Cuppen, J.G. et al. (1997) Sensitivity of macrophyte-dominated freshwater microcosms 649 
to chronic levels of the herbicide linuron. II. Community metabolism and invertebrates. 650 
Ecotoxicology and Environmental Safety 38 (1), 25-35. 651 
58. Van den Brink, P.J. et al. (1997) Sensitivity of Macrophyte-Dominated Freshwater 652 
Microcosms to Chronic Levels of the Herbicide Linuron. I: Primary producers. Ecotoxicology 653 
and Environmental Safety 38 (1), 13-24. 654 
59. Roessink, I. et al. (2006) Impact of triphenyltin acetate in microcosms simulating 655 
floodplain lakes. I. Influence of sediment quality. Ecotoxicology 15 (3), 267-93. 656 
60. Van Wezel, A.P. and Opperhuizen, A. (1995) Narcosis due to environmental pollutants in 657 
aquatic organisms: residue-based toxicity, mechanisms, and membrane burdens. Critical 658 
Reviews in Toxicology 25, 255–279. 659 
61. Eisenhauer, N. et al. (2015) From patterns to causal understanding: Structural equation 660 
modeling (SEM) in soil ecology. Pedobiologia 58 (2-3), 65-72. 661 
62. Grace, J.B. (2006) Structural Equation Modeling and Natural Systems, First edn., 662 
Cambridge University Press, New York. 663 
63. Eisenhauer, N. et al. (2009) No interactive effects of pesticides and plant diversity on soil 664 
microbial biomass and respiration. Applied Soil Ecology 42 (1), 31-36. 665 
64. Vellend, M. (2016) The Theory of Ecological Communities, Princeton. 666 
65. Baert, J.M. et al. (2016) Per capita interactions and stress tolerance drive stress-induced 667 
changes in biodiversity effects on ecosystem functions. Nat Commun 7, 12486. 668 
66. Bertness, M.D. and Callaway, R. (1994) Positive interactions in communities. Trends in 669 
Ecology & Evolution 9 (5), 191-193. 670 
67. Olsen, S.L. et al. (2016) From facilitation to competition: temperature-driven shift in 671 
dominant plant interactions affects population dynamics in seminatural grasslands. Global 672 
Change Biology 22 (5), 1915-1926. 673 
68. Maestre, F.T. et al. (2009) Refining the stress-gradient hypothesis for competition and 674 
facilitation in plant communities. Journal of Ecology 97 (2), 199-205. 675 
69. Barton, B.T. and Ives, A.R. (2014) Species interactions and a chain of indirect effects 676 
driven by reduced precipitation. Ecology 95 (2), 486-494. 677 
70. Allan, E. et al. (2014) Interannual variation in land-use intensity enhances grassland 678 
multidiversity. Proceedings of the National Academy of Sciences of the United States of 679 
America 111 (1), 308-13. 680 
71. Baird, D.J. and Hajibabaei, M. (2012) Biomonitoring 2.0: a new paradigm in ecosystem 681 
assessment made possible by next-generation DNA sequencing. Mol. Ecol. 21, 2039–2044. 682 



72. Birk, S. et al. (2012) Three hundred ways to assess Europe's surface waters: An almost 683 
complete overview of biological methods to implement the Water Framework Directive. 684 
Ecological Indicators 18, 31-41. 685 
73. Aron, J.L. et al. (2013) Using watershed function as the leading indicator for water 686 
quality. Water Policy 15 (5), 850-858. 687 
74. Tilman, D. et al. (2012) Biodiversity impacts ecosystem productivity as much as 688 
resources, disturbance, or herbivory. Proceedings of the National Academy of Sciences of 689 
the United States of America 109 (26), 10394–10397. 690 
75. Srivastava, D.S. and Vellend, M. (2005) Biodiversity-Ecosystem Function Research: Is It 691 
Relevant to Conservation? Annual Review of Ecology, Evolution, and Systematics 36 (1), 692 
267-294. 693 
76. Smith, M.D. et al. (2009) A framework for assessing ecosystem dynamics in response to 694 
chronic resource alterations induced by global change. Ecology 90 (12), 3279-89. 695 
77. Cuppen, J.G. et al. (2002) Effects of a mixture of two insecticides in freshwater 696 
microcosms: I. Fate of chlorpyrifos and lindane and responses of macroinvertebrates. 697 
Ecotoxicology 11 (3), 165-80. 698 
78. Van den Brink, P.J. et al. (2002) Effects of a mixture of two insecticides in freshwater 699 
microcosms: II. Responses of plankton and ecological risk assessment. Ecotoxicology 11 700 
(3), 181-97. 701 
79. Kopáček, J. et al. (2004) Nutrient cycling in a strongly acidified mesotrophic lake. 702 
Limnology and Oceanography 49 (4), 1202-1213. 703 

 704 



0.0 0.2 0.4 0.6 0.8 1.0

Level-dependent effects

Level of change l

E
ff
e

c
t 
(%

)

-4
0

0
4
0 Per-capita

Density

Richness

2
0
0

3
0
0

4
0
0

5
0
0

Resulting B-EF

Richness

F
u
n
c
ti
o
n

5 6 7 8 9 10 0.0 0.2 0.4 0.6 0.8 1.0

Level-dependent effects

Level of change l

E
ff
e

c
t 
(%

)

-4
0

0
4
0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Resulting B-EF

Richness

F
u
n
c
ti
o
n

5 6 7 8 9 10

0.0 0.2 0.4 0.6 0.8 1.0

Level-dependent effects

Level of change l

E
ff
e

c
t 
(%

)

-4
0

0
4
0

3
0
0

4
0
0

5
0
0

Resulting B-EF

Richness

F
u
n
c
ti
o
n

5 6 7 8 9 10 0.0 0.2 0.4 0.6 0.8 1.0

Level-dependent effects

Level of change l
E

ff
e

c
t 
(%

)

-4
0

0
4
0

6
0
0

1
0
0
0

1
4
0
0

Resulting B-EF

Richness

F
u
n
c
ti
o
n

5 6 7 8 9 10

Non-random negative responses Non-random positive responses
D

o
m

in
a
n
ts

 r
e
s
p
o
n
d
 

m
o
re

 s
tr

o
n
g
ly

S
u
b
o
rd

in
a
te

s
 r
e
s
p
o
n
d
 

m
o
re

 s
tr

o
n
g
ly

(A) (C)

(B) (D)

sp. 0 
appears

sp. 0 
appears

sp. 1 
excluded

sp. 1 
excluded

Direct&
random

Direct&
random



Fig1
Fig1

Fig1

(A) Key (B) PS inhibitor (C) Pyrethroid


