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Abstract

Motivation: A popular approach for predicting RNA secondary structure is the thermodynamic nearest
neighbor model that finds a thermodynamically most stable secondary structure with the minimum free
energy (MFE). For further improvement, an alternative approach that is based on machine learning
techniques has been developed. The machine learning based approach can employ a fine-grained model
that includes much richer feature representations with the ability to fit the training data. Although a
machine learning based fine-grained model achieved extremely high performance in prediction accuracy,
a possibility of the risk of overfitting for such model has been reported.
Results: In this paper, we propose a novel algorithm for RNA secondary structure prediction that integrates
the thermodynamic approach and the machine learning based weighted approach. Our fine-grained model
combines the experimentally determined thermodynamic parameters with a large number of scoring
parameters for detailed contexts of features that are trained by the structured support vector machine
(SSVM) with the `1 regularization to avoid overfitting. Our benchmark shows that our algorithm achieves
the best prediction accuracy compared with existing methods, and heavy overfitting cannot be observed.
Availability: The implementation of our algorithm is available at https://github.com/

keio-bioinformatics/mxfold.
Contact: satoken@bio.keio.ac.jp

1 Introduction
Non-coding RNAs (ncRNAs) that are not translated into proteins were
formerly considered as junk regions. However, these various functions
have been revealed in recent years ranging from the process of development
and cell differentiation to the cause of disease. Since the functions of
ncRNAs are believed to be closely related to the structures of ncRNAs, it
is possible to infer their biological functions from their structures. RNA
tertiary structures can be determined by experimental assays including
X-ray crystal structure analysis and nuclear magnetic resonance (NMR).
However, there are severe difficulties of these experimental assays such as
high experimental cost and low throughput. In addition, the computational
techniques to predict RNA tertiary structures have still been immature.
Therefore, the computational prediction of RNA secondary structures,

which can be easily modeled by a set of hydrogen bonds between
nucleotides, has frequently been used instead.

From the viewpoint of the scoring scheme, RNA secondary structure
prediction methods are roughly classified into three approaches: a
thermodynamic approach, a probabilistic approach, and a weighted
approach Rivas (2013). The thermodynamic approach has been the most
popular approach that finds a thermodynamically most stable secondary
structure with the minimum free energy (MFE) and has been utilized by a
number of tools including UNAfold Zuker (1989), RNAfold Lorenz et al.
(2011), and RNAstructure Reuter and Mathews (2010). RNA secondary
structures can be decomposed into characteristic substructures such as
hairpin loops and base-pair stacking according to the nearest neighbor
model Zuker and Stiegler (1981). Free energy of each substructure
was determined by experimental methods such as the optical melting
experiment Schroeder and Turner (2009). The free energy of the secondary
structure is calculated by summing up the free energy of each substructure
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in the secondary structure. The dynamic programming technique enables
us to efficiently find the MFE structure from all possible secondary
structures for a given RNA sequence.

The probabilistic approach has employed generative models including
stochastic context-free grammars (SCFGs) for modeling RNA secondary
structures. SCFGs are defined by a set of derivation rules, or grammar,
whose probabilities are trained by the maximum likelihood (ML)
estimation from the training data, and were applied to RNA secondary
structure prediction Sakakibara et al. (1994); Eddy and Durbin (1994);
Knudsen and Hein (1999); Dowell and Eddy (2004). Sato et al. proposed
a non-parametric Bayesian extension of SCFGs with the hierarchical
Dirichlet process that can find an optimal RNA grammar from the training
data Sato et al. (2010). Rivas et al. developed a framework called
TORNADO for flexibly describing RNA grammars, and showed that a
complex RNA grammar that simulates the nearest neighbor model can
achieve as accurate predictions as the weighted models can Rivas et al.
(2012).

The weighted approach has utilized machine learning techniques
instead of the experimental techniques in order to determine weights
for decomposed substructures, i.e., scoring parameters. CONTRAfold
was developed based on the conditional log-linear models (CLLMs) that
find scoring parameters that can most probably discriminate between
correct structures and incorrect structures Do et al. (2006). Simfold
implemented Boltzmann likelihood algorithm with feature relationships
between parameters (BL-FR), which is similar to CLLMs, but incorporated
free energy parameters Andronescu et al. (2010). ContextFold employed
a fine-grained model that includes much richer contexts of features with
the ability to fit the training data, combined with a machine learning
algorithm Zakov et al. (2011). Although ContextFold achieved extremely
high performance in prediction accuracy, Rivas et al. reported a possibility
of the risk of overfitting for ContextFold Rivas (2013). From this
observation, we can see that an important issue for further improving
prediction accuracy is to effectively learn a large number of scoring
parameters for a fine-grained model without overfitting.

In this paper, we propose a novel algorithm for RNA secondary
structure prediction that integrates the thermodynamic approach and
the machine learning based weighted approach. Our fine-grained model
combines the experimentally-determined thermodynamic parameters with
a large number of scoring parameters for detailed contexts of features. In
order to train the scoring parameters of the fine-grained model, we employ
the structured support vector machine (SSVM) Tsochantaridis et al. (2005)
with the `1 regularization to avoid overfitting. Our benchmark shows
that our algorithm achieves the best prediction accuracy compared with
existing methods, and heavy overfitting as shown in ContextFold cannot
be observed.

The major advantages of our work are summarized as follows: (i)
The max-margin based training algorithm learns our fine-grained model
that can perform accurate secondary structure prediction, and (ii) our
scoring model that integrates the thermodynamic and machine learning
based model enables accurate and robust structure prediction even for
unobserved substructures in the training dataset.

2 Methods

2.1 Preliminaries

Let Σ = {A,C,G,U} and Σ∗ denote the set of all finite RNA sequences
consisting of bases in Σ. For a sequence x = x1x2 · · ·xn ∈ Σ∗, let
|x| denote the number of symbols appearing in x, which is called the
length of x. Let S(x) be a set of all possible secondary structures of x. A
secondary structure y ∈ S(x) is represented as a |x| × |x| binary-valued

triangular matrix y = (yij)i<j , where yij = 1 if and only if bases
xi and xj form a base-pair composed by hydrogen bonds including the
Watson-Crick base-pairs (A-U and G-C), the Wobble base-pairs (G-U).

2.2 Scoring model

A scoring model f(x, y) is a function that assigns real-valued scores to an
RNA secondary structure y ∈ S(x) for an RNA sequence x ∈ Σ∗. Our
aim is to find a secondary structure y ∈ S(x) that maximizes the scoring
function f(x, y) for a given RNA sequence x ∈ Σ∗.

RNA secondary structures can be decomposed into characteristic
substructures, or features, such as hairpin loops and base-pair stacking.
We denote by Φ(x, y) the feature representation vector of (x, y), which
consists of the number of occurrence of every feature in (x, y). Each
feature in Φ is associated with a corresponding score or weight. We assume
a linear scoring model of RNA secondary structures as:

f(x, y) = λ>Φ(x, y), (1)

where λ is a weight vector in which λi is the weight of the i-th feature in
Φ.

Note that the thermodynamic approach can be represented by this
linear scoring model if we define Φ as the nearest neighbor model and
the corresponding weights as the negative of experimentally determined
free energy parameters.

We propose a novel scoring model that integrates the thermodynamic
approach and the machine learning based weighted approach. We define
our scoring model as:

f(x, y) = fT (x, y) + fW (x, y) (2)

fT (x, y) = λ>T ΦT (x, y)

fW (x, y) = λ>WΦW (x, y),

where fT (x, y) (resp. fW (x, y)) is the contribution of the thermodynamic
model (resp. the machine learning model) to our scoring model. For the
thermodynamic model, we employ the nearest neighbor model as ΦT and
the negative of the Turner free energy parameters Turner and Mathews
(2010) asλT . For the machine learning model, we construct a fine-grained
model as ΦW (see Sec. 2.3) and corresponding weights λW that are
trainable from training data by using SSVM (see Sec. 2.5).

2.3 Feature representations

Both feature representations ΦT and ΦW are based on the nearest neighbor
model Zuker and Stiegler (1981), including base helices, dangling
ends, terminal mismatches, hairpin loops, bulge loops, internal loops,
multibranch loops and external loops (Fig. 1).

In order to calculate the free energy of RNA secondary structures
more precisely, some specialized loop parameters have been adopted
in frequently used free energy parameter sets for the standard nearest
neighbor model. For example, the Turner 1999 and 2004 models contain
several sequential features such as hairpin loops with 3, 4 or 6 nucleotides
and internal loops with (1, 1) nucleotides (1 nucleotide at 5’ loop and 1
nucleotide at 3’ loop), (1, 2) nucleotides and (2, 2) nucleotides Turner and
Mathews (2010).

As the fine-grained feature representation ΦW , we employ much
longer sequential features for hairpin loops with m nucleotides, bulge
loops with m nucleotides and internal loops with (m,n) nucleotides
(m ≤ L and m + n ≤ L) in addition to the standard nearest neighbor
model. We use L = 7 by default as described in Results. See Sec. 3.5 for
more details.
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Fig. 1. Examples of substructures defined in the standard nearest neighbor model.

2.4 Decoding algorithm

2.4.1 Viterbi decoding:
Since both ΦT and ΦW are based on the nearest neighbor model, any
secondary structures can be decomposed into the same substructures for
both representations. Therefore, we can find the most probable secondary
structure that maximizes Eq. (2) by the Zuker-style dynamic programming
algorithm Zuker and Stiegler (1981).

2.4.2 Posterior decoding:
The posterior probability of the secondary structure y given RNA sequence
x, p(y | x), under the scoring model f(x, y) is calculated by:

p(y | x) =
exp[f(x, y)/RT ]

Z(x)

Z(x) =
∑

y∈S(x)
exp[f(x, y)/RT ],

where R is the gas constant and T is the absolute temperature. The base-
pairing probability pij is the probability that the i-th and j-th nucleotides
form a base-pair, which is defined as follows:

pij = Ey|x[I(yij = 1)] =
∑

y∈S(x)
I(yij = 1)p(y | x), (3)

where I(condition) is an indicator function which takes a value of 1 or
0 depending on whether the condition is true or false. The McCaskill
algorithm McCaskill (1990) can be utilized to efficiently calculate the
base-pairing probabilities (3) by the dynamic programming techniques.

We define a gain function between a true structure y and a candidate
structure ŷ by

G(y, ŷ) =
∑

1≤i≤j≤|x|

{
γI(yij = 1)I(ŷij = 1)

+ I(yij = 0)I(ŷij = 0)
}
, (4)

where γ > 0 is a weight for base-pairs. The gain function (4) is equal to
the weighted sum of the number of true positives and the number of true
negatives of base-pairs.

The expectation of the gain function (4) with respect to an ensemble
of all possible secondary structures under a given posterior distribution

p(y | x) is

Ey|x[G(y, ŷ)] =
∑

y∈S(x)
G(y, ŷ)p(y | x)

=
∑

1≤i≤j≤|x|
((γ + 1)pij − 1) I(ŷij = 1) + C, (5)

where C is a constant independent of ŷ.
Then, we can find ŷ that maximizes the expected gain (5) using the

recursive equations:

Mi,j = max


Mi+1,j

Mi,j−1

Mi+1,j−1 + (γ + 1)pij − 1

maxi<k<jMi,k +Mk+1,j

, (6)

and tracing back from M1,|x|.
We can control the trade-off between specificity and sensitivity by γ.

We call the maximization of Eq. (5) the generalized centroid estimator
(GCE) since this is equivalent to the centroid estimator Ding et al. (2005);
Carvalho and Lawrence (2008) for γ = 1. The generalized centroid
estimator is very similar to the maximum expected accuracy (MEA)
estimator Do et al. (2006). See Hamada et al. (2009); Sato et al. (2009)
for more details.

2.5 Learning algorithm

To optimize the feature parameter λW , we employ a max-margin
framework called structured support vector machines (SSVM) Tsochantaridis
et al. (2005). Given a training dataset D = {(x(k), y(k))}Kk=1, where
x(k) is the k-th RNA sequence and y(k) ∈ S(x(k)) is the correct
secondary structure for the k-th sequence x(k), we aim to find λW that
minimizes the objective function

L(λW ) =
∑

(x,y)∈D

(
max
ŷ∈S(x)

[f(x, ŷ) + ∆(y, ŷ)]

− f(x, y) + C||λW ||1
)
, (7)

where ||.||1 is the `1 norm andC is a weight for the `1 regularization term
to avoid overfitting to training data (we usedC = 0.001 by default). Here,
∆(y, ŷ) is a loss function of ŷ for y defined as

∆(y, ŷ) =δFN × (# of false negative base-pairs) (8)

+ δFP × (# of false positive base-pairs),

where δFN and δFP are tunable hyperparameters to control the trade-off
between sensitivity and specificity for learning the parameters. We used
δFN = 8.0 and δFP = 1.0 by default. In this case, we can calculate the
first term of Eq. (7) using the Zuker-style dynamic programming algorithm
modified by the loss-augmented inference Tsochantaridis et al. (2005).

To minimize the objective function (7), we can apply stochastic
subgradient descent (Fig. 2) or its variant.

3 Results

3.1 Implementation

Our algorithm was implemented as a program called MXfold, which is
short for the MaX-margin based rna FOLDing algorithm. The source code
is available at https://github.com/keio-bioinformatics/
mxfold. The free energy parameters λT was implemented using the
Vienna RNA package version 2.3.5 Lorenz et al. (2011).

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not peer-reviewed) is the. http://dx.doi.org/10.1101/205047doi: bioRxiv preprint first posted online Oct. 18, 2017; 

http://dx.doi.org/10.1101/205047


“draft” — 2017/10/18 — 9:33 — page 4 — #4i
i

i
i

i
i

i
i

4 Akiyama et al.

1: λW ← 0

2: repeat
3: for all (x, y) ∈ D do
4: ŷ ← arg maxŷ [f(x, ŷ) + ∆(y, ŷ)]

5: for all λWi ∈ λW do
6: λWi ← λWi − η(φWi(x, ŷ)− φWi(x, y) + CsgnλWi)

7: end for
8: end for
9: until all the parameters converge

Fig. 2. The stochastic subgradient descent algorithm for SSVMs. sgn is the sign function.
η > 0 is the predefined learning rate.

3.2 Datasets

In order to evaluate our algorithm, we performed computational
experiments on the four datasets assembled by Rivas et al. Rivas et al.
(2012), TrainSetA/TestSetA and TrainSetB/TestSetB. TrainSetA and
TestSetA were collected from the literature Dowell and Eddy (2004); Do
et al. (2006); Andronescu et al. (2007); Lu et al. (2009); Andronescu et al.
(2010). TrainSetB and TestSetB were extracted from Rfam Gardner et al.
(2011), which contain 22 families with 3D structures. The literature-based
sets “A” and the Rfam-based sets “B” are structurally diverse. Furthermore,
highly identical sequences were removed from all the four datasets. We
excluded a number of sequences that contain pseudoknotted secondary
structures in the original data sources from all the four datasets since
all algorithms evaluated in this study were designed for RNA secondary
structure prediction without pseudoknots. The dataset is also available at
https://github.com/keio-bioinformatics/mxfold.

3.3 Evaluation measures

We evaluated the accuracy of predicting RNA secondary structures through
the sensitivity (SEN) and the positive predictive value (PPV), defined as:

SEN =
TP

TP + FN
, PPV =

TP

TP + FP
,

where TP is the number of correctly predicted base-pairs (true positives),
FP is the number of incorrectly predicted base-pairs (false positives),
and FN is the number of base-pairs in the true structure that were not
predicted (false negatives). We also used the F-value as the balanced
measure between SEN and PPV, which is defined as their harmonic mean:

F =
2× SEN × PPV
SEN + PPV

.

3.4 Effects of scoring models

In order to confirm the effects of integration of the thermodynamic model
and the machine leaning based model, we performed computational
experiments on the datasets described in Sec. 3.2. The trainable parameters
of the machine learning based model were trained from TrainSetA. Each
model was evaluated with the prediction accuracy of the Viterbi decoding
on TestSetA and TestSetB. Table 1 shows the prediction accuracy of three
models: the thermodynamic model (TM) that employs only fT (x, y) in
Eq. (2), the machine learning model (ML) only with fW (x, y), and our
model that integrates the thermodynamic model and the machine learning
based model (TM+ML), indicating that our model (TM+ML) performed
the most accurate prediction. On TestSetA, our models was slightly better
than ML only model. On TestSetB that contains structurally dissimilar
RNAs from TrainSetA, the difference of the accuracy between TM+ML
and ML is larger.

Table 1. The accuracy of each scoring model

Model TestSetA TestSetB
SEN PPV F SEN PPV F

TM 0.682 0.659 0.670 0.598 0.485 0.536
ML 0.703 0.764 0.732 0.575 0.550 0.563

TM+ML 0.715 0.761 0.737 0.617 0.565 0.590

TM: the thermodynamic model, ML: the machine learning
based model trained with TrainSetA, and TM+ML: the
integrated model.

0 3 5 7 10 15 20
L

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
TestSetA

SEN PPV F

0 3 5 7 10 15 20
L

0.2

0.3

0.4

0.5

0.6

0.7
TestSetB

SEN PPV F

Fig. 3. The accuracy for each feature representation with different context lengths L on
TestSetA (top) and TestSetB (bottom).

3.5 Effects of feature representations

We evaluated the prediction accuracy of the Viterbi decoding on TestSetA
and TestSetB for several feature representations. Figure 3 shows the
accuracy for each feature representation with different context lengths
L = {0, 3, 5, 7, 10, 15, 20}. This indicates that the difference of the
accuracy onL ≥ 7 is negligible although longer sequential features enable
more accurate prediction. In addition, as shown in Fig. 4 that shows the
running time for each context length, sequential features of longer context
lengths need more calculation time. Therefore, we set the default context
length L = 7 since shorter sequential features decrease the number of
trainable features reducing the risk of overfitting.
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measured on Linux OS v2.6.32 with Intel Xeon E5-2680 (2.80 GHz) and 64 GB memory.

3.6 Comparison with competitive methods

We compared our algorithm with the competitive methods including
CentroidFold version 0.0.15 Hamada et al. (2009); Sato et al. (2009),
CONTRAfold version 2.02 Do et al. (2006), RNAfold in the Vienna
RNA package version 2.3.5 Lorenz et al. (2011) and ContextFold version
1.00 Zakov et al. (2011). For the posterior decoding methods with the trade-
off parameter γ in Eq. (5), we used γ ∈ {2n | n ∈ Z,−5 ≤ n ≤ 10}.
Figure 5 shows PPV-SEN plots for each method, indicating that our

algorithm works accurately on TestSetA and TestSetB. On TestSetA,
ContextFold (F=0.742) is slightly better than MXfold with Viterbi
decoding trained from TrainSetA (F=0.737). Whereas, on TestSetB,
ContextFold (F=0.496) is much worse than MXfold with Viterbi decoding
trained from TrainSetA (F=0.590) and others. Furthermore, MXfold with
Viterbi decoding trained from both training datasets performed the most
accurate prediction (F=0.626).

Figure 6 shows the running time for each method for the lengths
of input sequences in TestSetA, indicating that our algorithm with the
Viterbi decoding is comparable with the other methods in the running time
although our algorithm with the posterior decoding is much slower than
the other methods.

4 Discussion
Table 1 compares the three models: the thermodynamic model (TM), the
machine learning based model (ML) and the integrated model (TM+ML).
Since the thermodynamic model fT (x, y) is implemented using the
Vienna RNA package, the prediction result of TM is similar to that of
RNAfold. The result on TestSetA indicates that the difference between
ML and TM+ML is very small. We can explain that this is because the
trainable parameters of ML and TM+ML are identical to each other, and
the learning algorithm works well on both models. On the other hand,
since the literature-based TrainSetA and the Rfam-based TestSetB are
structurally diverse as described in Sec. 3.2, TestSetB includes a number of
substructures whose scoring parameters cannot be trained from TrainSetA.
TM+ML model can calculate scores for such “unobserved” substructures
using the thermodynamic energy parameters although ML only model
cannot. Our integrated model can improve the prediction accuracy by
complementing missing parts each other.

We compared the learnability of our model for several context lengths
L of sequential features in Fig. 3. Most existing models including RNAfold
and CONTRAfold use the context length 3 ≤ L ≤ 5, whose accuracy
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Fig. 5. PPV-SEN plots comparing our algorithm with the competitive methods on TestSetA
(top) and TestSetB (bottom).
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Fig. 6. The running time for the lengths of input sequences measured on Linux OS v2.6.32
with Intel Xeon E5-2680 (2.80 GHz) and 64 GB memory.

shown in Fig. 5 is close to that of our model with the same range of
the context length. Although Fig. 3 shows that longer context length of
sequential features enables us to improve the prediction accuracy, its effects
tend to be saturated at L = 7. The objective function of our algorithm (7)
contains the `1 regularization term, by which rarely used parameters (e.g.,
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sequential features with L > 7) quickly shrink toward zero at line 6 of
Fig. 2. Hereby, the risk of overfitting caused by rarely observed features
can be reduced.

Figure 5 shows that ContextFold achieved the best accuracy on
TestSetA, but the worst on TestSetB. Similarly, the accuracy of
CentroidFold on TestSetB remarkably deteriorated compared with that on
TestSetA. The common point between ContextFold and CentroidFold is the
training data: ContextFold and the Boltzmann likelihood (BL) parameter
set used in CentroidFold were trained from the S-Full dataset Andronescu
et al. (2010), which is one of the datasets included in TrainSetA. This
suggests that ContextFold and the BL parameter set fell into the overfitting.
There is a possibility that ContextFold trained from TrainSetA+B
achieves more accurate prediction than MXfold trained from TrainSetA+B.
However, ContextFold might not work well for other sequences dissimilar
from TrainSet A and B because of the overfitting. Meanwhile, we can
expect that our algorithm that integrates the thermodynamic model still
performs robust and accurate prediction without overfitting for such
sequences due to the integrated thermodynamic model.

The posterior decoding algorithms are known to be one of effective
approaches for many combinatorial optimization problems Carvalho and
Lawrence (2008). In fact, the posterior decoding with CONTRAfold
(MEA) achieves much better accuracy than its counterpart of the Viterbi
decoding as shown in Fig. 5. However, we can surprisingly observe no
advantage for the posterior decoding for MXfold (GCE). CONTRAfold
was trained by the conditional log-linear models (CLLMs) in which the
expectation of the occurrence of features is used for calculating gradients
of the objective function. The posterior decoding algorithms employ the
base-pairing probabilities that are also calculated by the expectation of
the occurrence of base-pairs. This can be interpreted that the optimization
with CLLMs is appropriate for the posterior decoding. SSVM used by our
algorithm considers only the optimal structure with the (loss augmented)
Viterbi algorithm for each training step. This means that SSVM is
optimized for the Viterbi decoding, but not for the posterior decoding that
considers not only the optimal structures but also the distribution of all
possible structures. As shown in Fig. 6, the posterior decoding algorithms
are much time-consuming compared with their counterparts of the Viterbi
and MFE algorithms. Therefore, although the posterior decoding with
the parameters learned by CLLMs is one of the best solution from the
viewpoint in the prediction accuracy, the Viterbi algorithm with SSVM is
a practical alternative.

5 Conclusion
We proposed a novel algorithm for RNA secondary structure prediction that
integrates the thermodynamic approach and the machine learning based
weighted approach. Our fine-grained model combines the experimentally
determined thermodynamic parameters with a large number of scoring
parameters for detailed contexts of features that are trained by the
structured support vector machine (SSVM) with the `1 regularization
to avoid overfitting. Our benchmark shows that our algorithm achieves
the best prediction accuracy compared with existing tools, and heavy
overfitting as shown in ContextFold cannot be observed.

Accurate secondary structure prediction for long RNA sequences has
been demanded since long non-coding RNAs (lncRNAs) have recently
been emerging. To respond to such demand, we need to implement the
sparsification technique Backofen et al. (2011) to our algorithm with the
Viterbi decoding. As shown in Fig. 6, ContextFold that implements the
sparsification technique enables us fast structure prediction even for long
sequences.

The base-pairing probabilities calculated from the posterior
distribution have been required for various applications for RNA

informatics such as family classification Sato et al. (2008); Morita
et al. (2009), pseudoknotted RNA secondary structure prediction Sato
et al. (2011), RNA-RNA interaction prediction Kato et al. (2010) and
simultaneous aligning and folding Sato et al. (2012). Accurate base-pairing
probabilities calculated by our algorithm can improve the quality of such
applications.
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