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Abstract: This work presents a new approach for mapping static beacons given only range
measurements. An original formulation using sum-of-squares and linear matrix inequalities is
derived to test if a measurement is inconsistent with a bounding box containing the beacon
position. By performing this test for each range measurement, it is possible to recursively
eliminate incompatible boxes and find the smallest consistent box. The box search is done
with a breadth-first search algorithm that recursively prunes inconsistent boxes and splits the
others to narrow the estimation. The validity of the method is asserted via simulations and
compared to other standard mapping methods. Different levels and types of noise are added to
evaluate the performances of the algorithm. It resulted that the approach accommodates very
well classical zero-mean white Gaussian noises by adaptating the ratio of tolerated outliers for
the consistency check, but fails to handle additive biases.
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1. INTRODUCTION

In robotics, the mapping problem consists in constructing
a representation of the environment. The latter can then
be used by a robot to plan its trajectory, navigate and
avoid obstacles. When there is no a priori information on
the robot positions, this is referred to as the simultaneous
localization and mapping (SLAM). This topic has already
been extensively covered in the literature even for the less
common range-only (RO) case, where range measurements
are the only exteroceptive information available, as it is
the case in this work. For instance, Djugash and Singh
(2009) use an extended Kalman filter (EKF) with a polar
representation of the beacon positions. Later on, Caballero
et al. (2010) improved the formulation with a mixture
of Gaussians to obtain an undelayed initialization of the
beacons in the filter. The formulation was then extended
to the 3D case with a spherical representation (Fabresse
et al., 2013). Blanco et al. (2008) follow the same idea
but using a particle filter framework instead. In Boots and
Gordon (2012), a spectral learning approach is proposed
to solve the problem. More related to our work, Di Marco
et al. (2004) use a set theoretic approach and unknown-
but-bounded errors to recursively estimate guaranteed
uncertain regions of the robot and beacon positions. In the
same context, Jaulin (2011, 2009) uses interval analysis
and constraint satisfaction methods to propagate and
reduce the intervals representing the estimated variables.

In this work, an interval representation of the estimated
variables is also adopted. However, contrary to the previ-
ously cited works, here only the pure mapping problem is
considered. This means that we make the assumptions that

the robot positions are known without errors. However, our
approach could also be used for localization and possibly
for RO-SLAM problem.

Regarding the mapping problem, a popular technique
introduced by Moravec and Elfes (1985) is the occupancy
grid method. It uses a probabilistic framework to update
the cell occupancy probability, and provides a 2D or 3D
discretized representation of the environment. In order
to localize an underwater vehicle, Olson et al. (2006)
use a grid representation and a voting scheme strategy
to obtain a first estimate of the beacon positions. By
computing the intersection of two range measurements,
the two solutions obtained vote for a cell in the grid.
Ultimately, the cell with the largest support is considered
as the estimated beacon positions. This estimate is then
used as an initialization in an EKF localization algorithm.
Another technique that can be used for mapping is the
trilateration algorithm (Zhou, 2009). The principle is to
combine at least three range measurements to form and
solve a least-squares problem. The solution can then be
refined by any nonlinear optimization algorithm. The main
drawback of most of the presented methods is their lack
of robustness and sensitivity to outliers. As we will see
later, our method can nicely accomodate the outliers by
adjusting a parameter. Compared to most of the previous
works, the proposed method works currently offline by
first collecting all the range measurements along the robot
trajectory and then processing them. But this allows to
adjust the number of tolerated outliers in the search
process and to refine the estimated beacon positions. Thus,
the proposed method is intended for retrieving the position
of indoor or outdoor beacons in a garantueed way by



returning an interval enclosing the true position of the
beacons when the measurements are corrupted by many
outliers.

In this work, the mapping problem with known robot
positions is treated with an original formulation com-
bining linear matrix inequalities (LMI) (Nesterov and
Nemirovski, 1994) and sum-of-squares (SoS) polynomials
(M.D. Choi, 1995; Lasserre, 2007). LMI (Gahinet et al.,
1995) are extensively used in control engineering and be-
came a powerful tool in many domains. Moreover, thanks
to the works of Nesterov and Nemirovski (1994) on the
interior point method, LMI can now be efficiently solved.
The method presented in this paper is inspired by the
work developed by Pani Paudel et al. (2015), initially
desgined for point-to-plane registration, and adapted here
for the mapping problem. Using only range measurements
between a mobile robot with known positions and several
unknown static beacons scattered in the environment, the
objective is to recover the location of the beacons. This
is done by checking that all the corresponding range mea-
surements are compatible with a bounding box supposed
to contain the beacon position. The consistency test is
done by transforming the range measurement constraints
into a polynomial inequality. If this polynomial is SoS, the
corresponding measurement is inconsistent. Checking that
a polynomial is SoS is then efficiently solved as a LMI
feasability problem. Notice that this technique does not
require a noise model or hypotheses for the measurements,
and that it is possible to make it robust with respect to
erroneous measurements occuring in real cases by control-
ling the percentage of measurements that do not satisfy
the consistency test.

The rest of this paper is organized as follows. Section II
introduces the problem and the formulation used through-
out the paper. Section III describes the algorithm and
explains in detail the consistency check procedure. Section
IV presents the various simulation results obtained with
increasing noise levels. Finally Section V concludes the
paper and gives some future perspectives.

2. PRELIMINARIES

This section briefly introduces the concepts used by the
proposed approach and then describes how they are inte-
grated in the formulation.

2.1 Technical background

Set-membership functions: For a given interval [x, x], let
us consider the membership function g(x) such that:

g(x) = (x− x)(x− x) (1)

The function is positive inside the interval and negative
outside. Thus, x ∈ [x, x] iff g(x) ≥ 0.

A 2D box is defined as the product of two intervals:

B =
{

x = (x, y) ∈ R2
∣∣ (x, y) ∈ [x, x]× [y, y]

}
(2)

Sum-of-Squares (SoS) and Linear matrix inequalities
(LMI): A scalar polynomial function p(x) is SoS if there
exists a polynomial q(x) such that:

p(x) =
∑
i

qi(x)qi(x)

A polynomial function p(x) is positive if it is SoS. This
notation can be easily extended to the case of matrix
inequalities. Moreover, if we have:

P(x, l) = QT (x)M(l)Q(x)

with M(l) a symmetric matrix function of l then P(x, l) is
positive if M(l) ≥ 0 1 and P(x, l) is said to be SoS. In the
case where M(l) is affine in l, M(l) ≥ 0 is called a linear
matrix inequality. Checking the positivity of a polynomial
function P(x, l) can thus be solved via a LMI. Finally, the
positivity can be restricted to a domain. For instance in
2D: P(x) is positive over B if there exists positive scalars
σx and σy such that: P(x) − σxgx(x) − σygy(x) is SoS,
where gx(x) and gy(x) are the membership functions for
the x and y components of x.

2.2 Application to the approach

For the mapping problem, the trajectory of the robot is
known and represented by a set of K robot positions:

xrk = (xrk , yrk)T , k ∈ [0,K]

Note that the orientation information is not used here. The
objective is to find the position of the N static beacons
defined by:

xbi = (xbi , ybi)
T , i ∈ [1, N ]

The proposed method is based on the ability to determine
if a given box does not enclose the true position of the
beacon. Thus, using the notation of (1) and (2), a box is
represented by:

Bi :=
{

xbi ∈ R2
∣∣ gx(xbi) ≥ 0, gy(xbi) ≥ 0

}
with: {

gx(xbi) = (xbi − xbi)(xbi − xbi)
gy(xbi) = (ybi − ybi)(ybi − ybi)

The range measurements between the robot and the bea-
cons are the only information available to recover the
beacon positions xbi . We define the constraint fk,i(xbi)
as the difference between the squared predicted range d2k,i
and the squared measured range r2k,i between the robot
pose at time k and the beacon i:

fk,i(xbi) = r2k,i − d2k,i (3)

with d2k,i = (xbi − xrk)2 + (ybi − yrk)2. A measurement is
consistent if fk,i crosses zero at some point inside the box
representing the beacon position. It should be noticed that
the constraint (3) is quadratic with respect to the unknown
xbi , which makes it interesting for a SoS approach. In the
next section, this constraint will be exploited to develop
a method retrieving a beacon box consistent with all or
most of the range measurements, by testing its positivity
over a given box.

3. ALGORITHM DESCRIPTION

In this section, we first give an outline of the algorithm.
Then, we delve into the derivation of the LMI consistency
test. Finally, the procedure to explore and search the
smallest compatible box is presented.

1 For a real symmetric matrix, M ≥ 0 means that all the eigen-
values of M are non-negatives and reals.



3.1 Algorithm outline

The proposed method attempts to find, for each beacon,
the smallest box where all the range measurements (or a
predefined percentage of them) respect the condition:

fk,i(xbi) = r2k,i − d2k,i = 0 (4)

More precisely, we count the number of range measure-
ments satisfying the condition (4) for some point inside
that box (notice that these points may not be the same
for all range measurements due to noise). The condition
is verified by testing the positivity of the constraint (3)
and by solving a LMI feasibility problem. If it is feasible,
then the constraint (3) is SoS and the condition (4) is not
respected. Thus the range measurement is an outlier. By
controlling the number of outliers, it is possible to discard
or accept the considered box. The accepted boxes are then
split and the test is repeated for each of the new boxes.
This process is iterated until the algorithm has discarded
all the potential boxes and a smaller consistent box cannot
be found. The consistency test performed for a given box
and a range measurement is now detailed.

3.2 LMI consistency check

We define the polynomial function hk,i(xbi) constructed
from the constraint (3) and the membership quadratic
polynomial (1):

hk,i(xbi) = λfk,i(xbi)−
∑

j={x,y}

gj(xbi)σj (5)

where λ ∈ R and σj ∈ R+. The variable λ is added to take
into account the cases: ±fk,i > 0. The equation (5) can be
rewritten in a quadratic form as:

hk,i(xbi) = QT (xbi)G(λ, σx, σy)Q(xbi) (6)

where G(λ, σx, σy) is the Gram matrix (Powers and Wor-
mann, 1998) of hk,i(xbi) and QT (xbi) = (xbi , ybi , 1).

The method stated in Pani Paudel et al. (2015) is adapted:
for a given box [xbi ,xbi ], if there exists a real scalar

λ and positive scalars σj , j = {x, y}, such that the
polynomial hk,i(xbi) is SoS, then λfk,i(xbi) > 0 for every
xbi ∈ [xbi ,xbi ]. In this case, fk,i is either strictly positive,

either strictly negative 2 over the whole domain and thus
contains no point inside the domain for which fk,i = 0.
The range measurement rk,i is then guaranteed to be an
outlier within the considered bounds. Otherwise, rk,i is a
potential inlier. Verifying that hk,i(xbi) is SoS can be done
by checking that its corresponding real symmetric Gram
matrix from (6) is positive semi-definite: G(λ, σx, σy) ≥ 0
(Powers and Wormann, 1998; M.D. Choi, 1995). The latter
condition can be verified by solving a LMI feasability
problem for the variables λ and σj . Indeed, the matrix
G(λ, σx, σy) can be decomposed as:

G(λ, σx, σy) = λG1 + σxG2 + σyG3 (7)

with:

2 In fact only if xbi ∈ ]xbi ,xbi [

G1 =

 1 0 −xrk
0 1 −yrk
−xrk −yrk x2rk + y2rk − r

2
k,i

 (8)

G2 =


1 0 −1

2
(xbi + xbi)

0 0 0

−1

2
(xbi + xbi) 0 xbixbi

 (9)

G3 =


0 0 0

0 1 −1

2
(ybi + ybi)

0 −1

2
(ybi + ybi) ybiybi

 (10)

To complete the LMI problem, the positivity constraints
on the σj must be added: σx > 0 and σy > 0.

In summary, if the LMI problem is feasible, then we
have: G(λ, σx, σy) ≥ 0, thus hk,i(xbi) is SoS, meaning
that the range measurement is an outlier. Otherwise,
if the LMI solver didn’t find any solution, the range
measurement is a potential inlier. Now that it is possible
to test if a range measurement is consistent with a given
box, it remains to define a procedure to combine all the
constraints and search for the smallest compatible box.
The next paragraph presents this procedure based on a
breadth-first search (BFS) algorithm that was used to find
the boxes.

3.3 Complete algorithm

A breadth-first search algorithm (Lee, 1961) was developed
to find the smallest box consistent with all the range
measurements with respect to one beacon. Thus, for N
beacons, the search has to be executed N times. The
algorithm takes as input the robot positions, the range
measurements associated with the beacon, an initial box
and the thresholds to control the percentage of outliers and
stop the search when a predefined accuracy is obtained.
Starting with a large initial box, the algorithm recursively
divides the boxes until they are not consistent anymore
with the measurements. The consistency test is carried
out for each range measurement, and if an outlier is
detected, or if the percentage of tolerated outliers reaches a
predefined threshold, then the box is discarded. The ability
to control the percentage of outliers is very important
when we deal with real measurements corrupted by noise,
as it will be shown in the experiments. To determine
which box has to be explored, a list of consistent boxes
is maintained. If a box passes the test, it is added to
the list, otherwise it is discarded. The search stops when
the list is empty or when a given accuracy is reached.
The accuracy threshold is defined with a minimal box
area set to 0.01 m2 during the simulations. One critical
issue encountered during the simulations was the process
of splitting a box into smaller boxes. When the true beacon
position is near one of the inside borders created during
the division process, the consistency check can fail and
stop the search prematurely, resulting in a raw evaluation
of the beacon position. It is even more problematic when
noise is present. In the proposed algorithm, this problem is
handled by using a two pass division. The interval is first
split in four, and if none of the sub-boxes passes the test,
another division scheme is used. This way, we were able
to increase the robustness of the algorithm, but at the



cost of longer search. Other strategies are possible, such
as using jointly a local method, and will be considered in
future work to improve the process. In the next section,
the experiments conducted to validate the approach are
presented.

4. SIMULATION RESULTS

In order to evaluate the proposed mapping algorithm, sim-
ulations of different kinds were conducted. Four different
datasets, were employed. The first two (Scenarios 1 and 2)
were created to test the method for simple cases and with-
out noise in order to validate the approach. They contain
respectively 15 and 160 range measurements. The third
dataset comes from a ROS/Gazebo simulation (Scenario
3), whereas the fourth is a publicly available dataset (Sce-
nario 4) presented by Djugash et al. (2009). These last two
datasets were used to validate that the proposed algorithm
can also perform well in more challenging conditions with
different levels of noise. The ROS/Gazebo dataset contains
6654 range measurements and was used with and without
noise. The noise was generated following a zero-mean white
Gaussian distribution with a standard deviation of 0.1 m.
The scenario 4 dataset contains 3434 range measurements,
and was used in three different configurations: i/ without
noise, ii/ with noise and no bias, and iii/ with the original
range measurements from the dataset. The values for the
bias are between −2.6 and −2.9 m, whereas the stan-
dard deviations are between 1 and 1.2 m. The different
noises are referred in the rest of this section as: Noise
1 when there is only a white Gaussian noise, and Noise
2, when there is a white Gaussian noise and additional
bias. In order to evaluate the noise accomodation, different
percentage (0%, 5%, 10% and 20%) of tolerated outliers
were tested during the simulations. The algorithm and
simulations are written in Matlab with the LMI Toolbox to
solve the LMI feasability problem (7). Tables 1 to 4 report
the area of the beacon intervals found by the algorithm,
for the four scenarios respectively. In the following, the
simulation results are presented with increasing level of
noise. The mapping results are presented in the following
order: without noise, with additional white Gaussian noise,
with bias, and finally with outliers.

Table 1. Scenario 1 results

Noise B1 area B2 area B3 area cputime
[m2] [m2] [m2] [s]

No noise, 0% outliers 0.171 0.012 0.049 8.4

No noise, 5% outliers 0.171 0.012 0.049 20.5

Table 2. Scenario 2 results

Noise B1 area B2 area B3 area B4 area cputime
[m2] [m2] [m2] [m2] [s]

No noise, 0% outliers 0.014 0.014 0.027 0.027 23.8

No noise, 5% outliers 0.014 0.014 0.027 0.027 44.5

Table 3. Scenario 3 results

Noise B1 area B2 area B3 area B4 area B5 area B6 area cputime
[m2] [m2] [m2] [m2] [m2] [m2] [s]

No noise, 0% outliers 0.018 0.018 0.018 0.018 0.037 0.018 816.4

Noise 1, 0% outliers 2.34 0.58 4.69 1.56 2.08 9.37 433.8

Noise 1, 5% outliers 0.29 0.19 0.15 0.29 4.69 0.15 649.9

Noise 1, 10% outliers 0.15 0.29 0.15 0.29 2.34 0.15 743.2

Noise 1, 20% outliers 0.15 0.58 0.15 0.44 0.58 0.15 990.9

Table 4. Scenario 4 results

Noise B1 area B2 area B3 area B4 area cputime
[m2] [m2] [m2] [m2] [s]

No noise, 0% outliers 0.015 0.015 00.015 0.046 896.5

Noise 1, 0% outliers 31.64 126.56 126.56 42.19 338.7

Noise 1, 5% outliers 31.64 31.64 63.28 42.19 371.6

Noise 1, 10% outliers 15.82 31.64 63.28 126.56 448.9

Noise 2, 0% outliers 42.19 63.28 253.12 506.25 224.8

Noise 2, 5% outliers 253.12 15.82 42.19 31.64 321.2

Noise 2, 10% outliers 15.82 15.82 10.55 47.46 390.0

4.1 Mapping results without noise

The robot trajectories (black line), true beacon positions
(red dots) and corresponding returned boxes (yellow or
magenta rectangles) are shown in Fig. 2 and Fig. 3 for
Scenarios 1 and 2 respectively. The returned boxes are not
visible because they are too small (see the corresponding
areas in Table 1) and are hidden by the red dots of the
true beacon positions. From Fig. 1 and beacon B1, one
notices the ring shape of the potential boxes that were
explored. This is due to the small size of the trajectory
and small number of range measurements. Moreover in
the same figure, but for B2, one sees that the search
was principaly concentrated on two symmetric positions
which is commom for range meaurements because of
the multi-modality of the constraints. By comparing the
two lines of Table 1 and Table 2, we can notice that
increasing the percentage of tolerated outliers from 0%
to 5% does not reduce the size of the returned boxes. In
the next section, we will see that when additional noise
corrupts the measurements, a reduction is observed when
the percentage is increased.
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Fig. 1. Scenario 1 (No noise): beacon boxes

4.2 Mapping results with zero-mean white Gaussian noise

Scenarios 3 and 4 were used to test the algorithm against
range measurements with zero-mean white Gaussian noise.
The results are presented on the rows corresponding to
Noise 1 in Tables 3 and 4. By looking at the final box
areas (around a few meters square to hundred meters
square) for the case of Noise 1 with 0% of outliers tolerated
and by considering Fig. 4 and Fig. 5, it seems that
the algorithm performs poorly in presence of noise. But
in these simulations, no outiers were tolerated. Indeed,
by looking at Fig. 6 for Scenario 3 and Fig. 7, Fig. 8
for Scenario 4 where 10% of outliers were tolerated, the
returned boxes are smaller, and still contains the true
solution. When no outliers are tolerated, the box sizes are
larger and even may not contain the true solution (Fig. 4,
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B4). This result shows that the noise has a significant
impact on the box division procedure. Even when the box
is still very large, if one of its border is close to the true
beacon position, with only one noisy range measurement
considered as an outlier, the search can deviated from the
true beacon position. This influence is attenuated when
some outliers are tolerated.

4.3 Mapping results with bias

It can be seen in the results given in Table 4 and Fig. 9
obtained from Scenario 4 that a bias on the range mea-
surements impacts the size of the returned boxes. As for
the case with Gaussian noise, increasing the percentage of
tolerated outliers helps to reduce the area of the boxes.
However, it can be seen from Fig. 9 that the results of the
proposed method are corrupted by a bias, because all the
returned intervals are slightly shifted from the true beacon
positions.
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4.4 Mapping results with outliers

In order to evaluate the performance of our method in
presence of outliers, we conducted a simulation with Sce-
nario 4 with an increasing percentage of outliers (from 0%
to 40%) for each beacon. Moreover, we also compared the
results with three standard mapping algorithms. The first
one is a trilateration based algorithm (termed Trilat). The
second, is a Levenberg-Marquardt nonlinear optimization
algorithm (termed LM) which is initialized from the tri-
lateration solution. The third is a version of an occupancy
grid algorithm (termed OccGrid). As shown in Fig. 10 for
beacon 1, we computed the estimated beacon errors for an
increasing percentage of outliers. We can see that both
our method (LMI-SoS) and the OccGrid algorithm are
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robust to the outliers. Indeed, even if the LM methods
gives lower errors with no outliers, the errors quickly grow
with the percentage of outliers. The Trilat algorithm shows
the same behovior, whereas the OccGrid and the LMI-SoS
keep the errors approximately constant. Fig. 11 shows the
estimated beacon positions for the four algorithms and for
20% of outliers. The blue rectangles represent the final
boxes returned by our LMI-SoS approach. We can see
that the final boxes always include the true position, and
that the estimated positions provided by OccGrid are also
very close. As the Trilat algorithm estimates are far from
the true positions, the LM algorithm fails to converge for
all beacons. This shows the importance of a good initial
estimate for nonlinear optimization. In this case, we could
have used the positions estimated by our algorithm to
initialize the LM algorithm and obtain a better estimate.

4.5 Discussion

Thereby, with no noise, the boxes have very small areas
which in most cases correspond to the threshold area

−60 −40 −20 0 20
−20

−10

0

10

20

30

40

50

60

70

B1, r=0.083,
a=15.82     

B2, r=0.007, a=31.64

B3, r=0.023,
a=63.28     

B4, r=0.061, a=126.56

X (m)

Y
 (

m
)

Robot trajectory and final beacon boxes

Fig. 8. Scenario 4 (Noise 1, 10% outliers tolerated): final
(r=% of outliers, a=box area)

−60 −40 −20 0 20
−20

−10

0

10

20

30

40

50

60

70

B1, r=0.099, 
a=15.82      

B2, r=0.032, a=15.82

B3, r=0.081,
a=10.54     

B4, r=0.073, a=47.46

X (m)

Y
 (

m
)

Robot trajectory and final beacon boxes

Fig. 9. Scenario 4 (Noise 2, 10% outliers tolerated): final
(r=% of outliers, a=box area)
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Fig. 11. Estimated beacon positions with 20% of outliers

δarea where the algorithm is stopped. However, in presence
of noise, the returned boxes are much larger. To handle
correctly the noise, it is mandatory to tolerate a certain
amount of outliers, otherwise the returned solutions can
be totally incorrect. Because no noise model is used, the
method does not seem suitable in the case of biases on
the measurements. The main advantage of the proposed
method, its robustness, was demonstrated with an increas-
ing percentage of outliers. Compared to other standard
methods, it was not affected by outliers and always re-
turned a box enclosing the true beacon position. Finally
by looking at the processing times in Tables 1 to 4, it
appears that the method is relatively slow and only suited
for offline applications. Indeed for each box and each range
measurement, a LMI problem has to be solved. Indeed,
the BFS algorithm used to find the smallest boxes is very
costly and we plan to find an alternative in future works.

5. CONCLUSION

This work presented a new approach for the mapping
of beacons given known robot positions, and the range
measurements as the only source of information. A LMI
feasability test was derived to check if a range measure-
ment is consistent with a box enclosing the true beacon.
Using all the range measurements coming from a beacon,
the proposed consistency test allows to discard regions
of the search space incompatibles with one or a percent-
age of the measurements. Starting from an initially large
box, and employing a breadth-first search algorithm, it
is possible to return the smallest box consistent with all
the constraints. The proposed algorithm was validated on
different simulations with increasing levels of noises and
showed promising performances. Indeed, the algorithm
demonstrates its ability to handle noisy measurements and
outliers by increasing a threshold on the percentage of tol-
erated outliers. By doing so, the size of the returned boxes
where reduced and the estimation of the beacon positions
was thus improved. One of the major asset of the proposed
algorithm is its robustness to outliers. In future work, we
plan to adapt the algorithm for the localization and SLAM
problems, or to integrate it as an outlier removal module.
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