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Abstract 

 

This study investigates the evidential value of filled pauses (FPs, i.e. um, uh) as variables in 
forensic voice comparison. FPs for 60 young male speakers of standard southern British 
English were analysed. The following acoustic properties were analysed: midpoint 
frequencies of the first three formants in the vocalic portion; ‘dynamic’ characterisations of 
formant trajectories (i.e. quadratic polynomial equations fitted to nine measurement points 
over the entire vowel); vowel duration; and nasal duration for um. Likelihood ratio (LR) 
scores were computed using the Multivariate Kernel Density formula (MVKD; Aitken and 
Lucy, 2004) and converted to calibrated log10 LRs (LLRs) using logistic-regression 
(Brümmer et al., 2007). System validity was assessed using both equal error rate (EER) and 
the log LR cost function (Cllr; Brümmer and du Preez, 2006). The system with the best 
performance combines dynamic measurements of all three formants with vowel and nasal 
duration for um, achieving an EER of 4.08% and Cllr of 0.12. In terms of general patterns, 
um consistently outperformed uh. For um, the formant dynamic systems generated better 
validity than those based on midpoints, presumably reflecting the additional degree of 
formant movement in um caused by the transition from vowel to nasal. By contrast, 
midpoints outperformed dynamics for the more monophthongal uh. Further, the addition of 
duration (vowel or vowel and nasal) consistently improved system performance. The study 
supports the view that FPs have excellent potential as variables in forensic voice comparison 
cases. 
 
 
1. Introduction 

 

Within the field of forensic phonetics, voice (or speaker) comparison is the domain in which 
expert opinion is most frequently sought. Foulkes and French (2012: 558) estimate that 
forensic voice comparison (henceforth FVC) accounts for around 70% of forensic casework 
conducted by forensic speech scientists. Casework involves comparative analysis of the 
speech of a questioned voice (usually an offender, e.g. a covert recording of a suspected 
drug dealer or telephone intercepts, in countries where such evidence is admissible) and the 
speech of a known suspect. In the UK the suspect sample is usually taken from an interview 
in police custody (Foulkes and French, 2012: 557). The task of voice comparison typically 
involves a combination of auditory and acoustic analyses of linguistic features (and 
potentially also non-linguistic ones) from the suspect and offender speech samples to assess 
similarity, and also from a wider reference population to assess typicality. Alongside 
phonetic analysis, comparison may also include analysis using an automatic (ASR) system. 
The analyses are used to build a profile (or model) of the voice(s) contained in the 
recordings which can then be compared in order to aid the court in evaluating the likelihood 
that the speech samples contain the voice of the same speaker or different speakers. 
 
No feature of a voice is permanent or fixed. What makes one voice differ from another is a 
potentially large set of variables, which may or may not be present at a given moment. 
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Research in forensic speech science, in both phonetics and automatic speech recognition, 
therefore aims to identify which variables offer the best potential to discriminate between 
same- and different-speaker samples. Good features exhibit large between-speaker and low 
within-speaker variation, are readily available in short samples, are accurately measureable, 
resistant to disguise, and manifest little or no correlation with other variables (Nolan, 1997: 
763; Rose, 2002: 10). Optimally, analysis should focus on phonetic variables that occur in 
the same words and phrases in all samples in order to minimise within-speaker variability 
(e.g. Rose, 2013). Several studies suggest that filled pauses (henceforth FPs) are good 
candidates in this respect. FPs are hesitation sounds used by speakers to indicate uncertainty 
or to ‘hold the floor’ while planning the continuation of discourse (Maclay and Osgood, 
1959; Clark and Fox Tree, 2002). In English, FPs are most commonly produced as relatively 
central vowels with or without a final bilabial nasal, e.g. [әː] or [әːm], and can be 
represented orthographically as uh, um.1 The potential of FPs in FVC is implied, for 
example, by Clark and Fox Tree (2002: 97), who comment that “[s]peakers differ 
enormously in how often they use uh and um”. Further, Künzel (1997: 51) comments 
directly on the idiosyncratic nature of the phonetic properties of FPs: “[i]ndividuals tend to 
be quite consistent in using ‘their’ respective personal variant of the hesitation sound, in 
particular with respect to the optional addition of a bilabial nasal consonant and the colour 
of the vocalic component”. We can therefore predict that FPs show relatively little within-
speaker variability, which in turn should produce better system validity for FVC. 
 
FPs offer a number of potential advantages over the segmental vowel and consonant 
variables typically analysed in FVC cases. First, FPs occur quite frequently for most 
speakers and in most samples of spontaneous speech. For example, Tschäpe et al. (2005) 
report the average frequency of FPs as 3.7 per minute in a corpus of 72 male speakers, while 
Grosjean and Deschamps (1973) note that FPs occurred on average every 22 syllables in a 
corpus of spontaneous French. FPs are thus likely to be available in most recordings of 
spontaneous speech, and in sufficient number provided the recording is at least a few 
minutes long. In effect FPs therefore constitute frequently-occurring ‘words’, enabling the 
analyst to conduct like-for-like comparisons across samples. Second, FPs are typically 
longer than vowels found in ordinary lexical items (Shriberg, 2001: 165). This means that 
FPs are, all things being equal, easier to measure acoustically, because there is typically 
only a small portion of vowel formant movement concentrated near the beginning and/or 
end of the vowel, and a long portion of relatively invariant formant structure dominating the 
segment. Third, FPs are often bounded on at least one side by silence, rendering them less 
susceptible to coarticulation. Sounds that are less influenced by coarticulation should in 
principle show less variation within individual speakers since they are less affected by the 
context in which they occur. Finally, FPs have no referential linguistic meaning and are 
usually produced unconsciously (although this does not necessarily mean they are not 
planned; see Clark and Fox Tree 2002 for further discussion). Speakers are usually unaware 
of FPs in their own speech production and have relatively little conscious control over them 
(Jessen, 2008: 690). FPs may thus be particularly useful variables in cases where voice 
disguise is suspected. 
 
The present paper describes a detailed acoustic analysis of FPs in a corpus of 
demographically homogeneous speakers. We assess for the first time the evidential value of 
FPs using the likelihood ratio (LR) framework, which is now widely recognised as 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
1 It is also common to see FPs rendered orthographically as er, erm in English, especially by British writers. We 

avoid these forms as they often confuse readers who expect the <r> to be pronounced. As far as we are aware it 

almost never is. 
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appropriate for the delivery of expert evidence (Robertson and Vignaux, 1995; Aitken and 
Taroni, 2004; Morrison, 2009a). We describe the study in section 3. Initially, however, we 
summarise the key findings of previous studies of FPs. These studies enable us to refine 
hypotheses about the potential speaker-specific behaviour of FPs. 
 
2. Previous studies of filled pauses 

 

Phonetic analyses 

 

FPs have been analysed in many studies, mainly with a focus on their behaviour within 
different types of discourse, or to address the question of whether they are produced 
‘automatically’, i.e. as an unconscious reflex, or with planning at a cognitive level. Several 
such studies are reviewed by Clark and Fox Tree (2002). Some of the findings that emerge 
from this body of work also offer useful information on the potentially idiosyncratic or 
group-related properties of FPs. 
 
First, several studies show that FPs, along with other types of hesitation markers, vary as a 
function of discourse type. FPs occur much more frequently in spontaneous speech than in 
more formal styles where the speaker is more self-conscious or exerts closer control over 
speech planning. At one extreme, no examples of uh or um occur at all in a sample of 
inaugural speeches given by US Presidents (Kowal et al., 1997). Studies of groups of 
speakers in different styles of speech show a considerable increase in frequency of FPs as the 
style becomes less formal (e.g. Schachter, Christenfeld, Ravina, and Bilous, 1991). By 
contrast, FPs have been shown to decrease as people drink more alcohol (Christenfeld and 
Creager, 1996). This finding has been interpreted as evidence that FPs are planned by 
speakers, rather than being automatic, as planning itself is impaired as people become 
intoxicated (Clark and Fox Tree, 2002). 
 
Secondly, discourse structure also affects the frequency and type of FP used. More FPs are 
found at the start of major discourse units than elsewhere (Swerts et al., 1996). Um tends to 
precede longer pauses than uh, and thus signals a longer delay in discourse (Swerts et al., 
1996; Clark and Fox Tree, 2002). Um is also more frequent in sentence-initial position 
(Shriberg, 2001). It has been suggested therefore that um is used to signal planning of larger 
syntactic or discourse units, while uh signals planning or problems at a more narrowly-
defined level such as making lexical choices (Shriberg, 2001; Swerts et al., 1996). In addition 
to their correlation with discourse position, um differs from uh in a number of ways: it tends 
to be higher in f0, longer in duration, followed more frequently by pauses, and followed by 
longer pauses (Swerts et al., 1996; Clark and Fox Tree, 2002). 
 
Thirdly, both incidence and patterning of FPs vary according to speakers’ social and 
demographic backgrounds. For example, in a study of English dialogues, Foulkes et al. 
(2004, see further below) found women used proportionally far more um than men did (72% 
of all FPs for women versus 34% for men). Um was also more frequent for ‘middle class’ and 
younger speakers. A number of other studies also suggest that um occurs in greater frequency 
for younger speakers, a pattern that is also found in a range of languages (Acton, 2011; 
Tottie, 2011; Liberman, 2014). It seems likely that such findings need to be explained with 
reference to discourse factors as well as simple demographic facts. That is, some people are 
not inherently more likely than other people to use um just because they happen to be female 
or young or middle class, but it is possible that the discourse between particular types of 
people is structured differently from the discourse between others. However, discourse 
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factors lie beyond the current study. Differences between languages and between dialects 
have been observed, both in discourse patterning and acoustic qualities (Clark and Fox Tree, 
2002).  
 
Most importantly for forensic purposes, FPs show considerable between-speaker variation. 
Clark and Fox Tree (2002: 97) comment that speakers “differ enormously” in their frequency 
of FP usage, citing empirical data for 65 speakers in the London-Lund corpus who varied 
from 1.2 to 88.5 fillers per 1000 words (median = 17.3). The same speakers also varied in 
their preference for um versus uh. This pattern was also observed by Foulkes et al. (2004), 
whose 32 speakers varied continuously from 0% to 100% um (mean = 48%). This study also 
indicated that speakers varied in terms of how often they cliticised the FP to a previous word 
(and-uh, but-um, etc.). 

!

Forensic analyses 

 

Although there have been several comments on the potential of FPs as variables for FVC in 
overviews of the field, there have been few empirical studies of their forensic value. Previous 
studies have, however, supported claims that FPs may be useful variables for discriminating 
between speakers. 
 
As already noted, Foulkes et al. (2004) analysed FPs in a corpus of spontaneous 
conversational speech drawn from Newcastle upon Tyne, northern England. The corpus 
contains approximately 800 minutes of speech from 32 speakers, divided equally by sex, age, 
and social class (for further details of the corpus see Milroy, Milroy and Docherty, 1996; 
Docherty and Foulkes, 1999). They extracted all possible FPs from the recordings, which 
resulted in a total of 1,695 tokens. This total equates to approximately 2.1 FPs per minute – 
rather lower than the total reported by Tschäpe et al. (2005). For comparison they also 
analysed a total of 3,958 tokens of the lexical vowels /ɪ, ɛ, a, ә/. For each speaker all FPs and 
(where possible) 30 tokens of each lexical vowel were analysed. Midpoint frequencies of the 
first three vowel formants (F1, F2, F3) were taken manually from each token. The general 
vowel quality for filled pauses in this dialect was a close-mid front vowel, in the region of 
[e], and distinct from any lexical vowel. Note that this observation runs counter to the claim 
of Clark and Fox Tree (2002: 104) that FPs involve “standard segments”. One female speaker 
departed markedly from this group norm, using a low central-to-back [ɐ]. 
  
The full data set was analysed using linear discriminant analysis (Tabachnick and Fiddell, 
2007). This is a form of Bayesian posterior analysis which generates a classification rate 
based on the number of tokens correctly assigned to the speaker who produced them. Foulkes 
et al. conducted a series of discriminant analyses, separating data for males and females 
(because of the inherent differences in formant values resulting from gross differences in 
vocal tract anatomy), and treating uh and um as separate variables (since the presence of a 
final nasal was predicted to affect formant patterning). The results of the discriminant 
analyses are summarised in Table 1. In all four tests the FPs had diagnostic value close to or 
better than the best performing lexical vowels, although the improvement over lexical vowels 
was smaller than had been expected, especially for males. In both the male and the female 
data, uh had higher discriminant power than um and the lexical vowels. 
 
Foulkes et al. (2004) also analysed the acoustic variability of F1, F2, and F3 in FPs and 
lexical vowels. They concluded that F3 of FPs was generally the most consistent acoustic 
feature of those tested, i.e. it showed the least within-speaker variability. In sum, then, this 
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study found FPs to provide (marginally) greater speaker discriminatory value than lexical 
vowels. A similar approach was taken by Duckworth and McDougall (2013), who examined 
FPs via discriminant analysis but as part of a more general study on speaker-specific patterns 
of different hesitation types (including repetitions, silent pauses, and prolongations of 
segments). FPs generally performed well as speaker-specific features compared with other 
hesitation types, um being the best performing variable. 
 
Table 1 – Summary of results from linear discriminant analyses (Foulkes et al., 2004). Note 
that the speaker numbers vary, as two men produced no tokens of um, and one woman 
produced no tokens of uh. Chance = 6.25% for 16 speakers, 6.67% for 15, and 7.1% for 14. 
 

Variable % tokens correctly discriminated 

 Males N speakers Females N speakers 

/ǝ/ 33.3 16 36.3 16 

/ɛ/ 26.0 16 28.3 16 

/ɪ/ 26.8 16 25.3 16 

/a/ 31.8 16 31.9 16 

um 32.4 14 34.9 16 

uh 37.2 16 46.6 15 

  
Tschäpe et al. (2005) focused on fundamental frequency (f0) patterns in FPs. They analysed 
2,014 filled pauses from 72 speakers in the Pool 2010 corpus (Jessen, Köster and Gfroerer, 
2005). This corpus consists of recordings from 100 male German speakers performing a 
picture description task in two conditions: normal speech and Lombard speech (where 
speakers increase their vocal effort to counter poor transmission, e.g. when using a telephone 
or speaking against background noise; Summers et al., 1988: 917). Tschäpe et al. (2005) 
found that there was smaller variation in f0 within FPs than within intonation phrases from 
the picture description tasks. This has implications for FVC, suggesting that there is low 
within-speaker variability for f0 within FPs. Tschäpe et al. also found that variation in f0 
measurements between the normal and Lombard conditions was lower within FPs than within 
the intonation phrase. This result again supports the hypothesis that FPs may be a useful 
variable in FVC, particularly in cases that involve a telephone recording, where the speaker’s 
f0 is often affected by the Lombard reflex. 
 
Brander (2014) investigated between-speaker variation in filled pauses with a small speaker 
sample (eight Swiss Germans) but a more extensive array of acoustic parameters than 
Foulkes et al. (2004) or Tschäpe et al. (2005). Speech samples comprised 20-35 minute 
interviews, where conversation was regulated by topic and subjects received minimal 
instruction from the experimenters. A total of 457 uh and 335 um tokens was extracted from 
the interviews for analysis. The variables investigated included f0, F1~F3 frequencies, and 
type of hesitation usage. Results were analysed by comparison of the standard deviations of 
f0 and F1~F3 frequencies of [ǝ] and [m]. Results revealed between-speaker variation in f0, 
vocalic F1~F3 frequencies, and nasal F1~F3 frequencies. By contrast, the parameters ‘f0-
ratio’ (the ratio of f0 at the 25% and 75% points within the vowel to the 50% midpoint) and 
‘total duration’ showed weak evidence for between-speaker variation. 
 
The evidence from these studies does indeed suggest that FPs offer useful diagnostic 
information for FVC, although the results show relatively small advances compared with 
studies of lexical vowels. However, previous work on FPs has not considered the forensic 
potential of dynamic formant analysis – that is, continuous acoustic measurements spanning 
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the duration of a vowel, phonetic sequence, word or phrase. Nolan (1997), among others, 
suggests that analysis restricted to segment-sized units may be inherently limited by the fact 
that each segmental target is to a large extent shared by speakers of a language, governed by 
the speakers’ shared phonology. However, speakers have individual freedom to take different 
articulatory paths between phonetic targets. As a consequence, we can predict greater 
between-speaker acoustic variation in the transitions between segments rather than at the 
centre of segments. Nolan (1997: 763) goes as far as to suggest that “the nearest we will 
come to finding a speaker’s unique ‘signature’ will be in the detailed dynamics of speech”. 
 
Dynamic analysis has yielded promising results in several other studies, usually with greater 
discriminatory power than measures of ‘static’ features such as vowel midpoints. Examples 
include studies of vowels (McDougall, 2004, 2006; Rose, 2006; Morrison, 2009b), /VjV/ 
sequences (Eriksson et al., 2004), word or short phrases (Rose, 2013), and vowels + tones 
(Thaitechawat and Foulkes, 2011). McDougall and Nolan (2007), for instance, assessed 
between-speaker variation in monophthongal /u:/ using formant dynamics. They analysed the 
speech of 20 speakers of standard southern British English (SSBE), aged 18-25 years, from 
the Dynamic Variability in Speech (DyViS) corpus (Nolan et al., 2009). F1 and F2 
frequencies were extracted at +10% intervals throughout the monophthong /u:/. Results 
showed that there were large between-speaker differences in the shape and absolute 
frequencies of F1 and F2 contours, with the F2 contour showing the largest degree of 
between-speaker variation. Similarly, Rose (2015) examined the comparative performance of 
FVC systems based on static and dynamic analysis of the formant patterns of schwa in a 
sample of young female Australian English speakers. System validity was found to be better 
when using dynamic information compared with the mid-point analysis. Therefore, analysis 
of FPs using dynamic analysis methods may provide higher speaker-differentiating power 
than using static midpoint formant frequencies. This is especially likely to be the case with 
um due to the inherent acoustic change between the vocalic and nasal portions of the FP. 
 
Summary 

 

Previous studies provide ample evidence of the suitability of FPs as variables for FVC 
analysis. Research has revealed considerable individual variation in how often FPs are used, 
which types are used, in what proportions they are used, where they are placed in discourse, 
and how they are realised phonetically. There are also, however, several potentially 
confounding factors that are difficult to control in analysis of spontaneous speech: FPs vary 
in type and/or incidence according to the relative formality of speaking style, the degree of 
self-monitoring by the speaker, intoxication, and discourse type (which itself might reflect a 
complex set of factors including the topic of discourse, addressee, and turn-taking demands). 
Thus, although FPs present a potentially rich resource for analysis to distinguish individuals, 
it is likely to be prohibitively difficult to analyse the qualitative details to generate 
evidentially valuable material (cf. Duckworth and McDougall, 2013).  
 
Our focus here is therefore on FPs as acoustic-phonetic features as a reflection of speakers’ 
vocal production. We analyse the phonetic properties of FPs when they occur in talk, 
irrespective of where they occur. We note, however, that our analysis does not take account 
of potentially relevant factors such as the relationship between FP duration and 
discourse/intonation structure (Swerts et al., 1996; Clark and Fox Tree, 2002), although the 
effects of such factors on acoustic properties appear fairly small. We turn now to the details 
of our experiment. 
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3. Experiment 

 

This study aims to provide a description of the patterns of group and individual variation in 
the acoustics (formant frequencies and durations) of FPs in a sample of speakers from a 
demographically homogeneous population, and to evaluate the speaker discriminatory power 
of FPs using likelihood ratio (LR)-based testing.  
 
In order to address these research aims we conducted acoustic analyses of a readily available 
corpus of speakers. We describe the corpus in 3.2, the variables and the process of data 
extraction in 3.3, and the procedures for computing numerical LRs and evaluating system 
performance in 3.4. We first offer a brief outline, in 3.1, of the LR framework within which 
the experiment was conducted. Several previous LR studies have focussed on dynamic 
acoustic variables, primarily for diphthongs (e.g. Morrison, 2009b; Rose, 2006; Rose et al., 
2006), but to our knowledge the framework has not been used to evaluate the performance of 
FPs in speaker discrimination tests. 
 
3.1 Likelihood ratio framework 
 
It is generally argued that expert comparison evidence should be expressed in the form of a 
LR (for more detailed discussions see Robertson and Vignaux, 1995; Rose and Morrison, 
2009; Morrison, 2014). The LR expresses the strength of the evidence by the ratio of two 
probabilities: the probability of the evidence given the proposition that the two speech 
samples are from the same speaker, and the probability of the evidence given the proposition 
that the speech samples are from different speakers (Rose, 2002: 58). The LR is expressed as: 
 

�� !
!!!!!!!

!!!!!!!
 

 
where ‘p’ = probability, ‘E’ = the (speech) evidence (i.e. the difference between the suspect 
and offender data), ‘|’ = “given” or “conditional upon”, ‘Hp’ = the prosecution proposition 
(i.e. for speech evidence, that the same speaker was involved), and ‘Hd’ = the defence 
proposition (i.e. that the samples were spoken by different speakers; Rose, 2002: 58; Rose 
and Morrison, 2009: 144). The numerator represents the degree of similarity between the 
suspect and offender samples, and the denominator represents the degree of typicality of the 
evidence, i.e. the probability that the measurements would be found in samples of other 
speakers from the relevant population (Evett, 1991: 12). The LR indicates whether the 
evidence supports the prosecution or defence: an LR greater than 1 offers support for the 
prosecution hypothesis, while an LR less than 1 offers support for the defence hypothesis. 
The magnitude of the LR represents the strength of the support for either side such that values 
close to 1 indicate that the evidence is “useless for discriminating between the same-speaker 
and different-speaker hypotheses” (Rose and Morrison, 2009: 145) since the differences 
between the speech samples are just as likely to be observed if they come from the same 
speaker compared with if they are chosen at random from two different speakers within a 
population (Rose, 2002: 59). (Note that this does not mean the evidence itself is ‘useless’: the 
lack of a clear conclusion in favour of either side may be significant in the context of a given 
forensic case). LR values are usually presented as log10 values (log10 LR = 10LR) yielding a 
symmetrical scale centred on 0. Numerical LRs may also be translated to a verbal equivalent 
scale to indicate the overall value of the analysis, and to facilitate comprehension by jurors 
and other members of a court (Champod and Evett, 2000; although see Martire et al., 2013 
and Mullen et al., 2014 for issues with the interpretability of verbal LR scales). 
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3.2 Corpus 
 
Analysis was conducted using the Dynamic Variability in Speech corpus (DyViS; Nolan et 
al., 2009). This corpus consists of 100 young male speakers (aged 18-25) of Standard 
Southern British English (SSBE). The corpus was collected for the purposes of forensic 
phonetic research. For the purposes of the present study only Task 1 recordings were used. 
Task 1 involved subjects participating in a mock police interview in which an experimenter 
assumed the role of the police officer. Participants described information relating to a mock 
crime presented to them on a screen, whilst avoiding potentially incriminating information. 
As outlined in Nolan et al. (2009: 41), the aim of this task was to “elicit spontaneous speech 
in a situation of ‘cognitive conflict’, where speakers (were) made to lie”. High quality studio 
recordings were made of the interviews, with each sample digitised at a rate of 44.1kHz and a 
16-bit depth. Each sample is between 11 and 26 minutes in duration (mean = 17 minutes) and 
was saved in .wav format. 
 
3.3 Feature extraction 
 
Target tokens were initially identified using orthographic transcriptions provided with DyViS 
as Praat TextGrids. Uh and um tokens were manually marked on separate interval tiers 
(Praat version 5.3.62; Boersma and Weenink, 2014) with boundaries placed at the onset and 
offset of periodicity of the vocalic segments, as well as the offset of the nasal segment for um. 
To delimit the onset and offset of periodicity, acoustic cues were drawn from both the 
waveform and the spectrogram. For example, in order to segment the vocalic from the nasal 
segment in um, the vowel offset was defined in the spectrogram by a decrease in F1 and F2 
frequencies, an increase in F1 bandwidth and an overall decrease in amplitude (Johnson, 
2012). Tokens were discarded for segmentation where boundaries could not be confidently 
delimited or where the token was overlaid with speech from the interlocutor. Examples of 
segmented tokens are shown in Figure 1. The following acoustic properties of the vocalic 
portions of uh and um were then extracted:  static midpoint frequencies of the first three 
formants; dynamic measurements of the formant trajectories (i.e. quadratic curves fitted to 9 
measurement points over the full vowel); and vowel duration.  For um, the duration of the 
nasal portion was also extracted.  
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Figure 1 – Example segmented TextGrids of tokens of (pre-pausal) um (left) and (post-
pausal) uh (right) from speaker 056-1-060613. In the TextGrids ‘hes’ = hesitation/FP. 
 
Initially a quota of 20 tokens of both uh and um was set as an achievable target in the 
available samples, and to provide a sufficiently large data set to compute robust LRs. 
However, consistent with findings of previous studies, there was considerable individual 
variation in the frequency of FPs and the relative frequency of uh and um tokens for each 
speaker. The initial data set consisted of 86 speakers for um (mean N tokens = 19) and 92 
speakers for uh (mean N tokens = 19). Each segmented FP token was extracted to a separate 
.wav sound file using a Praat script (Lennes, 2003a). Dynamic analysis was conducted 
following the methods outlined in McDougall (2004, 2006). Measurements of the first three 
formants were extracted from each token at +10% steps across their trajectories using an 
adapted version of a Praat script (Lennes, 2003b) set to identify between 5 and 6 formants 
within a range of 0 to 5 kHz. Settings were defined on a token-by-token basis following 
visual inspection of the spectrogram with the Praat formant tracks overlaid. The script 
creates a formant object for the entire sample (in this case a token) using the To formant 

(burg)… function. The formant object contains formant measurements derived using the burg 
algorithm from a 2.5ms window shifted across the entire sound file at 2.5ms intervals with 
pre-emphasis applied to amplify higher frequency components in the spectrum (above 50Hz). 
For each token, the script recorded a total of 27 raw formant values as well as vowel and 
nasal durations in milliseconds. The +50% F1~F3 frequencies were taken to represent the 
static temporal midpoint frequencies, at the exact centre of each vowel.  
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In some cases the automatic extraction of formants produced erroneous values. In such cases, 
different settings were tested and the formant measurement script re-run. A series of heuristic 
steps was also implemented to remove errors which could not be resolved automatically. The 
raw data were inspected and unrealistic values (e.g. F1 measured as F2) or values with 
improbable shifts from one +10% step to the next were manually removed. In order to 
preserve as many tokens as possible for analysis (rather than the more reductive approach of 
removing tokens entirely), missing values were replaced with the mean of the two adjacent 
values. Where missing values occurred at the +10% or +90% steps, or where there were 
multiple consecutive missing values, the entire token was removed. This process removed 
0.7% (13/1636) of the um tokens and 5% (89/1774) of the uh tokens from the analysis. 
Univariate outliers were then identified using by-group (i.e. data for all speakers pooled) z-
scores for each variable (i.e. each +10% step) separately. Individual values of greater than 
!3.29 standard deviations from the mean were removed and where possible replaced with the 
mean of the two adjacent values. As above, the entire token was removed if missing values 
occurred at the onset or offset, or if missing values occurred in sequence. A further 3.2% 
(52/1623) of um tokens and 4% (67/1685) of uh tokens were removed for these reasons. 
 
The removal of measurement errors and outliers meant that there was an insufficient number 
of speakers with the target number of 20 tokens available for robust LR-testing (45 speakers 
for um and 23 speakers for uh) (see Hughes, 2014). The target number of tokens per speaker 
was therefore reduced to 16, which increased the number of available speakers for um to 74 
and for uh to 76. Despite this, it was considered useful for the purposes of comparison to use 
exactly the same speakers for um and uh. Therefore, the final data set consisted of 60 
speakers and the first 16 tokens of each FP per speaker. 
 
Quadratic polynomial curves were fitted in R (R Core Team, 2015) to the nine measurement 
points of each formant contour to represent the dynamic trajectory of the formant across the 
vowel’s entire duration with a smaller number of dimensions. In quadratic polynomial 
regression, the relationship between time (x) and frequency (y) (for each formant) is defined 
as: 
 

! ! ! ! ! ��
!
! �� ! ! 

 
Fitting the quadratic curves yields three coefficients per formant (a, b, c), which were used as 
input data for LR computation. Each of the terms in polynomial regression provides different 
information about the formant trajectory. The quadratic term (ax

2) describes the magnitude of 
the parabola, the linear term (bx) describes the slope while the intercept (c) is the value for y 

where x = 0. An example of a quadratic polynomial curve fitted to the F2 of a token of um is 
shown in Figure 2. Quadratic curves were fitted in preference to more complex 
representations as they have been found to provide sufficient information for robust 
discrimination of speakers, whilst also using fewer number of predictors than in cubic-based 
analyses (McDougall, 2006). Also, the formants within FPs are generally fairly linear (see 
Figure 5), with at most one turning point, so there is no need in principle to capture any 
further complexity.  
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Figure 2 – Nine raw measurements across the trajectory of F2 from post-pausal uh token 
produced by speaker 50-1-060608 fitted with a quadratic polynomial curve. 
 
3.4 Method 
 
This section describes the procedures used for generating calibrated LR output using the 
acoustic properties of the FPs as input. In LR-based testing LR-like scores are computed for a 
set of test data using a set of reference data (to model the relevant population; for discussion 
of issues with defining the relevant population see Hughes, 2014; Morrison et al., 2012) to 
assess typicality (feature-to-score stage). A common second stage in LR-based FVC is to 
calibrate the test scores using scores computed from a set of development (or training) data 
(score-to-LR stage). Calibration is a means of optimising system validity based on knowledge 
of how that system performs with a similar, but independent, data set and can “ameliorate 
what would otherwise be very misleading results” (Morrison and Enzinger, 2013: 620). The 
following sections describe the procedures used in each stage of the LR testing conducted in 
this study and the metrics used for evaluating system performance. 
 
The term system is used here generically to refer to “a set of procedures and databases that 
are used to compare two samples, one of known origin and one of questioned origin, and 
produce a (LR)” (Morrison, 2013: 174). Therefore, in this experiment, systems are defined by 
the type of FP (um or uh), the formant or combination of formants used as input, the 
representation of the formant data (midpoints or dynamics), and the inclusion or exclusion of 
duration(s). The term performance here is synonymous with system validity, i.e. how well the 
system performs the job it is claimed to do. In the case of FVC systems this may be defined 
in terms of speaker discrimination (with an error rate), but is more appropriately thought of 
as how well the system produces log LRs (LLRs) of greater than zero for same-speaker (SS) 
pairs and LLRs of less than zero for different-speaker (DS) pairs (see Morrison, 2011a). In 
this study, system performance is evaluated using metrics reflecting both definitions. 
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Feature-to-score conversion  
 
The data set was initially divided into sets of development, test and reference data 
containing 20 speakers each. Speakers were assigned to each set randomly. Scores were 
computed independently for the development and test data using a MATLAB implementation 
(Morrison, 2007) of Aitken and Lucy’s (2004) Multivariate Kernel Density (MVKD) 
formula. Given that only one recording per speaker was analysed, comparisons were 
performed by dividing the data for each speaker in two using the first half as nominal 
suspect data and the second half as nominal offender data. This yielded 20 SS and 190 
independent DS scores for each of the development and test sets. The small number of 
tokens (8 per sample) relative to the number of dimensions modelled is potentially 
problematic when using kernel density estimation. However, similar comparative results to 
those in section 4.2 were generated when using the multivariate normal LR approach, 
although absolute performance values were worse than when using MVKD. For this reason, 
we present only the MVKD results. 
 
In MVKD a normal distribution is used to model the suspect data while kernel-density 
estimation is used to model the reference data which represent the relevant population. The 
reference model is speaker-dependent in that it is constructed using equally weighted 
Gaussians from each reference speaker (Morrison, 2011b). Further, MVKD accounts for 
correlations between input variables (e.g. the formants of a single phoneme). MVKD is 
commonly used in acoustic-phonetic FVC (Morrison, 2011b) as it is claimed to suit 
variables with relatively small numbers of correlated dimensions (Nair et al., 2014). 
Consistent with this, Morrison (2011b) found that MVKD outperformed the Gaussian 
Mixture Model – Universal Background Model (GMM-UBM) approach in terms of system 
validity when tested on acoustic-phonetic data (formant trajectories). 
 
The use of ‘contemporaneous’ data, i.e. drawn from the same recording, is likely to 
underestimate the extent of occasion-to-occasion, within-speaker variability found in real 
forensic casework. It therefore provides an overly optimistic assessment of system 
performance (Enzinger and Morrison, 2012). However, there is relatively little research 
considering the importance of using ‘non-contemporaneous’ samples relative to 
contemporaneous samples in FVC system testing (an exception being Enzinger and 
Morrison, 2012) and no research as yet which establishes a suitable time threshold to 
distinguish contemporaneous from non-contemporaneous samples. Furthermore, there is 
also no research, to our knowledge, which evaluates the relative importance of the many 
other sources of within-speaker variability commonly found in casework (e.g. interlocutor, 
topic, time of day, illness). 
 
Score-to-LR mapping 

 
Scores were calibrated using a robust MATLAB implementation (Morrison, 2009c) of 
Brümmer et al.’s (2007) logistic regression procedure (for an overview of logistic regression 
calibration see Morrison, 2013). The development scores (20 SS, 190 DS) were used to 

generate a logistic regression model and the coefficients (slope (!) and intercept (!)) from 
the model were applied to the test scores (!) to produce a calibrated LLR, such that: 
 

��� ! !�� ! ! 
 

Evaluation of system performance 
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System performance was evaluated using (i) Equal Error Rate (EER) and (ii) the log LR cost 
function (Cllr; Brümmer and du Preez, 2006) based on the calibrated SS and DS LLRs 
produced by each system. EER is a validity metric based on binary accept-reject decisions. 
The EER is the threshold-independent point at which the percentage of misses (SS pairs 
producing DS evidence) and false hits (DS pairs producing SS evidence) is equal. EER was 
calculated in MATLAB (Ketabdar, 2004), testing 2000 thresholds across the entire range of 
LLRs. Unlike EER, where contrary-to-fact LRs are defined simply as errors, the Cllr 
penalises the system based on the magnitude of contrary-to-fact LRs, where the lower the 
Cllr the better the validity (Morrison, 2011b). Cllr was calculated using a MATLAB function 
from Brümmer’s (n.d.) FoCal toolkit. Both EER and Cllr have been applied extensively in 
automatic speaker recognition (ASR) research (Becker, Jessen and Grigoras, 2008; 
Brümmer and du Preez, 2006; van Leeuwen and Brümmer, 2007), but are also commonly 
used in acoustic-phonetic FVC research (e.g. Morrison, 2009b; Hughes and Foulkes, 2015). 
Both metrics are included in the present study as each is informative in a different way, 
providing complementary information about different elements of system performance. 
 
4. Results 

 

The descriptive data for FPs are firstly considered in 4.1. The results of LR-based testing 
using FPs are then considered in 4.2.  
 
4.1 Descriptive data 
 
Between- and within-speaker variation in vowel midpoints 

 

Figure 3 displays midpoint F1 and F2 values for all tokens of um and uh (960 per FP) pooled 
across all 60 speakers. Mean midpoint values for the reference vowels FLEECE /iː/, GOOSE 
/uː/, NORTH /ɔː/ and TRAP /a/ (Wells, 1982) are also plotted, based on existing data for 20 
DyViS speakers (some of whom were included in the 60-speaker HES analysis; Simpson, 
2008; Atkinson, 2009). There is considerable variation on both the F1 and F2 dimensions. 
For F1, values range from as low as 300 Hz (equivalent to mean F1 values for the close 
vowels FLEECE and GOOSE) to over 800 Hz (equivalent to the mean F1 value for the open 
vowel TRAP). Therefore, the F1 values for FPs in this sample extend across the entire range 
of potential F1 variation within the vowel plane. For F2, values range from around 1100 Hz 
to 1700 Hz, which is about half of the F2 range demarcated by FLEECE and NORTH. The wide 
spread of values within the vowel plane indicates that there is perhaps surprisingly little 
homogeneity in the realisation of FPs in this population. This suggests that there is 
considerable scope for between-speaker variation (even when considering only midpoints) 
in the FPs in this sample. 
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Figure 3 – F1 and F2 midpoint values for all tokens of um (left) and uh (right) in this data 
set (60 speakers, 16 tokens per speaker) with mean F1 and F2 values for the reference 
vowels FLEECE, GOOSE, NORTH and TRAP (partly hidden towards the bottom of the clusters of 
data points) from the first 20 DyViS speakers collected by Simpson (2008) and Atkinson 
(2009) (plotted using the R package ggplot2; Wickham, 2015). 
 
In order to examine the extent of between- and within-speaker variation, means and standard 
deviations (SDs) were calculated by-speaker using the midpoint data for F1, F2 and F3 for 

um and uh separately. Figure 4 displays mean values with !1 SD ellipses for the four 
speakers with the most extreme mean F1 and F2 values. The same reference vowels from 
Figure 3 are also plotted. Figure 4 suggests that there is considerable variation both within 
and between speakers in the realisation of um and uh. Mean F1 values are spread over a 
range of around 250Hz (ca. 450-700Hz) while the range of mean F2 values is around 300 
Hz (ca. 1250-1550Hz). Further, there are clear differences in terms of the extent of within-
speaker variability. Speaker 17 displays considerable variability, particularly on the F1 
dimension, with values extending over a large range of the vowel plane. For speaker 30 
there is much tighter clustering of tokens on both the F1 and F2 dimensions. Figure 4 also 
provides evidence of within-speaker similarities in the realisations of both FPs, with um and 
uh located in very similar areas of the vowel plane, with similar degrees of within-speaker 
variability, for speakers 23 and 111 (see also Figure 6). 
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Figure 4 – Mean values with !1 SD ellipses for the four speakers (with DyViS speaker 
numbers) with the maximum and minimum mean F1 and F2 values (plotted with reference 
values for FLEECE, GOOSE, NORTH and TRAP based on data from the first 20 DyViS speakers) 
(plotted using the R package vowels; Kendall and Thomas, 2014). 
 
Between- and within-speaker variation in vowel dynamics 

 

Figure 5 displays mean formant trajectories !1 SD for um (left) and uh (right) with data 
pooled across all 60 speakers. The widest interval (i.e. the largest SD) is found across the F3 
trajectory for both FPs, while variability in F1 and F2 is much smaller. There is some 
evidence of movement between the onset and offset for all formants of both um and uh, 
suggesting that there are dynamic patterns of variation which may provide useful speaker-
discriminatory information beyond that provided by the midpoint value. For um there is a 
decrease in all three formants at the offset (between the +70% and +90% steps) of the 
vowel. It seems likely that this is due to coarticulation with the following /m/. In particular, 
such a decrease is consistent with an extension of the vocal tract due to lip closure, 
protrusion, or rounding in the transition towards the nasal (Stevens, 2001). For uh, there is 
an overall decrease in F1 towards the offset, similar to that found for um. The mean F2 and 
F3 trajectories are much more stable, although there is evidence of an increase in variation at 
the offset of F2. 
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Figure 5 – Mean F1, F2 and F3 !1 SD for um (left) and uh (right) based on pooled data for 
the 60 speakers in this sample (plotted using the R package ggplot2; Wickham, 2015). 
 
Correlations between FPs 

 

Using the by-speaker formant means, a correlation matrix (based on pairwise Spearman 
correlation tests) was generated to examine the relationships between the acoustic properties 
of FPs. Generally, mean formant values were found to be independent of each other. 
However, strong positive correlations were found between the F1 and F2 values of the two 
FPs (see Figure 6). The strongest correlation is found for F2 (r = 0.868). This indicates that, 
at least at the temporal midpoint, the qualities of the vocalic portions of um and uh are very 
similar. This is also confirmed by auditory analysis. A Spearman correlation matrix was also 
generated to test the relationships between duration and the extent of dynamic movement 
across each formant trajectory. No significant correlations were found between by-speaker 
mean durations and the by-speaker mean values for the a (parabola) and b (slope) 
coefficients from the quadratic regression function for um or uh. This suggests that longer 
realisations of FPs are not necessarily characterised by greater acoustic change than shorter 
realisations. 
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Figure 6 – Scatterplots of by-speaker mean midpoint F1 (left) and F2 (right) values for um 

and uh fitted with a linear trend line (r based on Spearman correlations). 
 
Duration 

 
Finally, Figure 7 displays boxplots of the durations of the vocalic portions of um and uh, as 
well as the nasal of um, based on data pooled across all tokens and all speakers. Vocalic 
durations for um (median = 206 ms) are generally slightly shorter in this data set than for uh 

(median = 228 ms). However, the range of variation in vocalic duration is considerably 
greater for uh than for um, with values extending to almost 1.5 seconds. In line with 
previous studies of FP (e.g. Shriberg, 2001: 165), these values are considerably longer than 
is typical for lexical vowels (e.g. Umeda, 1975, Greenberg et al., 2003). The durations of the 
nasal /m/ for um are somewhat shorter than for the corresponding vocalic portions. 
However, as shown in Figure 8, there is evidence of a correlation between these two 
durations such that tokens with longer vocalic portions typically also have longer nasal 
portions. 
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Figure 7 – Boxplots (mid line = median, filled box = interquartile range (containing middle 
50% of the data), whiskers = scores outside the middle 50%, dots = outliers) of durations (in 
ms) of the vocalic (V) portions of uh and vocalic and nasal (N) portions of um. 
 

 
Figure 8 – Scatter plot with linear trend (r based on Spearman correlation) of log vowel and 
log nasal durations for um based on pooled data. 
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4.2 LR-based testing 
 

In this section we outline the results of LR-based testing. A total of 84 systems were tested 
involving all combinations of formants, acoustic representations of formants, and different 
forms of duration. The best performing systems are discussed first, followed by an analysis of 
the systematic patterns across all systems. 
 
Figure 9 is a Tippett plot of the best performing systems for um and uh. In the case of um, the 
lowest Cllr (0.12) and EER (4.08%) values were achieved using quadratic polynomial input 
from all three formants and the durations of both the vowel and nasal. For uh, the best 
performance was achieved using midpoint input from all three formants and vowel duration 
(Cllr = 0.30; EER = 5.92%). The validity differences between the systems are relatively large, 
with EER 1.84% lower and Cllr 0.18 lower for um. There are also differences between the two 
systems in terms of strength of evidence. Given that the distributions of LLRs are generally 
skewed by a small number of high magnitude values, the median LLR is used here as a 
measure of central tendency. The median SS LLR for um is +1.88 compared with +0.99 for 
uh, while the median DS LLR for um is -6.56 compared with -2.34 for uh. The overall range 
of LLRs is also considerably greater for um than for uh with values extending from -44 to +5 
for um, compared with -13 to +3 for uh. 
 

 
Figure 9 – Tippett plot (SS comparisons = solid line; DS comparisons = dashed line) of the 
best performing system for um (black; quadratic F1, F2, and F3 with vowel and nasal 
durations) and uh (grey; midpoint F1, F2, and F3 with vowel durations).  
 
Figure 10 displays EER and Cllr values for all of the 56 systems (representation (2) x duration 
(4) x formant combination (7)) tested using um. Figure 11 displays EER and Cllr values for 
the 28 systems (representation (2) x duration (2) x formant combination (7)) tested using uh. 
In the following sections, the systematic patterns of variation across the systems in Figures 10 
and 11 are discussed. 
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Figure 10 – Log LR Cost (Cllr) plotted against EER (%) for all systems (representation x 
duration x formant combination) for um. 

 
Figure 11 – Log LR Cost (Cllr) plotted against EER (%) for all systems (representation x 
duration x formant combination) for uh 
 
um vs. uh 

 

Across almost all systems, um was found to produce markedly better validity than uh. Of the 
28 systems with the same input variables, only two produced lower Cllr when using uh (F3 
midpoint excl. vowel duration, F1 quadratic incl. vowel duration) while four produced lower 
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EERs (F1~F3 midpoints excl. vowel duration, F3 quadratic excl. vowel duration, F1 + F2 
quadratic excl. vowel duration) compared with those for um. The systems which produced the 
largest divergences between um and uh differed according to the metric used to evaluate 
validity. For EER, the difference was greatest using quadratic F1 + F3 excluding duration 
(um = 5.66%; uh = 15.13%). For Cllr, the quadratic F1 + F2 incl. duration system produced 
the greatest divergence (um = 0.274; uh = 0.429). A number of other systematic patterns also 
emerged. Most notably, validity differences between the two FPs were smaller with the 
inclusion of duration. Further, differences between um and uh were smaller for combinations 
of formants, compared with individual formants, irrespective of whether they are 
parameterised using midpoints or dynamics. Given the correlations in Figure 6, testing was 
also conducted using data pooled from both FPs. However, performance was considerably 
worse than any of the systems in Figures 10 and 11, indicating that there are systematic 
differences in the acoustic patterns of the two FPs. 
 
Individual formants vs. combinations of formants 

 

As illustrated by Figure 9, for both FPs the combinations of all three formants outperformed 
any individual formant or pairs of formants. This suggests that all three formants, however 
they are represented (midpoints or dynamics), contribute useful information for speaker 
discrimination. Comparing across the individual formant systems, F2 and F3 consistently 
produced lower EER and Cllr values than F1 for both uh and um. This was the case 
irrespective of whether midpoints or dynamics were used and both with and without the 
inclusion of duration. Further, combinations of formants which included F2 consistently 
outperformed those which did not, such that EER and Cllr values for F1 + F2 and F2 + F3 
were always lower than those for F1 + F3. 
 
Midpoints vs. dynamics 

 

For um, systems based on dynamic representations of formant trajectories predominantly 
outperformed those based on midpoints. The magnitude of the differences were also 
relatively large with EER and Cllr values as much as 8.94% and 0.11 lower for the midpoint 
systems compared with the dynamic systems. This suggests that there is significant speaker-
specific information encoded within the dynamic, acoustic implementation of all three 
formants beyond that provided by simply midpoint values for um. This conclusion has been 
drawn in several previous studies of lexical vowels and sonorant sequences, especially 
diphthongs (e.g. McDougall, 2004, 2006; Morrison, 2009b), but has not previously been 
reported for FPs. The differences in system performance also justify the added manual labour 
and statistical complexity involved in extracting and analysing formant dynamics for um. 
There were, however, differences between the formants in terms of the extent to which the 
dynamic information improves performance over midpoints. Considering the results for the 
individual formants, the largest difference between the midpoint and dynamic systems for um 

was found for F2. F2 systems with dynamic input produced on average EER and Cllr values 
of 2.91% and 0.07 lower than the equivalent systems using midpoint input. For F1 and F3 
systems, average dynamic and midpoint performance was much more similar. 
 
However, for uh, no additional improvement in performance was achieved when using 
dynamic representations of the entire formant trajectory compared with midpoints. Indeed for 
many of the systems tested, midpoint input outperformed dynamic input by as much as 8.15% 
for EER and 0.07 for Cllr. This is highlighted by the fact that the best performing system for 
uh uses midpoint input (as shown in Figure 8). Thus, unlike um, there is little evidence to 
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suggest that additional speaker-specific information is encoded in the dynamic acoustic 
implementation of uh. 
 
Duration(s) 

 

Finally, for both FPs across all forms of formant input, the addition of vowel duration 
improved system validity by up to 13.55% EER (for F1 midpoints of um) and 0.29 Cllr (for 
F3 midpoints of um). Generally, the addition of duration was found to improve performance 
more for um than for uh, although large differences in validity between systems which 
included duration and those which didn’t were found for uh (EER was up to 10.79% lower 
for the midpoint uh F1 system with the inclusion of vowel duration). The value of vowel 
duration was, however, found to decrease as the amount of formant information increased. 
For the um and uh F1~F3 systems, the addition of duration improved EER by between 0.26% 
and 4.87% and Cllr by between 0.04 and 0.09, compared with EER improvements of between 
0.52% and 13.55% and Cllr improvements of between 0.07 and 0.29 for the individual 
formants. For um, including nasal duration also marginally improved system performance. 
However, the inclusion of nasal duration did not improve system performance to the same 
extent as the inclusion of vowel duration. As shown in Figure 9, optimum performance for 
um was achieved when including both vowel and nasal durations, although the extent of the 
improvement over the vowel-only duration systems was relatively small (0.53% EER and 
0.01 Cllr for the F1~F3 quadratic system). Tests were also conducted using the ratio of vowel 
to nasal durations and the sum of the vowel and nasal durations. However, the validity of 
these systems was considerably worse than those systems which excluded temporal features. 
 
5. Discussion 

 
In this section we discuss the results in section 4 with regard to predictions made about FPs 
in sections 1 and 2, as well as the findings of previous research.  We will firstly consider 
patterns of phonetic variation and then discuss speaker-discriminatory power. 
 
Phonetic patterns 

 
Considerable variation both within- and between-speakers was found in the phonetic quality 
of the vocalic portions of both FPs. The extent of the variation is considerably greater than 
would be expected for a lexical vowel, with formant values extending across a wide range of 
the vowel plane. This finding is to some extent predicted based on the non-linguistic status 
of FPs. Since lexical vowels are carriers of linguistic contrast the range of possible phonetic 
variation is restricted by the phonological system and the proximity of other potentially 
contrastive lexical vowels in the vowel space. However, without this linguistic meaning, 
speakers are predicted to have considerably greater phonetic freedom in the production of 
FPs. There may, of course, still be sociolinguistic factors which delimit the range of 
potential variation in FPs. Further, for regional varieties with more marked patterns in FPs 
(e.g. stereotypical [eː] in Liverpool or Newcastle English; Foulkes et al., 2004) a narrower 
range of phonetic variation may be expected.  
 
Strong correlations were found between midpoint F1 and F2 values for um and uh, 
suggesting that the quality of the vowels in the FPs for each speaker are very similar. This is 
also confirmed by auditory analysis. However, speaker discrimination performance based on 
the formant dynamics was considerably worse when using pooled data from both FPs 
compared with systems using um and uh input separately. This finding suggests that while 
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there is consistency in vowel quality across the FPs at the midpoint, there are differences in 
the dynamic implementation of the vowels across their duration. Acoustic phonetic analysis 
of the formant trajectories reveals that uh is generally rather monophthongal for this group 
of SSBE speakers, with relatively little variation in formant frequencies between the onset 
and the offset of the vowel. However, um appears to offer greater potential for formant 
movement due to coarticulatory effects of the following nasal /m/, typically resulting in a 
decrease across all three formants. The implications of this on speaker discrimination are 
discussed below. 
 
Duration differences between the FPs were also found. Consistent with Swerts et al. (1996) 
and Clark and Fox Tree (2002), uh was consistently shorter than the overall duration (i.e. 
vowel + nasal) of um. However, uh was typically longer (by an average of 22ms) than the 
vocalic portion of um. Further, a considerably larger range of variation was found in the 
durations of uh, with values in some cases reaching more than one second. Finally, a 
correlation was also found between the durations of the vocalic and nasal portions of um, 
such that tokens with longer vocalic portions also typically have longer nasal portions (r = 
0.338). This temporal interaction between the segmental component parts of um has not 
previously been reported in the literature. However, there were also individual differences, 
with certain speakers producing longer or shorter vocalic and nasal portions, and variability 
both within- and between-speakers in the ratio of these durations. 
 
Forensic patterns 

 
The results of LR-based testing have shown that FPs offer excellent potential as variables in 
FVC. Optimal performance was achieved using the formant trajectories of all three formants 
from the vocalic portion of um with the inclusion of both vowel and nasal duration. For this 
system, EER was 4.08% and Cllr was 0.12. These results compare very well with LR-based 
studies using lexical vowels. Morrison (2009b) evaluated the performance of different 
parametric representations of the formant trajectories of a number of Australian English 
diphthongs using data from 27 speakers. The best performing system based on any single 
vowel used discrete cosine transform (DCT) input from /eɪ/ and achieved a Cllr of 0.095, 
marginally better than the best system in this study. However, Morrison (2009b) used read 
texts and target words in carefully controlled phonological contexts to minimise 
coarticulatory effects. In spontaneous speech, considerably poorer system validity would be 
expected due to higher levels of within-speaker variability. Nonetheless, the FP systems in 
this study still compare well with Morrison (2009b), with Cllr values ranging from 0.109 to 
0.306. Perhaps a better benchmark for determining the value of FPs relative to lexical 
vowels is Hughes (2014), who performed LR-based analyses using the formant trajectories 
of /aɪ/ extracted from Task 1 recordings for all 100 DyViS speakers. The best performing FP 
system in the present study outperformed the best performing /aɪ/ system in Hughes (2014) 
(using cubic polynomical coefficients from all three formants) by 0.92% in terms of EER 
and 0.06 in terms of Cllr. Consistent with Foulkes et al. (2004) these finding suggests that 
FPs are generally better speaker discriminants than lexical vowels, although the magnitude 
of the differences in performance depend on the particular lexical vowel being compared. 
 
Systematic patterns were also found across the FP systems. Um almost categorically 
produced better system performance (lower EER and Cllr) than uh using the same input 
features. While this finding is consistent with Duckworth and McDougall (2013), the 
opposite pattern is reported in Foulkes et al. (2004), who found better rates of discrimination 
for uh than for um for both the male and female speakers. The pattern in the present data 
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may be explained by the coarticulatory effects of the following /m/ in um offering more 
scope for individual variation in vowel production compared with the essentially flat 
formant trajectories of uh. This may also explain why dynamic representations produced the 
best validity for um compared with midpoints. Foulkes et al. (2004) analysed only midpoint 
values, and may therefore have neglected useful information provided by both durations and 
changes in formant structure. For uh, systems based on midpoint values produced better 
validity than those based on dynamics. Thus, the addition of measurement points from 
across the trajectory for uh does not appear to provide complementary speaker-specific 
information beyond that of the midpoint value. The quadratic polynomial function may be 
an overly complex model of the data for uh. As found in previous studies (e.g. McDougall 
and Nolan, 2007), such overfitting often results in a reduction in system performance. 
 
A consistent finding across the systems tested in this study is that the inclusion of data from 
all three formants produced better validity than any combination of two formants, or any 
formant in isolation. This is a common finding of LR-based research into the speaker 
discriminatory value of the formants of lexical vowels (e.g. Morrison, 2009b). While this 
suggests that each of the three formants contributes towards speaker discrimination, 
systematic differences were also found across the systems based on individual formants. F2 
systems marginally outperformed F3 systems, which in turn outperformed F1 systems. This 
is again contrary to the results of Foulkes et al. (2004), who found the best rates of speaker 
discrimination using F3. The pattern in the present study also runs contrary to patterns in 
studies on lexical vowels, where F3 typically outperforms F1 and F2 (Clermont et al., 2008; 
Hughes, 2014). We can account for these differences by referring again to Figure 3, which 
illustrates the highly variable patterns of vowel production in FPs in this corpus. A corollary 
of this observation is that the range of variation in F1 and F2 is considerably greater for FPs 
than is usually expected for lexical vowels. There is therefore more scope for between-
speaker differences in F1 and F2 for FPs, which may increase their power to discriminate 
between speakers.  
 
Finally, for both FPs the addition of vowel duration improved system validity. This finding is 
consistent with the wide range of variation displayed in the durations in Figure 7. For um the 
addition of nasal duration also improved performance, but only marginally compared with the 
addition of vowel duration. These patterns may again be explained by the non-linguistic 
status of FPs. Occurring primarily as a mode of ‘holding the floor’ or for indicating 
uncertainty (Maclay and Osgood, 1959; Clark and Fox Tree, 2002), FPs are not as temporally 
restricted as lexical vowels or necessarily correlated with articulation rate. Therefore, there is 
considerable freedom for speakers to extend the duration of FPs, offering a greater range of 
potential between-speaker variation. The correlation between vowel and nasal durations may 
also account for the relatively small improvement when adding nasal durations to a system. 
That is, these temporal measures both provide similar, rather than complementary, speaker-
specific information.  
 
6. Conclusion 
 
This study has provided the first LR-based examination of different spectral and temporal 
features of FPs. The best performing system, using quadratic polynomial coefficients 
extracted from the first three formants of the vocalic portion of um with the inclusion of 
vowel and nasal durations, produced an EER of 4.08% and a Cllr of 0.12. The study 
therefore strongly supports the view that FPs have excellent potential as variables in FVC. 
However, formant dynamic data may only be useful for um, whereas static measurements 
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provide equally good or better results for uh. Given the limitations of the data used in this 
study, in particular the use of contemporaneous, high quality samples, it will be important to 
assess the speaker discriminatory value of FPs using more forensically realistic samples in 
future work. We address such issues in Hughes, Wood and Foulkes (forthcoming), which 
also assesses the comparative performance of acoustic analysis of FPs and that of ASR 
systems. 
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