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Recent experiments demonstrate the importance of substrate curvature for actively forced fluid
dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows
on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant
Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical
tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical
bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to
an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov
turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices
into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an
active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism
for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional
energy cascade in classical 2D turbulence.
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Substrate geometry profoundly affects dynamics and
energy transport in complex fluids flowing far from
equilibrium [1–3]. Examples range from magnetohydrody-
namic turbulence on stellar surfaces [1] to the rich micro-
scale dynamics of topological defects in active nematic
vesicles [2,3]. Studying the interplay between spatial
curvature and actively driven fluid flows is also essential
for understanding microbial locomotion [4], biofilm for-
mation [5] and bioremediation [6] in soils [7], tissues [8],
and water [9–11]. Over the past two decades, important
breakthroughs have been made in characterizing active-
stress driven matter flows in planar Euclidean geometries
both theoretically [12–15] and experimentally [16–18].
More recently, theoretical work has begun to focus on
incorporating curvature effects into active matter models
[19–25]. Despite some promising progress, the hydro-
dynamic description of pattern-forming nonequilibrium
liquids in non-Euclidean spaces continues to pose con-
ceptual challenges, attributable to the difficulty of formu-
lating exactly solvable continuum models and devising
efficient spectral methods in curved geometries.
Aiming to help improve upon these two issues, we

introduce and investigate here the covariant extension of a
generalized Navier-Stokes (GNS) model [26–29] describ-
ing incompressible active fluid flow on an arbitrarily
curved surface. Focusing on a spherical “bubble” geom-
etry, we derive exact stationary solutions and numerically
explore the effects of curvature on the steady-state flow

dynamics, using the open-source spectral code DEDALUS

[30]. The numerically obtained phase diagrams, energy
spectra, and flux curves predict an anomalous turbulent
phase when the spectral bandwidth of the active stresses
becomes sufficiently narrow. This novel type of 2D
turbulence supports an unexpected upward energy transfer
mechanism, mediated by the large-scale collective dynam-
ics of self-organized vortex chains, akin to actively
moving antiferromagnetic spin chains. At high curvature,
the anomalous turbulence transforms into a quasista-
tionary burst phase, whereas for broadband spectral
forcing the flow dynamics transitions to classical 2D
Kolmogorov turbulence, accumulating energy in a few
large-scale vortices. We next motivate and define the
covariant GNS model for an arbitrary 2D surface; ana-
lytical and numerical results for the sphere case will be
discussed subsequently.
Recent experiments have investigated the collective

dynamics of swimming bacteria [16] and algae [31] in
thin quasi-2D soap films held by a coplanar wire frame.
Generalizing to non-Euclidean geometries [2,3], which can
be realized with soap bubbles or curved wire frames [32],
we consider here a freestanding nonplanar 2D film in which
the fluid flow is driven by active stresses, as in suspensions
of swimming bacteria [33,34] or ATP-driven microtubule
networks [35,36]. On a curved manifold, the fluid velocity
field components va satisfy incompressibility and Cauchy
momentum conservation [37,38],
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∇ava ¼ 0; ð1aÞ

∂tva þ vb∇bva ¼ ∇aσ þ∇bTab; ð1bÞ

where ∇bva denotes the covariant derivative of va, a,
b ¼ 1, 2 and σ is the (surface) tension. The stress tensor Tab

includes passive and active contributions from the solvent
fluid viscosity and the stresses exerted by the micro-
swimmers on the fluid. Below, we study the covariant
version of the linear active-stress model [26–29]

Tab ¼ fð∇2Þð∇aub þ∇buaÞ;
fð∇2Þ ¼ Γ0 − Γ2∇2 þ Γ4∇2∇2; ð1cÞ

where ∇2 ¼ ∇a∇a is the tensor Laplacian. In qualitative
agreement with experimental observations for active sus-
pensions [16,18,36,39], the polynomial ansatz for f in
Eq. (1c) generates vortices of characteristic size Λ and
growth time τ, provided that Γ2 < 0, which introduces a
bandwidth κ of linearly unstable modes [28]. General
mathematical stability considerations demand Γ0, Γ4 > 0.
The phenomenological model defined in Eq. (1) is minimal
in the sense that it assumes the active stresses create to
leading order a linear instability, while neglecting energy
transfer within the active component. As verified in
Ref. [29], the linear active-stress model, Eq. (1c), suffices
to quantitatively reproduce the experimentally measured
velocity distributions and flow correlations in 3D bacterial
[18] and ATP-driven microtubule [36] suspensions. More
generally, closely related GNS models have also been
studied in the context of soft-mode turbulence and seismic
waves [26,27]. Numerical solutions of the GNS Eqs. (1)
show significant phenomenological similarities with mag-
netohydrodynamic (MHD) flows driven by electromag-
netic stresses [40], suggesting that the results below may
also apply to astrophysical systems.
Exact stationary solutions of Eqs. (1) for a sphere of

radius R can be constructed from the vorticity-stream
function formulation (Supplemental Material [41])

Δψ ¼ −ω; ð2aÞ

∂tωþ fω;ψg ¼ fðΔþ 4KÞðΔþ 2KÞω; ð2bÞ

where ψ and ω are the stream function and vorticity.
The advection term in spherical coordinates ðθ;ϕÞ reads
fω;ψg ¼ ð∂θω∂ϕψ − ∂ϕω∂θψÞ=ðR2 sin θÞ. K ¼ R−2 is
the Gaussian curvature and Δ the standard spherical
Laplacian. Since the spherical harmonics Ym

l diagonalize
the Laplacian, ΔYm

l ¼ −R−2lðlþ 1ÞYm
l for integers l, m

such that l ≥ 0 and jmj ≤ l, an arbitrary superposition

ψ ¼
X

jmj≤l
ψmlYm

l ð3Þ

solves the system Eq. (2) exactly, provided that the
eigenvalue l is an integer root of f½−lðlþ 1Þ þ 4� ¼ 0
(Supplemental Material [41]). As usual, the velocity field is
tangent to the level sets of the stream function. Two
particular exact solutions are shown in Fig. 1. The first
example, Fig. 1(a), is reminiscent of the square lattice
solutions found earlier in the flat 2D case [28]. The second
example in Fig. 1(b) illustrates a flow field with fivefold
symmetry, obtained by applying the superposition pro-
cedure of Ref. [46]. Although these exact solutions are
not stable, they provide some useful intuition about the
instantaneous flow patterns expected in dynamical simu-
lations (Fig. 2), similar to exact coherent structures [47] in
conventional turbulence [48].
To find and analyze time-dependent solutions of Eqs. (1),

we performed numerical simulations using DEDALUS [30],
an open-source framework for solving differential equa-
tions with spectral methods. The Eqs. (1) were solved
directly as a coupled partial differential-algebraic system
for the scalar tension σ and vector velocity va. To spatially
discretize the system, we used spin-weighted spherical
harmonics, which are a parameterized family of basis
functions that correctly capture the analytical behavior of
spin-weighted functions on the sphere (Supplemental
Material [41]). Under this spectral expansion, the system
Eq. (1) is reduced to a set of coupled ordinary differential-
algebraic equations for the time evolution of the expansion
coefficients. We solve these equations using mixed
implicit-explicit time stepping, in which the linear terms
of the evolution equations are integrated implicitly, the
linear constraints are enforced implicitly, and the nonlinear
terms are integrated explicitly. This allows us to simulta-
neously evolve the velocity field while enforcing the
incompressibility constraint, and with a time step that is
limited by the advective Courant-Friedrichs-Lewy time
condition rather than the diffusive time at any scale.
The parameters (Γ0, Γ2, Γ4) in Eqs. (1) define a

characteristic time scale τ, a characteristic vortex diameter

(a) (b)

FIG. 1. Stationary solutions of Eqs. (2) are superpositions of the
form Eq, (3) with f½−lðlþ 1Þ þ 4� ¼ 0. (a) An exact stationary
solution with l ¼ 6 which is also approximately realized as a
transient state in the time-dependent burst solution of Fig. 2
(movie 1). (b) Complex symmetric solutions can be constructed
by choosing the expansion coefficients ψml accordingly [46]. In
both panels, the stream functions are normalized by their
maxima; see Supplemental Material [41] for coefficients ψml.

PHYSICAL REVIEW LETTERS 120, 164503 (2018)

164503-2



Λ, and a characteristic spectral bandwidth κ, which can be
directly inferred from experimental data [29]; explicit
expressions are derived in the Supplemental Material
[41]. Given a sphere of radius R, fixing ðτ;Λ; κÞ uniquely
determines the parameters (Γ0, Γ2, Γ4). To explore the
interplay between curvature and activity, we run 351
simulations, using R=Λ ∈ ½2; 10� and κ · Λ ∈ ½0.1; 2.0�.
Typical vortex diameters for bacterial and microtubule
suspensions are Λ ∼ 50–100 μm with τ of the order of
seconds [16,18,36,39]. Time steps were in the range
[5 × 10−4τ, 5 × 10−3τ] with a total simulation time 100τ,
allowing the system to fully develop its dynamics after an
initial relaxation phase during which active stresses inject
energy until the viscous dissipation and activity balance on
average. In the remainder, it will be convenient to regard Λ
as reference length and compare the flow topologies across
the (κ, R) parameter plane.
Our simulations reveal three qualitatively distinct flow

regimes (Fig. 2): a quasistationary burst phase for κR≲ 1
[domain B in Fig. 2(a); movies 1–3], an anomalous
turbulence for R−1 < κ < Λ−1 [domain A in Fig. 2(a);
movie 4], and normal 2D turbulence for κΛ > 1 [domain T
in Fig. 2(a); movie 5]. Representative vorticity and tension

fields from the corresponding steady-state dynamics are
shown in Figs. 2(c)–2(e).
In the B phase, the energy injection bandwidth κ is

close to the wave number spacing set by the sphere
curvature R−1, leaving only a single active wave number
l. Decreasing κ further completely suppresses active modes
resulting in globally damped fluid motion [white domain in
Fig. 2(a)]. The B phase is characterized by the formation
of intermittent quasistationary flow patterns that lie in
the vicinity of the exact stationary solutions, Eq. (3),
cf. Fig. 1(a) and Fig. 2(c). Once formed, the amplitude
of these flow patterns grows exponentially (Fig. S3) until
nonlinear advection becomes dominant and eventually
causes energy to be released through a rapid burst.
Afterwards, the dynamics becomes quasilinear again with
the flow settling into a new quasistationary pattern. These
burst cycles are continuously repeated (movies 1–3).
The two turbulent phases A and T in Fig. 2(a) can be

distinguished through topological, geometric, and spectral
measures. We demonstrate this by determining the topo-
logy of the vorticity fields, the geometry of the high-tension
domains, and the energy spectra for each simulation after
flows had reached the chaotic steady state.

(a) (c) (d) (e)

(b)

FIG. 2. Phase diagrams [(a),(b)] and representative still images [(c)–(e)] from simulations showing quasistationary burst dynamics
(B phase), anomalous vortex-network turbulence (A phase), and classical 2D turbulence (T phase). (a), (b) The A and T phase are
approximately separated by the condition κΛ ¼ 1 (vertical dashed line) and differ by the average number of vortices (a), the branch
geometry of the tension field (b), and the energy spectra (Fig. 3). The B phase arises for narrow-band energy injection κR ≲ 1 when only a
single l mode is active (region right below the dash-dotted line); decreasing κ further gives a passive fluid (white region). (c)–(e) Top:
Instantaneous vorticity fields normalized by their maxima. Bottom: Surface tension fields normalized by the maximum deviation from the
mean. (c) Quasistationary preburst state frommovie 1 resembling the exact solution in Fig. 1(a); see movies 2 and 3 for additional examples
labeled by � in panel (a). (d) For subcritical curvature and intermediate energy injection bandwidths, R−1 < κ < Λ−1, the flows develop a
percolating vortex-chain network structure (movie 4), with accumulation of tension and vorticity along the edges. (e) For broadband energy
injection κΛ > 1, smaller eddies merge to create larger vortices, as typical of classical 2D turbulence (movie 5). Parameters: (a) αω ¼ 0.5;
(c) R=Λ ¼ 2, τ ¼ 4.9 s, κΛ ¼ 0.29; (d) R=Λ ¼ 10, τ ¼ 14.9 s, κΛ ¼ 0.5; (e) R=Λ ¼ 10, τ ¼ 11.7 s, κΛ ¼ 2.0. Panels (a),(b) show
steady-state time averages over ½50τ; 100τ�. Solid curves in (c)–(e) indicate stream lines of the velocity fields.
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To study the vortex topology, we fix a threshold αω ∈
½0; 1� and identify regions in which the vorticity is larger
(or smaller) than αω times the maximum (or minimum)
vorticity (Supplemental Material [41]). This thresholding
divides the sphere into patches of high absolute vorticity
(Fig. S1). The number of connected domains, given by the
zeroth Betti number, counts the vortices in the system. For a
fixed pair ðκ; RÞ, we denote the vortex number at time t by
Nωðκ; R; tÞ. Although more sophisticated methods for
vortex detection exist [49], the thresholding criterion
proved to be sufficient for our analysis (Fig. S2). To
normalize vortex numbers across the parameter space,
we fix a reference value κ� ¼ 0.3=Λ. With this, we can
define a normalized Betti number as

Bettiωðκ; RÞ ¼
hNωðκ; R; tÞ − Nωðκ�; R; tÞi

hNωðκ�; R; tÞi
; ð4Þ

where the time average h� � �i is taken after the initial
relaxation period. Intuitively, large values of Bettiω indicate
many vortices of comparable circulation, whereas small
values suggest the presence of a few dominant eddies. The
variation of Bettiω in the ðκ; RÞ-parameter plane is color
coded in Fig. 2(a). In the anomalous turbulent A phase,
vortices of diameter ≈Λ eventually cover the surface of the
sphere, with stronger vortices forming chains of anti-
ferromagnetic order [Fig. 2(d) top; movie 4]. By contrast,
in the T phase characterized by broadband energy injection
κ > Λ−1, smaller eddies merge to create a small number of
larger vortices, as typical of classical 2D turbulence [50]
[Fig. 2(e) top; movie 5]. Interestingly, the A phase shares
phenomenological similarities with the low-entropy states
found in quasi-2D superfluid models [51], while the vortex
condensation in the T phase corresponds approximately
to the negative “temperature” regime in Onsager’s statis-
tical hydrodynamics [52]. Moreover, the upper region of
Fig. 2(a), which corresponds to the small-curvature limit
R=Λ ≫ 1, suggests that the two phases extend to planar
geometries, provided boundary effects remain negligible.
To obtain a more detailed geometric characterization

of the turbulent A and T phases, we next consider the
corresponding tension fields. Analogously to the case of
vorticity above, we focus on regions where the local tension
σðt; xÞ is larger than the instantaneous global mean value.
For each connected component of the identified high-
tension regions, we denote by A its total area and by ∂A
its total boundary area in pixels. The ratio ∂A=A is a
measure of chainlike structures in the tension fields, a
large value signaling a highly branched structure,
whereas smaller values indicate less branching.
Denoting the instantaneous sum of the ratios ∂A=A over
all connected high-tension domains by Aσðκ; R; tÞ, a
normalized branching index can then be defined by
(Supplemental Material [41])

Branchσðκ; RÞ ¼
hAσðκ; R; tÞ − Aσðκ�; R; tÞi

hAσðκ�; R; tÞi
; ð5Þ

where the time average is again taken after the initial
relaxation. As evident from the phase diagram in Fig. 2(b)
and the corresponding tension fields in Figs. 2(d) and 2(e),
and movies 4 and 5, the geometric characterization con-
firms the existence of an anomalous turbulent phase, in
which vortices combine to form percolating dynamic net-
works with high tension being localized along the edges
[Fig. 2(d) bottom; movie 4].
To compare the energy transport in the anomalous

turbulent phase with classical 2D turbulence, we analyze
the energy spectra and fluxes for the A and T phases.
Expanding in spherical harmonics, ψ ¼ P

m;lψmlYm
l , the

energy of mode l is EðlÞ ¼ P
jmj≤llðlþ 1Þjψmlj2. The

corresponding mean energy flux across l in the statistically
stationary state is obtained as (Supplemental Material [41])

ΠðlÞ¼−2
X

l0≥l

f½4−l0ðl0 þ1Þ�½2−l0ðl0 þ1Þ�hEl0 i; ð6Þ

where f is the polynomial defined in Eq. (1c). Figure 3
shows the numerically obtained energy spectra EðlÞ and
fluxes ΠðlÞ for four active bandwidths κ. In all four cases,
the kinetic energy produced in the injection range

(a) (b)

FIG. 3. Time-averaged energy spectra and fluxes indicate two
qualitatively different types of upward energy transport. (a) For
narrow-band energy injection κΛ < 1, the energy spectrum
exhibits a peak corresponding to the dominant vortex size Λ
(red curve). For broadband injection κΛ ∼ 2, the spectra decay
monotonically (blue and black curves). (b) In all four examples,
the fluxes confirm inverse energy transport, albeit with different
origins. For broadband energy injection (blue and black curves),
the upward energy flux to larger scales is due to vortex mergers
[Fig. 2(e); movie 5]. By contrast, for narrow-band injection (red
curve), a relatively stronger upward energy flux arises from the
collective motion of vortex chains [Fig. 2(d); movie 4]. The
shaded regions indicate the energy injection ranges with colors
matching those of the corresponding curves, respectively. Param-
eters: R=Λ ¼ 10 for a unit sphere, τ ¼ 11.7 s, time step
5 × 10−4τ, total simulation time 500τ. Spectra and fluxes were
determined after relaxation by averaging over ½150τ; 500τ�. For
κΛ ≫ 1, energy steadily accumulates at larger scales and the
absence of a large-scale dissipative mechanism leads to a
divergent total enstrophy and kinetic energy on the sphere.
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(l ∼ πR=Λ) propagates to both large (l < πR=Λ) and
small (l > πR=Λ) scales, as indicated by negative and
positive values of ΠðlÞ, respectively. Energy transfer to
large scales is a prominent feature of classical 2D turbu-
lence [50,53,54] and our results show that it also occurs in
active turbulence. However, the transfer mechanisms can be
dramatically different, as already implied by the preceding
analysis of the vorticity and tension fields. For broadband
spectral forcing κΛ ≫ 1, the classical 2D turbulence
picture of vortex mergers and energy condensation at large
scales prevails [Fig. 2(e); movie 3]. For κΛ≲ 2 the
spectrum follows a k−1 scaling, indicating the formation
of a dilute-vortex system [55]. For even larger values of κ,
additional large-scale dissipation is needed to bound the
upward energy transfer, in which case the spectrum is
expected to approach the Kolmogorov k−5=3 scaling [50].
By contrast, for narrow-band driving κΛ≲ 1, the upward
energy transfer is realized through the coherent motion of
high-tension vortex chains. Interestingly, only this anoma-
lous type of inverse energy cascade appears to persist in 3D
active bulk fluids [29], where it is sustained by spontaneous
chiral symmetry breaking [56].
In summary, we have presented analytical and numerical

solutions for generalized Navier-Stokes equations describ-
ing actively driven nonequilibrium flows on a sphere. Our
calculations predict that spectrally localized active stresses
can induce a novel turbulent phase, in which finite-size
vortices self-organize into chain complexes of antiferro-
magnetic order that percolate through the surface [57]. The
collective motion of these chain networks enables a
significant upward energy transport and may thus provide
a basis for efficient fluid mixing in quasi-2D active and
magnetohydrodynamic flows. Future generalizations to
rotating spheres could thus promise insights into pattern
formation in planetary and stellar atmospheres [58].
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