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Abstract

The progr_=rrrn;n_ of the interrupt h_n,]1;n_ mechanisms, process switching primi-

tives, scheduling mechan/sms, and synchronization primitives of an operating system

for a mnltiprocessor require both efficient code in order to support the needs of high-

performance or real-time applications and careful organization to facilitate mainte-

nance. Although many advantages have been claimed for object-oriented class hier-

archical languages and their corresponding design methodologies, the application of

these techniques to the design of the primitives within an operating system has not

been widely demonstrated.

To investigate the role of class hierarchical design in systems programming, the

authors have constructed the CTw/ces multiprocessor operating system architecture

using the C++ progr_mm_ language. During the implementation, it was found that

many operating system design concerns can be represented advantageously using a

class hierarchical approach, including: the separation of mechanism and policy; the

organization of an operating system into layers, each of which represents an abstract

machine; and the notions of process and exception management. In this paper, we

discuss an implementation of the low-level primitives of this system and outline the

strategy by which we developed our solution.

1 Introduction

The Choices [i] [2] operating system architecture is organized as a class hierarchical solu-

tion to the design problems of operating systems. Applications for which Choices has been

•This work was supported in part by NASA under grant number NSG14T1 and by ATtzT METIIONET.





designed include numerical computations, embedded flight control and ground-based mon-

itoring systems, and controllers for high-speed circuit and packet switched networks. The

research was motivated by the difficulties of building multiprocessor operating systems for

spedalized high-performance, real-time applications on large coUections of heterogeneous

shared memory and networked multiprocessors. For example, current operating systems

cannot be easily extended to manage dynamic load balancing, reconfiguration, process mi-

gration, and heterogeneous CPU resource management. Similarly, the conventional operat-

ing system provides applications with a Ukernel" that offers a predefined selection of system

services; this kernel cannot be easily extended to provide specialized services for particular

concurrent applications on particular parallel hardware. Choices uses objects and class hier-

archies to organize and facilitate solutions to both example problems. An operating system

implemented with the Choices architecture currently runs on the Encore Multimax. 1

The Choices architecture supports the concept of a family operating systems. Choices

provides this family through a hierarchy of classes. The operating system designer may

choose or spedalize components in order to build a custom system. The hierarchy con-

talus abstnac_ primitive hardware-independent classes and system service primitive classes

that respond to application requests. Concrete subclasses of these classes define objects in

particular Choices implementations. Classes within the hierarchy may be specialized for a

specific hardware environment or the needs of a particular dedicated application in order to

minimize overhead and to improve efficiency. Thus, Choices supports many different appli-

cations but avoids any overheads associated with features designed into a "general purpose _

operating system that the application neither requires nor uses.

Choices design exploit virtual memory techniques for efficient interprocess communication

via shared memory. Any communication required between the applications is supported by

operations on persistent objects in shared virtual memory. Choices support for networked

multiprocessors extends the virtual memory across the network. 2 Processes are defined

within the dais hierarchy, are modeled as objects, and have implementations that reduce

process context switching overheads.

A major motivation for this research was to determine if the class hierarchical object-

oriented approach could be used for the design and implementation of complete operating

systems. The C++ programming language [7] was used exclusively in the implementation of

Choices. Therefore, this _-'search is also an investigation of the appropriateness of implement-

in 8 complete operating systems in a language which supports object-oriented programming

and class hierarchies, as opposed to either adding features to an existing language or using a

more complex programming language that already has system programming features (e.g.,

Mesa or AdaS).

In this paper, we discuss the classes within Choices that support process dispatching and

xMultimax is a trademark of Encore Computer Corporation.

2Messsse-oziented kernels like the V Kernel [3], Accent I4], Amoeba [5], and MICROS [6] build specific

communication schemes into the lowest levels of the kernel. For example, some systems implement a few
ways of providing _virtusl _ messages like "fetch on access, m However, these systems are not easy to adapt

to support other approaches such as "send process on read" or '_.mote procedure caU on execute."

aAds is s trademark of the Department of Defense (Ads Joint Program Office).
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execution, exception handling, processcontext switching, scheduling, and synchronization.

The classes provide the primitives from which higher-level layers of the operating system or

application-specific systems are constructed.

1.1 Related Research

The organization of an operating system is a dimcult task. Many differentapproaches to

structuringoperating systems have evolved in response to advances in hardware technology

and improvements in software ensineering techniques. Approaches to the structuring of

operating systems [8]include a monolithic, kernel,process hierarchy,functional hierarchy,

and object-orientedcapabilitystructure.

Many simple microprocessor and some earlybatch operating systems are structured using

the monolithic approach: as a large program that invokes user programs as _subroutines."

These applicationsUreturn" by requesting operating system servicein the form of a system

call,by terminating, or by being preempted by a hardware interrupt.

Many current operating systems like UNIX are organized using a /_eene[ approach in

which application programs execute on an Uabstract CPU" that hides details of the real CPU

such as its concurrent use by other applications and its I/O hardware interface. Kernel's

often introduce the notion of a concurrent process to support the abstraction that permits

the sharing of a CPU among multiple applications. Typically, the software of the kernel is

minimal; the majority of operating system software executes outside of the kernel exploiting

the abstractions provided by the kernel.

Even though the software in a kernel should, by definition, be kept to a minimum, it

often is large and can benefit from structuring. Layered systems, most notably THE [9] and

Venus [i0], structure an operating system as a series of layers, or levels. Each layer is built as

a collection of concurrent processes and software modules that exploit the abstractions and

enhancements provided by the previous layer. By separating the various solutions required

to build an operating system, layering offers improved maintainability and portability,

However, it is not always easy to organize the processes into layers. Instead, a system

may be organized as a j_anction_ hierarchy [11]. Concurrent processes within the operating

system may access functions at different levels within the hierarchy.

The objec_-o_ented capability approach to structuring an operating system considers it

as a collection of objects that includes applications and system services. The interaction of

the objects is organized as a network of capabilities. One example of such an object-oriented

operating system is the Intel iAPX 432 system [12].

Both the monolithic and kernel approaches to organizing operating systems are suitable

for small operating systems but do not scale up well because of the lack of any internal

structure. The operating system kernel approach has the desirable property of separating

an operating system into a set of cooperating processes communicating through the kernel.

The cooperating process model is very important because it structures asynchronism in an

intuitive manner. Layering the contents of a kernel is a practical solution to structuring

large operating systems that has been applied to many of today's major operating systems



[13][14][15][z6].
The major di_culty with building layered operating system kernels is determining the

layer in which processes or functions should be implemented and structuring the internals

of a particular layer. Since each layer may only rely on the processes or functions provided

by lower layers, careful planning is necessary. For example, in virtual memory systems, the

disk device drivers should be provided by a lower level than the virtual memory paging

mechanism since the memory paging mechanism must use the disk as a backing store. But,

the memory that the disk drivers use for I/O buffers must be coordinated with the virtual

memory management. Such circular dependencies are the most difficult problem in designing

the layers of an operating system. The object-oriented capability approach helps to reduce

the problems caused by such cyclic dependencies since capabilities can be used to represent

arbitrary networks. However, such arbitrary networks lack structure (unless the objects are

somehow organized into layers.)

To summarize, operating systems have been organized by hiding machine dependencies,

by providing a machine independent kernel that hides the details of shsrin 8 of a CPU among

concurrent processes, by structuring system support into layers of processes, into a functional

hierarchy, or by representing the mechanisms, services, and abstractions of an operating

system as objects. Each approach has merits in terms of simplicity or coping with complexity.

Each approach may sometimes lead to implementations that could have been derived by a

dif[erent approach. In the next section, we shall distinguish these previous approaches with

our own class hierarchical, object-oriented approach.

1.2 Structuring an Operatin_g System Using Class Hierarchies

Choices is a study of the applications of class hierarchies and inheritance to the construction

of operating systems. We believe this will improve the organization and design of such

systems without a performance penalty. Not only do classes permit the expression of the

standard operating system design techniques, but they also represent and organize major

design concerns that could not be expressed easily within existing design approaches. In this

section, we describe the design methodology that is permitted by class hierarchies.

We would like to emphasize that the use of class hierarchies to structure operating

systems is an orthogonal issue to the layering of a system. The hierarchies are used as

a means to structure the internals of a layer or kernel. Within Choices, object-oriented

programming and inheritance are used to build a kernel from layers that are collection8

of objects; some objects may provide system functions and others may define or contain

concurrent processes. A process defined within one layer may access objects in other layers.

The class inheritance mechanism and upward type coercions allow references to these objects

in a structured manner. Class hierarchies and object-oriented programming also have the

software engineering advantages that include code reuse and modular programming.

The class hierarchical approach encourages code reuse within a operating system layer,

between operating system layers, and across systems. Reuse is gained from the use of a

language with class and inheritance provided that care is used in the construction of the
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subclasses. By building class hierarchies in which methods are specialized incrementally

through subclassing, much code can be shared between classes.

Layered operating systems offer many opportunities for code reuse. Common system

functions and utilities are often repeated within d_erent layers. For example, queues, lists,

hash tables, mutual exclusion primitives, semaphores, processes, and schedulers may be used

in several layers including the application layer. Classes allow the reuse of the definition and

implementation of abstract algorithms and data structures throughout the layers of a system.

This form of code reuse is enhanced by defini'ng generic classes to represent the abstract

algorithms and data structures of useful operating system concepts, subclassing these classes

to apply them to the specific needs of an operating system, and then instantiating these

classes to produce objects within a specific layer.

Families of operating systems also offer many possibilities of code reuse. An abstraction

of some operating system component within the family may be defined as a class with many

different subclasses each implementing a "version" of that class for a particular hardware or

a particular application's requirements. The different versions of the class can all share a

large portion of the implementation through the parent class if they are similar. This form

of reuse simplifies the customization of the family of operating systems for a target machine

and application.

The class hierarchical approach also encourages customization. Customization and mod-

ification of a family of systems is 8uided and aided by subclassin 8 and by the structure

induced by the class hierarchy. The class hierarchy provides the systems designer with a

conceptual view of how the components of an operating system function. It classifies com-

ponents of a system with respect to their function; by learning the function of a parent class,

the possible function of a subclass can be inferred [17] [18]. In the class hierarchy for Choices,

only the top few classes need to be mastered to achieve a good overall view of the system. In

addition, subclassing permits the behavior of a specific part of a Choices operating system

to be modified without chansing the rest of the system.

All machine depemienc_es, operating system meclmn_,r_ (e.g., page table management),

operating system policies (e.g., schedulers) and des/gn dec/s/ons are encapsulated within

classes in Choices. Design decision are implemented as a potential set of subclasses. An

abstroct class specifies a general behavior and protocol (its methods) that may be used on

instances of the class and its concrete subclasses. A concrete class refines the implementa-

tion of an abstract class. Abstract classes are used in our system design to specify operating

system abstractions. Concrete subclasses are used to specify particular versions, policies

or mechanisms that implement the abstraction. Wherever possible, the class hierarchy is

constructed so that similar sub-hierarchies can be specialized from a common ancestor hier-

archy. (Not only do classes support reuse, but the structure induced by a hierarchy may also

be reused, including code reuse of the classes in the hierarchy.) Overall, we have constrmned

the _fan out" to be small (2-7) to encourage code reuse.

In later parts of this paper we will discuss the use of this methodology to design process

management and exception handling within Choices.
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Choices Base Classes

Class Methods

Object

_MemoryRsnge

_Process

_ProcessConts/ner

_Exception

c'tor d'tor

c'tor d'tor

c'tor d'tor

c'tor d'tor

c'tor d'tor

reserve release physicaiAddress

add remove -

raise -

Legend

Symbol Meaning

method Definition of method.

method Redefinition of method.

Subdass or inherited method.

- Undefined method.

Table 1: Major Base Classes in the Choices Hierarchy.

2 The Choices Class Hierarchy

Before going into the details of the process and exception classes, a brief overview of the

Choices class hierarchy is appropriate. Some of the major classes in the first level of the

Choices class hierarchy &re shown in Table 1. Each subclass redefines and adds methods

defined for class Object. Class MemoryRange provides the base for storage management

in a Choices operating system. Instances of class Process are the basic units of execution

in a Choices system. A Process is represented by the information necess&ry to execute

it. This is usus/ly the processor state information (i.e., machine registers) and information

about the virtual memory in which it expects to execute. Processes &re scheduled and

executed within a Choices system by being added to and removed from ProcessContainers.

Class ProcessContaine_ is specialized to provide for Process execution and scheduling. Class

Ezception provides the basis for exception handling, inc.luding traps and interrupts. The

raising of an Exception usually causes Exception-specific movement of Processes between
ProcessContainers."

To aid in portability, objects in this design &re grouped into layers. The Germ is the

lowest layer. It is a set of objects that encapsulates the major h&rdw&re dependencies and

provides an "ides/ized" h&rdw&re &rchitecture to the rest of the layers in the system. 4 The

Germ provides the meclmnisrrs8 for mansgin 8 and maintaining the physics/resources of the

computer. Objects defined for use in the Germ for specific architectures &re instances of

subclasses of generic classes that define interfaces to the h&rdw&re memory management,

the h&rdw&re exception, and physical processor mechmxisms. Intermediate layers in the

system include memory management, exception manasement , schedulin 8 and naming. The

4The %'irtual" machine provided to the higher layers of the system by the Germ objects is not a virtual

copy of the actual hardware m in the IBM VM/370 [16] operating system, but rather an idealized _chitecture.
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Kernel is the highest layer in the system. It defines the interface provided by the system

to applications. A complete operating system consists of Germ objects appropriate for the

particular hardware of the system, objects belonging to the middle layers, and Kernel objects

appropriate for the applications that are supported by the operating system. Individual

applications that run on top of the new system can further augment the class hierarchy with

their own classes.

All operating system components, including support for parallelism and synchronization,

are implemented using C++. The language is efficient and portable. It implements object-

oriented programming and class hierarchy semantics with minimal runtime overhead and

thus is ideal for operating system programming. There are, of course, a few small assembly

language routines whose functionality could not be implemented directly in C ++. It is easy

to interface C++ to assembler in order to achieve things impossible in the language itself (for

example, loading stack pointers and memory management unit registers). However, even

these assembly routines are mostly machine-dependent implementations of methods of low-

level classes, thus preserving the object-oriented implementation even to the lowest levels of

the class hierarchy. C++ was chosen because it supports class hierarchical object-oriented

design while imposing negligible run-time overhead.

In the following sections, we will describe in more detail some of the classes which imple-

ment the functions of interrupt handling, process dispatching, context switching, scheduling,

and synchronization.

3 Processes

Choices supports the concept of a computation composed of a potentially large number of

lightweight, independent parallel processes similar to those described in [3] [13] and [19]. An

application may use multiple communicating processes to achieve concurrency and paral-

lelism. A single one of these processes is represented by an instance of the Choices Process

class. Each instance of the Process class represents an independent flow of control that can

share memory throu8 h the memory management mechanisms described below. In order for

such an abstraction to be useful and to allow efficient process migration, the amount of in-

formation kept on a per-process basis and the context switching effort between two processes
is minimized.

3.1 Memory Management

A complete discussion of the Choices memory management system is beyond the scope of

this paper, s A general description of the way memory is managed is, however, necessary in

order to discuss process management and context switching in Choices.

Memory management in Choices is implemented by a hierarchy of classes with the ab-

stract MemoeyRange class as root. The classes in this hierarchy support virtual memory, the

SA more complete description is contained in [1].



sharing of memory, and memory protection. An instance of a MemoryRange class represents

a contiguous range of memory addresses, as the name implies. MemoryRange is subclassed

to represent the different kinds of memory in a system. The most important example is

class Space. A Space is used to represent a range of virtual memory addressable by a Pro-

cess. The class SpaceList is provided for the a_regation of Spaces. It is subclassed into the

Domain class which represents the complete view of virtual memory that may be accessed

by a Process. The list of Spaces in the Domain of a process is consulted during memory

manasement decisions. Sharin 8 of memory between processes can be accomplished either

throush shared Domains or through different Domains which list common Spaces.

3.2 Process Implementation and Context Switching

Each Choices Process references a Domain that specifies its virtual memory. Usually, the

executable code, initialized data, unlnitialized data, and stack are represented as Spaces

within this Domain. The constructor for a process is parameterized by an initial Domain,

initial processor state (for example, program counter or stack pointer), and arguments to

the process. Methods for Processes alter their Domains, manipulate scheduling parameters,

and handie preemption and dispatchin 8.

The state of a process is recorded by storing the processor state and register contents

within a Process object. A small supervisory stack is maintained by each Process object in

order to handie preemption. The dispatch method of the Process class is used by the process

switching code in Choices to reload a CPU's registers with copies that are stored within the

Process object. Context switching overhead is lowest between Processes which execute within

a common Domain since if the Domain of the Process being dispatched matches the Domain

in which the processor is currently executing, no memory context switching is necessary.

Interrupt and real-time processin 8 require the ability to switch between processes with

minimum context switching overhead. Since an executing process accesses a stack, code, and

data represented by the various Spaces contained within its Domain, fast context switchin 8

can be achieved by locking the memory of s Space as resident. Locking memory to be

resident within a Space causes the corresponding virtual addresses to be validated and the

associated real memory to be locked as resident in physical memory. In addition, a Space

may be locked as addressable by all Processes. A context switch to a process that addresses

only resident pases in resident virtual memory incurs only register loadin 8 overhead, e

Locking can optimize the performance of interrupt handlers and real-time processes as de-

sired. Such processes may still be protected from other applications by runnin 8 the processes

in the privileged state of the processor and settin 8 the memory protection of the 81obally

shared Spaces to exclude access in non-privileged mode. Thus, even though a Space may be

locked as addressable by all Domains, it can remain protected from unprivileged processes.

The Kernel and Germ memory of a Choices system are implemented as sets of such Spaces.

ePlns MMU cache flnshin 8 overhead, if the old and new Domains differ.

8



Processesand ProcessContsiners
Class Methods

Object ....
_Process dispatch chanKeDomaln getSchedulerInfo setSchedulerInfo

_P_ocessContsiner add remove is_.mpty -
_1SinsleProcessContsiner add remove _Emp£v -

H_CPU add _mo_ _ -
ilFIFOSchedu]er add remove iaEmptv -

H _RoundRob/nSehedu/e_ _ _-mo_e 1 -

Table 2: Process and ProcessContainer Base Classes.

3.3 ProcessContainers

Primitives for scheduling, blocking and dispatching processes in Choices are built by using

instances of the Pro_ssContainer class and its subclasses. A ProcessContainer, as the

name implies, is a container of Processes. Scheduling and dispatching algorithms in Choices

involve transferring Processes between ProcessContahlers. Table 2 shows some of the classes

in Choices which implement Processes and ProcessContalners.

Subclasses of ProcessContainer impose queuing disciplines on the Processes they contain.

Some subclasses are de_ed to only contain a single Process. The ProcessContalner class is

abstract and defines the operations add (for inserting Processes into the container), remove

(for removing Processes from the container), and isEmpty (for testing whether the container

is empty or not). Subclasses can redefine these methods, for example, to add and remove

Processes in FIFO, LIFO, or priority order.

ProcessContainers represent an operating system abstraction that may be refined to

implement queues of processes (e.g., "run queues" and "ready queues"), and may be used

to store processes that await an event or are blocked on a Semaphore operation. Scheduling

in Choices is discussed in more detail in a later section.

3.4 Exception Handling

Low level exceptions are introduced in Choices by the abstract Ezception class and refined

by its subclasses. Table 3 shows the base classes of Choices which implement exception han-

dling. The Exception class defines the method raise to intercept and correct the exception

condition. The Exception class has subclasses HardwareEzception and SoftwareEzception.

The raise method for a HardwareException is called directly as a result of a hardware trap or

interrupt. HardwareExceptions are used to encapsulate the hardware exception mechanism

of the underlying architecture. The raise method of a SoftwareException is called voluntar-

ily by an executing process. Exceptions are the primary objects in Choices whose methods

cause Processes to be moved between ProcessContainers. Raising an Exception is the only

way for a process to suspend its own execution.



Exceptions

Class

Object

J,Exception

_HardwareException

_ _Interrupt Exception

_Abort'i_ap

_ J,_MegallnstructionT_ap

$_DivideByZeroTrap

_TimeSUceInterrupt

l_SoftwareException

1_ J,SemaphoreException

Methods

w

raise -

1 -
ra/se await

ra/ae -

ra/se fixFault

rcl/Se -

ra/ae -

m/Be clockTick

ra/se handler

J, handler

Table 3: Exception Handling Base Classes.

3.5 The CPU ProcessContainer Subclass

A special subclass of ProcessContainer, CPU, represents an actual physical processor. Multi-

processing fits naturally into this model since a system can consist of more than one instance

of the CPU class, each corresponding to an actual processor. The CPU class redefines the

add method to dispatch and execute a Process on the processor it represents. The remove

method of the CPU class is used by Exceptions to implement CPU preemption. It returns

the Process for which the CPU has most recently saved a context.

To effect the transfer of the CPU from one process to another, the context of the exe-

cuting process must first be saved. This is accomplished by raising an exception. When an

Exception is raised, the context of the currently executing process is saved on its supervisory

stack. These supervisory stacks exist one per Process object and need only be large enough

to hold a single process context. Once the state is saved on this stack, the raise method

invokes the Exception handler. The Exception handler is executed independent of the state

of any particular process by switching to a per-processor supervisory stack/

Exception handlers usually contain code to remove the Process from the CPU, store it

in a ProcessContainer, and add another Process to the CPU. Not all classes of Exceptions

behave this way; some define the raise method to save only a minimum amount of context

because, after processing the exception, it will immediately resume the process. The CPU

class defines methods to install Exception objects as the handlers of hardware Exceptions.

Exceptions can be raised syneXronously by a Process voluntarily invoking an Exception

7This stack is created by the CPU class during its initialisation. If the exception handling code was

executed within the context of any patticulaz Proceu (i.e. if a Process attempted to remove itself from the

CPU and added itself to another ProcenContainet), a race would exist where the Proceu could be removed

from the second ProeessContainer and added to another CPU resulting in the Process being executed by
two processors at the same time.
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object's raise method, or asynchronously by the raise method of an Exception being "in-

voked" through the hardware exception mechanism. Hardware exceptions are discussed in

more detail in the following sections. Combined uses of ProcessContainers and Exceptions,

most notably in the implementation of semaphores, are discussed later.

3.6 Hardware Exceptions

The HardwareException class has several major subclasses. The Trap class provides a mech-

anism for handling traps that a process may generate as a direct result of its execution. This

includes machine traps (for example, divide-by-zero and illegal instruction), virtual memory

access and protection errors (for example, page faults of various types), and explicit program

traps (for example, a "system call" via an "SVC" like instruction). The Trap handler ser-

vices the exception condition within the context of the trapping Process and then resumes,
or terminates that Process.

Many interrupts occur asynchronously and, in general, have nothing to do with the cur-

rently executing process. The InterruptEzception subclass of HardwareException defines a

new method, await. The await method is invoked by a Process to block its execution until

the interrupt occurs, at which time the Process may be resumed. InterruptExceptions must

be awaited if they are not to be missed. The raise method of the InterruptException class

saves the context of the interrupted process, adds it to the system's "ready queue" Process-

Container and resumes the Process awaiting the occurrence of the interrupt. Figure 1 shows

the sequence of events in more detail. Before the interrupt occurs, Process R is running on

the processor and Process W is awaiting the interrupt 's occurrence. The InterruptExcep-

tion object contains as an instance variable a ProcessContainer to hold the Process awaiting

the interrupt. In the figure, Process R is removed from the CPU object and added to the

ready queue ProcessContainer. Finally Process W is removed from the interrupt objects

ProcessContainer and added to the CPU object.

In addition to the synchronous hardware interrupts, described above, that must have a

process awaiting them, Choices provides un-awaited interrupts. For example, a time-slice

interrupt is handled by an instance of the TimeSliceIntereupt class. TimeSHceInterrupts are

not awaited. When one occurs the running process is preempted, removed from the CPU,

and placed on the ready queue ProcessContainer. Another process is then chosen from the

ready queue ProcessContainer and added to the CPU. The same effect can be achieved by

having a process await the interrupt and then cause the context switch to a second process

chosen from the ready queue. This would, however, require an extra context switch over the
first method.

11



Ready
Queue

CPU

Object

_er

Raise Message
(from hardware)

Queue Interrupt
Object

Figure i: Interrupt Processing.

4 Semaphores

In Choices, a semaphore [9] is implemented by the Semaphore class and its methods, P and

V, defined abstractly as follows:

P (Semaphore) :

count :- count - 1;

if ( coun't; < 0 )
Block.

V (Semaphore) :

count := count + 1;

if ( count <- 0 )

Wakeup one of the blocked Processes.

A constructor is also provided by the Semaphore class to set the initial value of the

semaphore.

In order to maximize parallelism in a shared-memory multiprocessor environment, a sem-

aphore must not only provide mutual exclusion for the execution of its methods, but it must

also ensure that its methods are completed quickly, without interruption. For example, dis-

ablin 8 interrupts will provide mutual exclusion on a single processor system, but not on a

12



multiprocessorsharedmemory system. A test-and-setoperation on a lock may be used to
guaranteethat a method is executed in mutual exclusion on_a multiprocessor. However,

unless interrupts are disabled, test-and-set operations can lead to many wasted CPU in-

struction cycles if a process is suspended by an interrupt or time-slice expiration while it

has possession of the lock. Therefore, the correct implementation for a multiprocessor test-

and-set spin lock should first disable interrupts to prevent the process attemptin 8 the lock

bein 8 preempted, and then attempt to acquire the lock with a test-and-set operation. When

the process has completed its critical section, the lock should be released and interrupts

reenabled.

A queue of suspended processes is associated with each semaphore. A mechanism is

required to transfer a process from the CPU to this queue when the process requests a

blocking P method on the semaphore. Correspondingly, a mechanism must exist to move

a blocked (enquened) process from this queue into the system ready queue when another

process executes a V method on the semaphore.

A new subclass of SoftwareException, SemaphoreEzception, is used to handle the blocking

of processes requesting a P method on a busy Semaphore. An instance of a SemaphoreEx-

ception, a ProcessContainer, and an integer count variable (along with a test-and-set spin

lock to guarantee its atomic update) are the only instance variables of the Semaphore class.

The ProcessContainer is used to hold the Processes waitin 8 on the Semaphore. s

When the P method of a Semaphore blocks a process it places it on the queue of processes

awaiting the Semaphore. This requires removin 8 the process from the CPU and adding it

to the Semaphore object's ProcessContainer. As previously discussed, the convention for

removing a Process from the CPU (that is, to suspended it) is to raise an Exception. The

raise method of a SemaphoreException is used by the Semaphore's P method to achieve

this. The handler for the SemaphoreException chooses another Process to run by removin 8

a _'erent Process from the system ready queue ProcessContainer and adding the result

to the CPU. If necessary, the V method of a Semaphore "wakes up" a blocked process

by removin 8 it from the Semaphore's ProcessContainer and adding it to the system ready

queue.

5 Schedulers

Different subclasses of ProcessContainer axe used to implement different scheduling disci-

plines or policies. The operating system designer that implements a new scheduling policy

creates a new subclass of ProcessContainer (or, more likely, subclasses an existing scheduler).

The new scheduler redefines the add and remove methods in order to provide the desired

behavior. The Process selected by the scheduler for removal is determined by its scheduling

policy.

SThe queuing behavior an individual Semaphore cam be modified by changing the type of ProeessContalner
storing the queued Processes. Currently, all Semaphores in Choices use a subclass of PzoeessContainer that
imposes FIFO ordering on adds and removes.
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The scheduler interacts with both Processes, and CPUs. Each CPU has an associated

scheduler from which a Process may be removed for execution when the CPU becomes idle.

In the Encore Multimax Choices implementation many CPUs axe associated with the same

scheduler; but there may be more than one scheduler within the system. This allows the

system configurer to group CPUs within a Choices system, associatin 8 each group with

a different scheduler, thus allowing the partitioning of CPUs according to the scheduling

policies that apply to particular application(s). This assignment need not be static, and the

system can be repaxtitioned as necessary.

Each Process has a private instance of a SchcdulcrInformation class associated with it

that is maintained by the scheduler. This information is modified and inspected only by

the scheduler, the rest of the system leaves it undisturbed. In order to provide time-sliced

scheduling, a time-slice or quantum is associated with each process (which may be a value

that represents "run to completion"). The quantum of a process may be set by the scheduler's

remove method. When a Process is added to a CPU for execution, a timer is initiated which

will cause a TimeSliceInterrupt Exception to be raised when the time-slice expires. When

a Process is removed from a CPU, the amount of unused time is recorded in another field

of the Process object. A value of zero indicates that the Process used the entire quantum.

When the Process is added to a scheduler, the scheduler can examine this information and

use it for future scheduling decisions or for updating the SchedulerInformation it maintains
for the Process.

As an example, consider a system in which a sinsle , centralized scheduler exists; that

is, all Processes and CPUs are msociated with the same scheduler. In addition, suppose

this scheduler imposes a time-sliced scheduling discipline on the system. We begin with the

execution of an Exception handler which has removed a Process from the CPU and adddd

it to some other ProcessContainer. At this point the Exception handler removes a Process

from the scheduler associated with the CPU on which it is executing and adds it to the

CPU. When the Process is added to the CPU, its time-slice quantum is examined. If this

quantum is not "run-to-completion," a timer is armed which will raise a TimeSliceInterrupt

Exception when the quantum expires. When the current Exception handler completes its

work the Process it has added to the CPU is dispatched and begins execution. Assuming

that no other Exception is raised on this CPU, the timer will raise the TimeSliceInterrupt

Exception at the end of the time-slice. The handler for this Exception removes the current

Process from the CPU and adds it to the Process' scheduler. At this point we have come

full circle and the Exception handler removes another Process from the CPU's scheduler for
execution.

Current Choices schedulers include a PIFOScheduler for run-to-completion scheduling

of Processes and a RoundRobin,qcheduler which provides simple time-slicing. Other sched-

ulers can be built either by deriving specialized subclasses from existing scheduler classes

or by creating wholly new ProcessContainer subclasses. An exmnple of the latter is the

MultiLevelFeedbackQ, ueue, which contains several ttoundRobinSchedulers. These schedulers

represent the different priority levels within the queue and each provide for a different time-

slice quantum, if desired. A MultiLevelFeedbackQueue maintains the dynamic priority level

14



Preliminary Choices Performance Data

Encore Multimax 32032 (0.75 MIP)

Operation Encore 4.2 BSD UNIX Choices

System Call Overhead 173/_sec 39/zsec
Process Creation

Context Switch

Shared Memory Example'

26.3msec

0.032sec

3.8msec

536_sec
O.022sec

Table 4: Performance Data.

of the process. A Process added to the queue has its priority updated to be either the next

lower level (if it used up its entire time-slice quantum) or the highest priority level (if it re-

linqnished the CPU voluntarily, perhaps to perform I/O). The Process is then placed on the

interns] queue associated with its new priority. Removing a Process from a MnltiLevelFeed-

backQueue involves removing a Process from the highest level interns] queue which is not

empty.

The ProcessContainer is a powerfld abstraction that may be used to provide encapsulation

of physics] CPUs and temporary storage of processes.

6 Summary

A Choices kernel currently runs on a 10 processor Encore Multimax that supports the classes

and concepts discussed in this paper.

Of particular concern during the development of the system is whether or not the class

hierarchical approach can support the construction of entire operating systems. In this pa-

per we discuss how this approach can promote the structuring of levels within an operating

system, encourage reuse, encapsulate decisions and policies, and permit alternate implemen-
tation. •

C++ was chosen as an implementation language because it supports class hierarchies and

inheritance while imposing negligible performance overhead at run-time. A software monitor

is being used to evs]uate the performance of Choices on an Encore Mnltimax with NS32332

processors. A]though it is dii]_cult to provide a mea_ingfu] performance measurement of

an operating system, we have obtained results that are encouraging. These axe shown in

Table 4. The "system ca]]" overhead (including a trap and change to supervisor state) is

a modest improvement over UNIX and is only about four times the overhead of a normal

procedure ca]]. The Process creation time includes creation of new virtual memory Spaces

for the Process. Further tuning will improve these figures.

Current effort is devoted towards improvement and further implementation of commu-

nication and persistent object support. Puture plans include an object-oriented file system,

SThe example creates four processes on independent processors, three sum s ten column stray and the

fou_h sums the three resulting sums. The Multimax multitasking library pat]rage was used under UMAX.
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an advanced interface compiler, and tools for configuring Choices systems. Once Choices is

stable, the code will be placed in the public domain to promote research into customized

operating systems.
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