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Abstract 
In this article, we present a systemic approach toward a fuzzy logic based for-
malization of an approximate reasoning methodology in a fuzzy resolution, 
where we derive a truth value of A from both values of B → A and B by some 
mechanism. For this purpose, we utilize a t-norm fuzzy logic, in which an im-
plication operator is a root of both graduated conjunction and disjunction 
operators. Furthermore by using an inverse approximate reasoning, we con-
clude the truth value of A from both values of B → A and B, applying an alto-
gether different mechanism. A current research is utilizing an approximate 
reasoning methodology, which is based on a similarity relation for a fuzzifica-
tion, while similarity measure is utilized in fuzzy inference mechanism. This 
approach is applied to both generalized modus-ponens/modus-tollens syllog-
isms and is well-illustrated with artificial examples. 
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1. Introduction 

This study is a continuation of a research, which is based on a proposed t-norm 
fuzzy logic, presented in [1]. Here we also use an automated theorem proving, 
where a resolution principal is a rule of an inference, leading to a refutation 
theorem-proving technique. Applying the resolution rule in a suitable way, it is 
possible to check whether a propositional formula is Universally Valid (UV) and 
construct a proof of a fact that relative consequent’s first-order formula is UV or 
non UV. In 1965, J. A. Robinson [2] introduced the resolution principle for 
first-order logic. A fuzzy resolution principal, in its part, was introduced by M. 
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Mukaidono [3].  
Taking into account the above mentioned, we present the following. 
Definition 1 [3].  
A fuzzy resolvent of two fuzzy clauses �1C  and �2C , containing the comple-

mentary literals ix  and ix¬  respectively, is defined as  
� �( )1 2 1 2,R C C L L= ∨                      (1.1) 

where �1 1iC x L= ∨  and �2 2iC x L= ¬ ∨ . 1L , 2L  are fuzzy clauses, which don’t 
contain ix  and ix¬  respectively. The operator ∨  is understood as the dis-
junction of the literals present in them. It is also a logical consequence of 
� �

1 2C C∧ . A resolution deduction of a clause �C  from a set S  of clauses is a fi-
nite sequence of clauses � � � �

1 2, , , nC C C C=�  such that each �iC  is either a mem-
ber of or is a resolvent of two clauses taken from the resolution principle in 
propositional logic we deduce that, if S  is true under some truth valuation v , 
then ( ) TRUEiv C =  for all i , and in particular, ( ) TRUEv C =  [2].  

Example 1: Here is a derivation of a clause from a set of clauses presented by 
means of a resolution Tree in Figure 1. 

In first order logic, resolution condenses the traditional syllogism of logical 
inference down to single rule.  

A simple resolution scheme is:  
Antecedent 1: a b∨  
Antecedent 2: b¬                                              (1.2) 
Consequent: .a  
The entire historical analysis of this approach toward applying of a resolution 

principal to a logical inference is presented in [4]. 

2. Basic Theoretical Aspects 

First, Let us consider that A, A', B and B' are fuzzy concepts represented by fuzzy 
sets in universe of discourse U, U, V and V, respectively and correspondent 
fuzzy sets be represented as such [ ]: 0,1AA U Uµ⊂ → , [ ]: 0,1BB V Vµ⊂ → , 
where 

( ) ( ),A B
U V

A u u B v vµ µ= =∫ ∫
               

 (2.1) 

 

 
Figure 1. Resolution Tree.  

https://doi.org/10.4236/jsea.2017.1010045


A. Tserkovny 
 

 

DOI: 10.4236/jsea.2017.1010045 795 Journal of Software Engineering and Applications 
 

Given (2.1) let us formulate the argument form of simple Fuzzy Resolution as 
follows.  

A B∨  
B¬  

----------                          (2.2) 
A  

Given (2.2) the scheme for Generalized Fuzzy Resolution looks like that 

Antecedent 1: If x is A OR y is B 
Antecedent 2: y is B' 

----------------------------------                 (2.3) 
Consequent: x is A'. 

In case (2.3), we can say that the Disjunctive Syllogism holds if B' is close to 
not B, whereas A' is close to A. The second approach is called Inverse Approx-
imate Reasoning. Its scheme looks like that: 

Antecedent 1: If x is A, then y is B 
Antecedent 2: y is B' 

----------------------------------                 (2.4) 
Consequent: x is A'. 

We shall transform the disjunction form of rule into fuzzy implication from 
fuzzy logic, introduced in [1], or fuzzy relation and apply the method of inverse 
approximate reasoning to get the required resolvent. However, in the case of 
complex set of clauses the method is not suitable. Hence, we investigate for 
another method of approximate reasoning based on similarity to get the fuzzy 
resolvent.  

Let us consider Generalized Fuzzy Resolution first. The key operation used in 
this method is disjunction. The disjunction operation ∨  is presented in Table 
S1 and, being applied to above introduced fuzzy sets A and B, looks like that [1] 

, 1,
1, 1
A B A B

A B
A B
⋅ + <

∨ =  + ≥                   
 (2.5) 

Whereas correspondent conjunction operation ∧  is also presented in Table 
S1 and looks like that [1] 

, 1,
0, 1
A B A B

A B
A B
⋅ + >

∧ =  + ≤
                   (2.6) 

Taking into account (2.5) and (2.6) and the fact that 1A A¬ = − , let us for-
mulate the following  

Lemma 1. 
If there are two fuzzy clauses � �1 2,C C  and � �( )1 2,R C C  is a fuzzy resolvent of 

them with keyword ix , then the following inequality holds 

�( ) � �( )( )1 2 1 2,T C C T R C C∧ ≤
                 

 (2.7) 

where T(x) is a truth value of an x. 
Proof: Since �1 1iC x L= ∨  and �2 2iC x L= ¬ ∨ , where 1 2, 0L L ≠ , then 
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� ( ) ( )
( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2

i i

i i i i

C C x L x L

x x L x x L L L

∧ = ∨ ∧ ¬ ∨

= ∧¬ ∨ ∧¬ ∨ ∧ ∨ ∧
       (2.8) 

whereas from (1.1) � �( )1 2 1 2,R C C L L= ∨ . From (2.8) let define the following val-
ues of truth: 

( )1

, 1,
0, 1

i i i i
i i

i i

x x x x
T x x

x x
⋅¬ +¬ >

= ∧¬ =  +¬ ≤              
 (2.9) 

Since 1ix x+¬ ≡ , then from (2.9) we are getting that  

1 0T ≡                          (2.10) 

In a meantime from the same (2.8) we have 

( ) 1 1
2 1

1

, ,
0,

i i
i

i

L x L x
T L x

L x
⋅¬ >

= ∧¬ =  ≤              
 (2.11) 

From (2.11) let’s take a note that  

( )2 11| 1, 0iSup T L x≡ = =                   (2.12) 

Also from (2.11) let 

( ) 2 2
3 2

2

, 1,
0, 1

i i
i

i

x L x L
T x L

x L
⋅ + >

= ∧ =  + ≤              
 (2.13) 

Continuing from (2.11) let 

( ) 1 2 1 2
4 1 2

1 2

, 1,
0, 1
L L L L

T L L
L L
⋅ + >

= ∧ =  + ≤
              (2.14) 

And finally from (1.1) we have 

1 2 1 2
1 2

1 2

, 1,
1, 1
L L L L

L L
L L
⋅ + <

∨ =  + ≥
                 (2.15) 

Let’s rewrite (2.8) in the following way 

�( )1 2 1 2 3 4T C C T T T T∧ = ∨ ∨ ∨                 (2.16) 

From (2.16) given both (2.10) and (2.12) we have  

2 2
12 1 2 2

2 2

0, 1, 0, 1,
0

1, 1 1, 1
T T

T T T T
T T

< < 
= ∨ = ∨ = = ≥ = 

          (2.17) 

Taking into account (2.12) finally we are getting 

2
12

1

0, 1,
1, 1, 0.i

T
T

L x
<

=  = =                    
 (2.18) 

Furthermore from the same (2.16) let  

3 4 3 4
34 3 4

3 4

, 1,
1, 1
T T T T

T T T
T T
⋅ + <

= ∨ =  + ≥               
 (2.19) 

Note that from (2.18) 0ix = , which means that from (2.13) 3 0T ≡ , therefore 
from (2.19) we have 
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4
34

4

0, 1,
1, 1

T
T

T
<

=  ≥
                      (2.20) 

But from (2.14) and (2.20) 4 1T = , when 1 2 1L L⋅ =  or equally 

1 2 1L L= =                         (2.21) 

Finally from (2.16), given (2.18) and (2.20), we are getting the following 

�( ) 12 34 12 34 12 34
1 2 12 34

12 34 12 34

, 1, 0, 1,
1, 1 1, 1
T T T T T T

T C C T T
T T T T
⋅ + < + < 

∧ = ∨ = = + ≥ + ≥    
 (2.22) 

Taking into account (2.21) from (2.15) and (1.1) 

� �( )1 2 1 2, 1R C C L L= ∨ ≡
                  

 (2.23) 

From (2.22) and (2.23) we are getting 

�( ) � �( )( )1 2 1 2,T C C T R C C∧ ≤  (Q. E. D.). 

Corollary 1 
Let � �1 2,C C  are two fuzzy clauses. If � �( )( )1 2, 0.25T R C C < , then the following 

is true: 

�( ) � �( )( )1 2 1 2,T C C T R C C∧ <                  (2.24) 

Proof: First note that for  

[ ]1 2 1 2 1 2, 0,1 | 1 0.25L L L L L L∈ + < ⇒ ⋅ <             (2.25) 

From (1.1) and (2.15), given (2.25) we are getting the following 

� �( )( ) 1 2 1 2 1 2
1 2 1 2

1 2 1 2

, 1, 0.25, 1,
,

1, 1 1, 1
L L L L L L

T R C C L L
L L L L
⋅ + < + < 

= ∨ = = + ≥ + ≥ 
   (2.26) 

First from (2.14) we have the following 

3
4 1 2 34 3

3

0, 1,
0 | 1 0

1, 1
T

T L L T T
T

<
≡ + ≤ ⇒ = ∨ =  =

          (2.27) 

But from (2.13) we have the following 3 2 11| 1 0iT x L L= = = ⇒ ≡ , but 

1 2 31 0L L T+ < ⇒ ≡ , therefore  

34 12 340 0, . . 0.25T T T i e≡ ⇒ ∨ ≡ < , in other words the following is true. 

�( ) � �( )( )1 2 1 2,T C C T R C C∧ <  (Q. E. D.). 

Corollary 2  
Let � �1 2,C C  are two fuzzy clauses. If � �( )( )1 2, 0.25T R C C ≥ , then the following 

is true: 
�( ) � �( )( )1 2 1 2,T C C T R C C∧ =                  (2.28) 

Proof:  

From (2.22) we have �( ) 12 34
1 2

12 34

0, 1,
(

1, 1
T T

T C C
T T

+ <
∧ =  + ≥

, which means that  

�( )1 2 0.25 1T C C∧ ≥ ⇒ . From (2.14), (2.17) and (2.19) we are getting
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�( ) �
1 2 1 21 1T C C L L∧ ≡ ⇒ = = , but from (2.26) � �( )( )1 2 1 2, 1| 1T R C C L L≡ = = , 

which means that �( ) � �( )( )1 2 1 2,T C C T R C C∧ =  (Q. E. D.). 
Based on above presented results let formulate the following 
Theorem 1 (Deduction): 
Let � � �

1 2, , , nA A A�  and �B  are fuzzy concepts. A fuzzy concept �B  is a logical 
consequent of � � �

1 2, , , nA A A�  if and only if the following inequality holds 

�
[ ]

�( )
1,

i
i n

T A T B
∀∈

 
<  

 
∩ .                   (2.29) 

Or equally 

� � � �{ }1 2and and and nA A A B  ⇒ �                (2.30) 

Which means a fuzzy formula (2.30) is UV. Note, that a fuzzy formula 
f F∈  is called UV, if ( ) 0.5T f ≥ . Before providing a proof of this theorem let 

us give the following 
Definition 2 
A fuzzy concept �B  is a logical consequent of � � �

1 2, , , nA A A� , i.e.  
� � � �

1 2, , , |nA A A B=� , if and only when UV of � � �
1 2, , , nA A A�  has caused UV of a 

fuzzy concept �B , in other words the following is true. 

�
[ ]

�( )
1,

0.5 0.5i
i n

T A T B
∀∈

 
≥ ⇒ ≥  

 
∩ , where �

[ ]

�{ }
1,

mini iii n
A A

∀∈

=∩  

Proof: Let fuzzy concept �B  is a logical consequent of fuzzy concepts 
� � �

1 2, , , nA A A� . 
If fuzzy concepts � � �

1 2, , , nA A A�  are UV, i.e. �( ) 0.5, 1,iT A i n
−−−

≥ = , then in ac-
cordance with Definition 2 a fuzzy concept �B  is also UV, i.e. �( ) 0.5T B ≥ . An 
implication operator in a fuzzy logic, used in this article is defined as the follow-
ing (see Table S1 and Table S2)  

�
[ ]

�( )
�

[ ]

�( )

�
[ ]

�( ) �
[ ]

�( )

1,

1,

1, 1,

1, ,

,

i
i n

i
i n

i i
i n i n

T A T B

T A T B

T A T B T A T B

∀∈

∀∈

∀∈ ∀∈

  
≤       → =         ¬ ⋅ >       

   

∩
∩

∩ ∩
   (2.31) 

Let us consider a set of cases. 

• If �
[ ]

�( )
1,

i
i n

T A T B
∀∈

 
≤  

 
∩ , then �

[ ]

�( )
1,

1i
i n

T A T B
∀∈

 
→ ≡  

 
∩ , therefore UV of a 

fuzzy formula (2.30) is apparent. 

• If �
[ ]

�( )
1,

i
i n

T A T B
∀∈

 
>  

 
∩ , then �

[ ]

�( ) �
[ ]

�( )
1, 1,

i i
i n i n

T A T B T A T B
∀∈ ∀∈

   
→ ≡ ¬ ⋅      

   
∩ ∩ , 

but since �( ) 0.5, 1,iT A i n
−−−

≥ =  and �( ) 0.5T B ≥ , then �( ) 0.5, 1,iT A i n
−−−

¬ < =  

and �
[ ]

�( )
1,

i
i n

T A T B
∀∈

 
¬ <  

 
∩ . Therefore it is obvious then 
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�
[ ]

�( )
1,

0.5i
i n

T A T B
∀∈

 
¬ ⋅ <  

 
∩ , i.e. a fuzzy formula (2.30) is not UV, a logical 

contradiction takes place. 

• If �( )*
* | 0.5

i
i i T A∃ = < , then � �( ){ }

1,

min 0.5i i
i i n

T A T A
−−−

=

 
= < 

 
∩  a fuzzy sub 

formula (antecedent) from (2.30) � � �
1 2and and and nA A A  �  is not UV, i.e. 

contradictive, but in a meantime �( ) 0.5T B ≥ , therefore 

�
[ ]

�( ) �
[ ]

�( )
1, 1,

1i i
i n i n

T A T B T A T B
∀∈ ∀∈

   
≤ ⇒ → ≡      

   
∩ ∩ , i.e. a fuzzy formula (2.30) is 

UV. 
• If 

�
[ ]

�( )
1,

0.5, 0.5i
i n

T A T B
∀ ∈

 
< <  

 
∩                 (2.32) 

and if �
[ ]

�( ) �
[ ]

�( )
1, 1,

1i i
i n i n

T A T B T A T B
∀∈ ∀∈

   
≤ ⇒ → ≡      

   
∩ ∩ , therefore formula (2.30) 

is UV, whereas if �
[ ]

�( )
1,

i
i n

T A T B
∀∈

 
>  

 
∩ , then again  

�
[ ]

�( ) �
[ ]

�( )
1, 1,

i i
i n i n

T A T B T A T B
∀∈ ∀∈

   
→ ≡ ¬ ⋅      

   
∩ ∩  and given conditions (2.32) we have 

�
[ ]

�
[ ]

�( )
1, 1,

0.5 0.5i i
i n i n

T A T A T B
∀∈ ∀∈

   
¬ ≥ ⇒¬ ⋅ ≤      

   
∩ ∩ , which means that a fuzzy 

formula (2.30) is not UV or is contradictive. 

At last let a fuzzy formula (2.30) be UV and also let �
[ ]

�( )
1,

i
i n

T A T B
∀∈

 
≤  

 
∩ . Then 

if a fuzzy sub formula (antecedent) from (2.30) � � �
1 2and and and nA A A  �  is 

also UV, i.e. �
[ ]1,

0.5i
i n

T A
∀∈

 
≥  

 
∩ , then from (2.31) we have 

�
[ ]

�( ) �( )
1,

1 0.5i
i n

T A T B T B
∀∈

 
→ ≡ ⇒ ≥  

 
∩ . In other words a fuzzy concept �B  is 

UV. Therefore from Definition 2 a fuzzy concept �B  is a logical consequent of 
fuzzy concepts � � �

1 2, , , nA A A�  (Q. E. D.). 

Based on these results we formulate the following 
Theorem 2 
If there are two fuzzy clauses � �1 2,C C  and � �( )1 2,R C C  is a fuzzy resolvent of 

them with keyword ix , then � �( )1 2,R C C
 

is logical consequent of both �1C  and 

�
2C  i.e.  

� � � �( )1 2 1 2, | ,C C R C C=                     (2.33) 
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Proof:  
Let �1 1iC x L= ∨  and �2 2iC x L= ¬ ∨ , where 1 2, 0L L ≠ , whereas  
� �( )1 2 1 2,R C C L L= ∨ . By Definition 1 and in accordance with (2.5) 

� �( )( ) 1 2 1 2
1 2

1 2

, 1,
,

1, 1
L L L L

T R C C
L L
⋅ + <

=  + ≥
              (2.34) 

�( ) 1 1
1

1

, 1,
1, 1

i i

i

x L x L
T C

x L
⋅ + <

=  + ≥
                 (2.35) 

�( ) 2 2
2

2

, 1,
1, 1

i i

i

x L x L
T C

x L
¬ ⋅ ¬ + <

=  ¬ + ≥
                (2.36) 

Let � �1 2,C C  are both UV, i.e. �( )1 0.5T C ≥  and �( )2 0.5T C ≥ . Since from (2.35) 
and (2.36) the following is taking place 1 10.5 | 1i ix L x L⋅ < + <  and 

2 20.5 | 1i ix L x L¬ ⋅ < ¬ + <  then UV of � �1 2,C C  is in reality means that 

1

2

1
1

i

i

x L
x L
+ ≥ 

¬ + ≥                        
 (2.37) 

Taking into account that ( ) ( )1i iT x T x¬ = −  let sum both inequalities (2.37) 
together and get the following 1 2 1L L+ ≥ . From (2.34)  

� �( )( ) � �( )( )1 2 1 2 1 2, 1| 1 , 0.5T R C C L L T R C C= + ≥ ⇒ ≥  i.e. � �( )1 2,R C C  is UV. 
Therefore by Definition 2 we are getting a fact that if � �1 2,C C  are both UV, and 
then � �( )1 2,R C C  is also UV. (Q. E. D.). 

Let us present some considerations about using a notion of similarity, which 
plays a fundamental role in theories of knowledge and behavior and has been 
dealt with extensively in psychology and philosophy. A careful analysis of the 
different similarity measures reveals that it is impossible to single out one par-
ticular similarity measure that works well for all purposes. We will utilize a con-
sistent approach toward definition of a similarity measure, based on the same 
fuzzy logic we used above [1]. But this time we will use the operation Equiva-
lence (see Table S1). 

Suppose U  be an arbitrary finite set, and ( )Uℑ  be the collection of all 
fuzzy subsets of U . For ( ),A B U∈ℑ , a similarity index between the pair 
{ },A B  is denoted as ( ), ;S A B U  or simply ( ),S A B  which can also be con-
sidered as a function ( ) ( ) [ ]: 0,1S U Uℑ ×ℑ → . In order to provide a definition 
for similarity index, a number of factors must be considered. 

Definition 3 
A function ( ),S A B  defines a similarity between fuzzy concepts ,A B  if it 

satisfies the following axioms: 
P1. ( ) ( ) ( ) ( ), , , , ,S B A S A B S A B S A B= ¬ ¬ = , where 1A A¬ = − , 
P2. ( )0 , 1S A B≤ ≤ , 
P3. ( ), 1, iffS A B A B= = , 
P4. For two fuzzy concepts , | ,A B A B≠ ∅ ≠∅ ,  
( ) ( ) ( )( ), 0 min , 0,A BS A B u u u Uµ µ= ⇒ = ∀ ∈ , i.e. A B∩ =∅ , 
P5. ( ) ( ) ( ) ( )( ), min , , ,A B C A B C S A C S A B S B C⊆ ⊆ ⊇ ⊇ ⇒ ≤ . 
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Lemma 2 
If a function ( ),S A B  is defined as operation equivalence from Table S1, 

then it could be considered as a similarity measure. 
Proof:  
From Table S1 we have 

( )
( )

( )

1 , ,
, 1, ,

1 , ,

b a a b
S A B a b

a b a b

− ⋅ <


= =
 − ⋅ >

                 (2.38) 

P1. From (2.38) 

( )
( )

( )
( ) ( )

1 , ,, ,
, 1, , 1, , , ,

, , 1 , ,

a b a bb a a b
S A B a b a b S A B S A B

a b a b b a a b

− ⋅ >⋅¬ ¬ <
¬ ¬ = ¬ = ¬ = = ⇒ ¬ ¬ = 

 ⋅¬ ¬ > − ⋅ < 

 (2.39) 

whereas 

( )
( )

( )
( )

1 , ,
, 1, , ,

1 , ,

b a b a
S B A b a S A B

b a b a

⋅ − <


= = =
 − ⋅ >             

 (2.40) 

Axioms P2 and P3 are trivially satisfied by (2.38). 
P4. From (2.38)  

( ), 0 | 1, 0 or 0, 1S A B b a b a A B≡ = = = = ⇒ ∩ =∅        (2.41) 

P5. From (2.38)  

( )
( )

( )

1 , ,
, 1, ,

1 , ,

c b b c
S B C b c

b c b c

− ⋅ <


= =
 − ⋅ >                 

 (2.42) 

Case: a b c< <  
From (2.38) and (2.42) we have  

( ) ( ) ( ) ( ) ( ) ( ), 1 ; , 1 ; , 1S A B b a S B C c b S A C c a= − ⋅ = − ⋅ = − ⋅     (2.43) 

From (2.43) ( ) ( ) ( ) ( )1 1 , ,c a c b S A C S B C− ⋅ < − ⋅ ⇒ < , whereas 
( ) ( ) ( ) ( )1 1 , ,c a b a S A C S A B− ⋅ < − ⋅ ⇒ < . Since ( ) ( ), ,S A C S B C<  and  
( ) ( ), ,S A C S A B< , then the following is also true: 

( ) ( ) ( )( ), min , , ,S A C S A B S B C≤               (2.44) 

Case: a b c> >  
From (2.38) and (2.42) we have  

( ) ( ) ( ) ( ) ( ) ( ), 1 ; , 1 ; , 1S A B a b S B C b c S A C a c= − ⋅ = − ⋅ = − ⋅     (2.45) 

From (2.45) ( ) ( ) ( ) ( )1 1 , ,a c a b S A C S A B− ⋅ < − ⋅ ⇒ < , whereas  
( ) ( ) ( ) ( )1 1 , ,a c b c S A C S A B− ⋅ < − ⋅ ⇒ < . Since ( ) ( ), ,S A C S B C<  and  
( ) ( ), ,S A C S A B< , then the following is also true: 

( ) ( ) ( )( ), min , , ,S A C S A B S B C≤  (Q. E. D.). 
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To illustrate our further research before giving the definition of similarity in-
dex, we will present couple examples. 

Let A  and B  be two normal fuzzy sets defined over the same universe of 
discourse U  and presented by unimodal linear monotonic membership func-
tions and { } 1supp A CardU≥ − ; { } 1supp B CardU≥ − . Correspondent lin-
guistic scale could consist of the terms like {“SMALL”…, “MEDIUM”…, 
“LARGE”}. Let us consider the following cases.  

1) A  labeled “SMALLER THAN LARGE”  

1 2 3 4 5 6

7 8 9 10 11

0.2 0.3 0.4 0.5 0.6 0.7
0.8 0.9 1.0 0.9 0.8

u u u u u u
u u u u u

= + + + + +

+ + + + +
 

Whereas B  labeled “LARGE”  

1 2 3 4 5 6

7 8 9 10 11

0.0 0.1 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9 1.0

u u u u u u
u u u u u

= + + + + +

+ + + + +
 

From (2.38) the similarity matrix ( ),S A B  would look like that 

2) A  labeled “MEDIUM” 1 2 3 4 5 6

7 8 9 10 11

0.5 0.6 0.7 0.8 0.9 1.0
0.9 0.8 0.7 0.6 0.5

u u u u u u
u u u u u

= + + + + +

+ + + + +
 

And B  labeled “LARGE”  

1 2 3 4 5 6

7 8 9 10 11

0.0 0.1 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9 1.0

u u u u u u
u u u u u

= + + + + +

+ + + + +
 

From (2.38) the similarity matrix ( ),S A B  would look like that (for simplic-
ity sake we show elements of a matrix with singles only) 

3) A  labeled “MEDIUM” 1 2 3 4 5 6

7 8 9 10 11

0.5 0.6 0.7 0.8 0.9 1.0
0.9 0.8 0.7 0.6 0.5

u u u u u u
u u u u u

= + + + + +

+ + + + +
 

And B  labeled “SMALL”  

1 2 3 4 5 6

7 8 9 10 11

1.0 0.9 0.8 0.7 0.6 0.5
0.4 0.3 0.2 0.1 0.0

u u u u u u
u u u u u

= + + + + +

+ + + + +
 

From (2.38) the similarity matrix ( ),S A B  would look like that  

4) A  labeled “LARGE” 1 2 3 4 5 6

7 8 9 10 11

0.0 0.1 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9 1.0

u u u u u u
u u u u u

= + + + + +

+ + + + +
 

And B  labeled “SMALL”  

1 2 3 4 5 6

7 8 9 10 11

1.0 0.9 0.8 0.7 0.6 0.5
0.4 0.3 0.2 0.1 0.0

u u u u u u
u u u u u

= + + + + +

+ + + + +
 

From (2.38) the similarity matrix ( ),S A B  would look like that  

5) A  labeled “MEDIUM” 1 2 3 4 5 6

7 8 9 10 11

0.5 0.6 0.7 0.8 0.9 1.0
0.9 0.8 0.7 0.6 0.5

u u u u u u
u u u u u

= + + + + +

+ + + + +
 

And B  labeled “MEDIUM”  

1 2 3 4 5 6

7 8 9 10 11

0.5 0.6 0.7 0.8 0.9 1.0
0.9 0.8 0.7 0.6 0.5

u u u u u u
u u u u u

= + + + + +

+ + + + +
 

From (2.38) the similarity matrix ( ),S A B  would look like that  
Let consider similarity measure as a matrix  
( ), ; 1, ; 1, ;ijS A B s i n j n n CardU= = = = . We are presenting the following 
Proposition 1 
Since A  and B  are two normal fuzzy sets, then  

[ ] * *
* *, 1, | 1;

i j
i j n s n CardU∃ ∈ = = . Then the following function could be consi-
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dered as a similarity index 

( )
* *1, ; 1,, max ; .

1

ij
i i n j j n

s

SI A B n CardU
n

= + = += =
−

∑
           (2.46) 

In Table 1 there are three sets of pairs of indices  

* *
* *, | 1, ; 1, ; 1;

i j
i j i i n j j n s n CardU   ∈ + ∈ + = =    . 

1) For { } { }* *
11, 3, , 2, 4;3,5;4,6;5,7;6,8;7,9;8,10;9,11i j Gr i j= = =  

{ }( )1
8, 0.8

10
SI Gr i j⇒ = =  

2) For { } { }( )* *
2 210, 10, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

3) For { } { }( )* *
3 311, 9, , , 0i j Gr i j SI Gr i j= = =∅⇒ = .  

From (2.46) we are getting ( ) { }( )* *

1,3
, max , 0.8kk

SI A B SI Gr i j
=

 = =  . This value 
perfectly matches our intuition and perception of a closeness of terms 
“SMALLER THAN LARGE” and “LARGE” and membership functions of cor-
respondent fuzzy sets. 

In Table 2 there are six sets of pairs of indices  

* *
* *, | 1, ; 1, ; 1; .

i j
i j i i n j j n s n CardU   ∈ + ∈ + = =     

1) For { } { }* *
11, 6, , 2,7;3,8;4,9;5,10;6,11i j Gr i j= = =  

{ }( )1
5, 0.5

10
SI Gr i j⇒ = =  

2) For { } { }( )* *
2 27, 10, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

3) For { } { }( )* *
3 38, 9, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

4) For { } { }( )* *
4 49, 8, , , 0i j Gr i j SI Gr i j= = =∅⇒ =   

5) For { } { }( )* *
5 510, 7, , , 0i j Gr i j SI Gr i j= = =∅⇒ =   

6) For { } { }( )* *
6 611, 6, , , 0i j Gr i j SI Gr i j= = =∅⇒ =

 
 

Table 1. “Smaller Than Large” ⇒  “Large”. 

( ),S A B  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.2 0 0.08 1 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 

0.3 0 0.07 0.14 1 0.18 0.15 0.12 0.09 0.06 0.03 0 

0.4 0 0.06 0.12 0.18 1 0.2 0.16 0.12 0.08 0.04 0 

0.5 0 0.05 0.1 0.15 0.2 1 0.2 0.15 0.1 0.05 0 

0.6 0 0.04 0.08 0.12 0.16 0.2 1 0.18 0.12 0.06 0 

0.7 0 0.03 0.06 0.09 0.12 0.15 0.18 1 0.14 0.07 0 

0.8 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 1 0.08 0 

0.9 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 1 0 

1 0 0 0 0.0 0 0 0 0.0 0 0 1 

0.9 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 1 0 

0.8 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 1 0.18 0 
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Table 2. “Medium” ⇒  “Large”. 

( ),S A B  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.5 …   …  1  … … . . 

0.6       1 . . . . 

0.7  …    .  1 . . . 

0.8         1 . . 

0.9          1 . 

1       .    1 

0.9          1  

0.8         1.   

0.7        1    

0.6       1  .   

0.5      1      

 
Table 3. “Medium” ⇒  “Small”. 

( ),S A B  1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

0.5 …   …  1  … … . . 

0.6     1   . . . . 

0.7  …  1  .   . . . 

0.8   1       . . 

0.9  1         . 

1 1      .     

0.9  1          

0.8   1      .   

0.7    1        

0.6     1    .   

0.5      1      

 
From (2.46) ( ) { }( )* *

1,6
, max , 0.5kk

SI A B SI Gr i j
=

 = =  . This value is in a middle 
of a scale [0, 1] and also perfectly matches our intuition and perception of an 
average closeness of terms “LARGE” and “MEDIUM” and membership func-
tions of correspondent fuzzy sets. 

Similarly in Table 3 there are six sets of pairs of indices  

* *
* *, | 1, ; 1, ; 1;

i j
i j i i n j j n s n CardU   ∈ + ∈ + = =    . 

1) For { } { }* *
16, 1, , 7, 2;8,3;9,4;10,5;11,6i j Gr i j= = =  

{ }( )1
5, 0.5

10
SI Gr i j⇒ = =  

2) For { } { }( )* *
2 25, 2, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

3) For { } { }( )* *
3 34, 3, , , 0i j Gr i j SI Gr i j= = =∅⇒ =
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4) For { } { }( )* *
4 43, 4, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

5) For { } { }( )* *
5 52, 5, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

6) For { } { }( )* *
6 61, 6, , , 0i j Gr i j SI Gr i j= = =∅⇒ = .  

From (2.46) we are getting ( ) { }( )* *

1,6
, max , 0.5kk

SI A B SI Gr i j
=

 = =  . This value 
is also in a middle of a scale [ ]0,1  and also perfectly matches our intuition and 
perception of an average closeness of terms “SMALL” and “MEDIUM” and 
membership functions of correspondent fuzzy sets. 

In Table 4 there are eleven sets of pairs of indices  

* *
* *, | 1, ; 1, ; 1; .

i j
i j i i n j j n s n CardU   ∈ + ∈ + = =     

1) For { } { }( )* *
1 111, 1, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

2) { } { }( )* *
2 210, 2, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

3) { } { }( )* *
3 39, 3, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

4) { } { }( )* *
4 48, 4, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

5) { } { }( )* *
5 57, 5, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

6) { } { }( )* *
6 66, 6, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

7) For { } { }( )* *
7 75, 7, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

8) For { } { }( )* *
8 84, 8, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

9) For { } { }( )* *
9 93, 9, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

10) For { } { }( )* *
10 102, 10, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

11) For { } { }( )* *
11 111, 11, , , 0i j Gr i j SI Gr i j= = =∅⇒ = .  

From (2.46) we are getting ( ) { }( )* *

11
, max , 0kk

SI A B SI Gr i j
=

 = =  . This value 
also perfectly matches our intuition and perception of a fact that terms 
“SMALL” and “LARGE” has nothing in common. 

 
Table 4. “Large” ⇒  “Small”. 

( ),S A B  1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

0 …   …    … … . 1. 

0.1        . . 1. . 

0.2  …    .   1. . . 

0.3        1  . . 

0.4       1    . 

0.5      1 .     

0.6     1       

0.7    1     .   

0.8   1         

0.9  1       .   

1 1           
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Table 5. “Medium” ⇒  “Medium”. 

( ),S A B  0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 

0.5 1   …    … … . 1. 

0.6  1      . . 1. . 

0.7  … 1   .   1. . . 

0.8    1    1  . . 

0.9     1  1    . 

1      1 .     

0.9     1  1     

0.8    1    1 .   

0.7   1      1   

0.6  1       . 1  

0.5 1          1 

 
In Table 5 there are twelve sets of pairs of indices  

* *
* *, | 1, ; 1, ; 1; .

i j
i j i i n j j n s n CardU   ∈ + ∈ + = =     

1) For { } { }( )* *
1 111, 1, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

2) { } { }( )* *
2 210, 2, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

3) { } { }( )* *
3 39, 3, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

4) { } { }( )* *
4 48, 4, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

5) { } { }( )* *
5 57, 5, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

6) { } { }( )* *
6 66, 6, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

7) For { } { }( )* *
7 75, 7, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

8) For { } { }( )* *
8 84, 8, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

9) For { } { }( )* *
9 93, 9, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

10) For { } { }( )* *
10 102, 10, , , 0i j Gr i j SI Gr i j= = =∅⇒ =  

11) For { } { }( )* *
11 111, 11, , , 0i j Gr i j SI Gr i j= = =∅⇒ = . 

12) For { } { }* *
121, 1, , 2, 2;3,3;4, 4;5,5;6,6;7,7;8,8;9,9;10,10;11,11i j Gr i j= = =

{ }( )12
10, 1
10

SI Gr i j⇒ = = .  

From (2.46) we are getting ( ) { }( )* *

12
, max , 1kk

SI A B SI Gr i j
=

 = =  . This value is 
a confirmation of a fact that both fuzzy sets are identical. 

3. Generalized Fuzzy Resolution Based Approximate  
Reasoning 

Let us remind that the scheme for Generalized Fuzzy Resolution (2.3) looks like that 
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Antecedent1: If x is A OR y is B 
Antecedent2: y is B’ 

----------------------------------                 (3.1) 
Consequent: x is A’. 

First consider the following classical logic equivalence 
a b b a b a∨ ≡ ∨ ≡ ¬ →                     (3.2) 

The classical logic equivalence (3.2) can be extended in fuzzy logic with im-
plication and negation functions. We use the same fuzzy logic, which operations 
are presented in Table S1. Let us first proof that (3.2) holds. 

Since 

, 1, , 1,
1, 1 1, 1
a b a b b a b a

a b b a a b b a
a b b a
⋅ + < ⋅ + < 

∨ = ⇒ ∨ = ⇒ ∨ ≡ ∨ + ≥ + ≥    
 (3.3) 

And because 
( )1 , ,
1,

a b a b
a b

a b
 − ⋅ >→ = 

≤
 therefore  

( )1 , , , 1,
1, 11,

b a b a b a b a
b a a b

b ab a
 −¬ ⋅ ¬ > ⋅ + <¬ → = = ≡ ∨  + ≥¬ ≤ 

       (3.4) 

Both (3.3) and (3.4) proofs that classical logic equivalence (3.2) holds. It is 
very important to show that we transform Generalized Fuzzy Resolution rule 
(3.1) into its equivalent form 

Antecedent1: If y is ¬B then x is A 
Antecedent2: y is B' 

----------------------------------                 (3.5) 
Consequent: x is A'. 

Let us formulize an inference method for a rule (3.5). Following a well-known 
pattern, established a couple of decades ago and the standard approaches toward 
such formalization, presented and extensively used in [5] [6] [7] [8] [9], let U  
and V  be two universes of discourses and correspondent fuzzy sets be 
represented as such [ ]: 0,1AA U Uµ⊂ → , [ ]: 0,1BB V Vµ⊂ → , where 

( ) ( ),A B
U V

A u u B v vµ µ= =∫ ∫                  (3.6) 

Whereas given (3.6) a binary relationship for the fuzzy conditional proposi-
tion of the type: “If y is B¬  then x is A” for a fuzzy logic is defined as 

( ) ( )( )

( )( ) ( ) ( ) ( )

( )( ) ( )( ) ( )

1 2,

1 , ,

1 ,

B A
V U V U

B A
V U

R D y D x

B V U A

v v u u v u

v u v u

µ µ

µ µ

× ×

×

= ¬ × → ×

= − →

= − →

∫ ∫

∫             

 (3.7) 

Given an implication operator from Table S1 expression (3.7) looks like 
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( )( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )
( ) ( )

,1 ,
1

1,1 .

, 1,

1, 1.

B A B A
B A

B A

B A A B

A B

v u v u
v u

v u

v u u v

u v

µ µ µ µ
µ µ

µ µ

µ µ µ µ

µ µ

⋅ − >− → = 
− ≤

⋅ + <= 
+ ≥      

 (3.8) 

It is well known that given a unary relationship ( )( )1R D y B′=  one can ob-
tain the consequence ( )( )2R D x  by applying compositional rule of inference 
(CRI) to ( )( )1R D y  and ( ) ( )( )1 2,R D y D x  of type (3.7): 

( )( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( )

2 1 1 2,

1 ,

1

B B A
V V U

B B A
v VU

R D x R D y R D y D x

v v v u v u

v v u v

µ µ µ

µ µ µ

′
×

′
∈

=

= − →

 = ∧ − → 

∫ ∫

∫

�

�

∪

      (3.9) 

In order that Criterion I (see Appendix) is satisfied, that is ( )( )2R D x A= ¬  
from (3.9) the equality 

( ) ( )( ) ( )( ) ( )1 1B B A A
v V

v v u uµ µ µ µ
∈

 ∧ − → = − ∪          (3.10) 

must be satisfied for arbitrary u U∈  and in order that the equality (3.10) is sa-
tisfied, it is necessary that the inequality 

( ) ( )( ) ( )( ) ( )1 1B B A Av v u uµ µ µ µ∧ − → ≤ −
          

 (3.11) 

holds for arbitrary u U∈  and v V∈ . Let us define new methods of fuzzy con-
ditional inference of the type (3.5), which requires the satisfaction of Criteria 
I-IV from Appendix.  

Theorem 3 
If fuzzy sets [ ]: 0,1AA U Uµ⊂ → , [ ]: 0,1BB V Vµ⊂ →  are defined as (3.6) 

and ( ) ( )( )1 2,R D y D x  is defined by (3.7), where 

( )( ) ( )
( ) ( ) ( ) ( )
( ) ( )

, 1 ,
1

1, 1 .
B A B A

B A
B A

v u v u
v u

v u

µ µ µ µ
µ µ

µ µ

⋅ < −− → = 
≥ −

     (3.12) 

then Criteria I, II, III and IV-1 are satisfied. 
Proof: 
For Criteria I-III let ( )( ) ( )1 0R D y Bα α= >  then 

( )( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( )

2 1 2,

1 ,

1

B B A
V V U

B B A
v VU

R D x B R D y D x

v v v u v u

v v u u

α

α

α

µ µ µ

µ µ µ
×

∈

=

= − →

 = ∧ − → 

∫ ∫

∫

�

�

∪

     (3.13) 

( ) ( ) ( ) ( )
1 2 1 2 1 2

1 2

, ;

| 1 ; | 1B A B A

V V V V V V V V

v V v u v V v uµ µ µ µ

∃ ⊂ = =∅

⇒∀ ∈ < − ∀ ∈ ≥ −

∪ ∩

    
 (3.14) 

From (3.13) and given subsets from (3.14) we have 

( )( ) ( ) ( ) ( )( ) ( )
1 2

2 1B B A B
v V v VU U

R D x v v u u v uα αµ µ µ µ
∈ ∈

   
   = ∧ ⋅ ∨ ∧     

   
∫ ∫∪ ∪ . (3.15) 
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Let us introduce the following function (as a part of implication operation) 

( ) ( ) ( ) ( ) ( ), | 1B A B Af v u v u v uµ µ µ µ= ⋅ < − .          (3.16) 

Then the following is taking place: 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )1

, , ,
| ,

, , , ,
B B

B
B

v v f v u
v V v f v u

f v u v f v u

α α
α

α

µ µ
µ

µ

 ≤∀ ∈ ∧ = 
>

      (3.17) 

Since from (3.16) ( ) ( ) ( )1 , 0.25A Bu v f v uµ µ+ < ⇒ < , but ( ) [ ]0,1B vαµ ∈ , 
therefore from (3.17) we have 

( ) ( ) ( )1 , , 0.25Bv V v f v u f v uαµ∀ ∈ ∧ = <             (3.18) 

( ) ( )2 1B Bv V v vα αµ µ∀ ∈ ∧ =                  (3.19) 

From (3.16)-(3.19) we have 

( ) ( )
2

(3.15) 1B A
v VU U

v u u u Aα α αµ µ
∈

 
= = − = ¬ 
 
∫ ∫∪ . (Q. E. D.). 

For Criteria IV-2 let ( )( )1R D y B= ¬  then 

( )( ) ( ) ( )( )
( )( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )( )

2 1 2,

1 1 ,

1 1

B B A
V V U

B B A
v VU

R D x B R D y D x

v v v u v u

v v u u

µ µ µ

µ µ µ
×

∈

= ¬

= − − →

 = − ∧ − → 

∫ ∫

∫

�

�

∪
   

(3.20) 

From (3.20) and given subsets from (3.14) we have 

( )( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )

1 2

1 2

2

1 1 1

1

B B A B
v V v VU U

A B A
v V v VU U U

R D x

v v u u v u

u u v u u u A

µ µ µ µ

µ µ µ

∈ ∈

∈ ∈

   
 = − ∧ ⋅ ∨ − ∧      

   
   

= ∨ − = =         
   

∫ ∫

∫ ∫ ∫

∪ ∪

∪ ∪

 (Q. E. D.) (3.21) 

To illustrate these results we will present couple examples. 
Example 1 
Let U  and V  be two universes of discourses and correspondent fuzzy sets 

are represented as in (3.6) [ ]: 0,1AA U Uµ⊂ → , [ ]: 0,1BB V Vµ⊂ → ; related 
linguistic scale could consist of the terms like {“SMALL”…, “MEDIUM”…, 
“LARGE”}. Let us consider the following cases. 

A  labeled “LARGE” 1 2 3 4 5 6

7 8 9 10 11

0.0 0.1 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9 1.0

u u u u u u
u u u u u

= + + + + +

+ + + + +
 

And B  labeled “SMALL” 1 2 3 4 5 6

7 8 9 10 11

1.0 0.9 0.8 0.7 0.6 0.5
0.4 0.3 0.2 0.1 0.0

v v v v v v
v v v v v

= + + + + +

+ + + + +
 

The negation of a fuzzy set B  would look like 

1 2 3 4 5 6

7 8 9 10 11

0.0 0.1 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9 1.0

B v v v v v v
v v v v v

¬ = + + + + +

+ + + + +
 

The binary relationship matrix ( ) ( )( )1 2,R D y D x  of a type (3.7) would look 
like 
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\B A¬  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 1 1 1 1 1 1 1 1 1 1 1 

0.1 0 1 1 1 1 1 1 1 1 1 1 

0.2 0 0.02 1 1 1 1 1 1 1 1 1 

0.3 0 0.03 0.06 1 1 1 1 1 1 1 1 

0.4 0 0.04 0.08 0.12 1 1 1 1 1 1 1 

0.5 0 0.05 0.1 0.15 0.2 1 1 1 1 1 1 

0.6 0 0.06 0.12 0.18 0.2 0.25 1 1 1 1 1 

0.7 0 0.07 0.14 0.21 0.28 0.35 0.42 1 1 1 1 

0.8 0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 1 1 1 

0.9 0 0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.72 1 1 

1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

 
Let 2B  labeled “very SMALL”  

1 2 3 4 5 6

7 8 9 10 11

1.0 0.81 0.64 0.49 0.36 0.25
0.16 0.09 0.04 0.01 0.0

v v v v v v
v v v v v

= + + + + +

+ + + + +
 

Applying (3.13)  
( )( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( )

2
2 1 2

2

1 2 3 4 5 6

7 8 9 10 11
2

,

1 ,

1.0 0.81 0.64 0.49 0.36 0.25
0.16 0.09 0.04 0.01 0.0

B B A
V V U

R D x B R D y D x

v v v u u v

u u u u u u
u u u u u

A

µ µ µ
×

=

= − →

= + + + + +

+ + + + +

= ¬

∫ ∫

�

�

 

Example 2 

A  labeled “LARGE” 1 2 3 4 5 6

7 8 9 10 11

0.0 0.1 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9 1.0

u u u u u u
u u u u u

= + + + + +

+ + + + +
 

And B  also labeled “LARGE”  

1 2 3 4 5 6

7 8 9 10 11

0.0 0.1 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9 1.0

v v v v v v
v v v v v

= + + + + +

+ + + + +
 

The negation of a fuzzy set B  would look like 

1 2 3 4 5 6

7 8 9 10 11

1.0 0.9 0.8 0.7 0.6 0.5
0.4 0.3 0.2 0.1 0.0

B v v v v v v
v v v v v

¬ = + + + + +

+ + + + +
 

The binary relationship matrix ( ) ( )( )1 2,R D y D x  of a type (3.7) would look 
like 

 
\B A¬  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.9 0 0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.72 1 1 

0.8 0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 1 1 1 

0.7 0 0.07 0.14 0.21 0.28 0.35 0.42 1 1 1 1 

0.6 0 0.06 0.12 0.18 0.24 0.3 1 1 1 1 1 
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Continued 

0.5 0 0.05 0.1 0.15 0.2 1 1 1 1 1 1 

0.4 0 0.04 0.08 0.12 1 1 1 1 1 1 1 

0.3 0 0.03 0.06 1 1 1 1 1 1 1 1 

0.2 0 0.02 1 1 1 1 1 1 1 1 1 

0.1 0 1 1 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 1 1 1 1 

 
Applying (3.13)  

( )( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( )

2 1 2

1 2 3 4 5 6

7 8 9 10 11

,

1 1 ,

0.0 0.1 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9 1.0

B B A
V V U

R D x B R D y D x

v v v u u v

u u u u u u
u u u u u

A

µ µ µ
×

= ¬

= − − →

= + + + + +

+ + + + +

=

∫ ∫

�

�

 

Let us revisit the fuzzy conditional inference rule (3.5). It will be shown that 
when the membership function of the observation B¬  is continuous, then the 
conclusion A  depends continuously on the observation; and when the mem-
bership function of the relation ( ),R B A¬  is continuous then the observation 
A  has a continuous membership function. We start with some definitions. A 

fuzzy set A  with membership function [ ]: 0,1A Iµ ℜ→ = , is called a fuzzy 
number if A  is normal, continuous, and convex. The fuzzy numbers represent 
the continuous possibility distributions of fuzzy terms of the following type 

( )AA x xµ
ℜ

= ∫
 

Let A  be a fuzzy number, then for any 0θ ≥  we define ( )Aϖ θ  the mod-
ulus of continuity of A  by  

( ) ( ) ( )
1 2

1 2maxA A Ax x
x x

θ
ϖ θ µ µ

− ≤
= − .              (3.22)

 
An α-level set of a fuzzy interval A  is a non-fuzzy set denoted by [ ]A α  and 

is defined by [ ] ( ){ }| AA t tα µ α= ∈ℜ ≥  for ( ]0,1α ∈  and [ ] ( )supp AA clα µ=  
for 0α = . Here we use a metric of the following type 

( )
[ ]

[ ] [ ]( )
0,1

, sup ,D A B d A Bα α

α∈
= ,               (3.23) 

where d  denotes the classical Hausdorff metric expressed in the family of 
compact subsets of 2ℜ , i.e. 

[ ] [ ]( ) ( ) ( ) ( ) ( ){ }1 1 2 2, max ,d A B a b a bα α α α α α= − − . 

whereas [ ] ( ) ( )1 2,A a aα α α=    , [ ] ( ) ( )1 2,B b bα α α=     when the fuzzy sets 
A  and B  both have finite support { }1, , nx x�  then their Hamming distance 

is defined as 
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( ) ( ) ( )
1

,
n

A i B i
i

H A B x xµ µ
=

= −∑ . 

In the sequel we will use the following lemma. 
Lemma 3 [10] 
Let 0δ ≥  be a real number and let A , B  be fuzzy intervals. If
( ),D B A δ¬ ≤ , then 

( ) ( ) ( ) ( ){ }sup max ,A B A B
t

t tµ µ ϖ δ ϖ δ¬ ¬
∈ℜ

− ≤ . 

Consider the fuzzy conditional inference rule (3.5) with different observations 
B  and 1B : 

 
Antecedent 1: If y is ¬B then x is A 

Antecedent 2: y is B 
---------------------------------- 

Consequent: x is ¬A 

Antecedent 1: If y is ¬B then x is A 
Antecedent 2: y is B1 

---------------------------------- 
Consequent: x is ¬A1 

 
According to the fuzzy conditional inference rule (3.5), the membership func-

tions of the conclusions are computed as 

( ) ( ) ( )( ) ( )( )1A B B A
v

u v v uµ µ µ µ¬
∈ℜ

 = ∧ − → ∪ ;  

( ) ( ) ( )( ) ( )( )1 1 1 B AA B
v

u v v uµ µ µ µ
¬

∈ℜ

 = ∧ − → ∪  

Or 

( ) ( ) ( )( ) ( )( )1 sup 1A B B A
v

u v v uµ µ µ µ
∈ℜ

 − = ∧ − →  ;  

( ) ( ) ( )( ) ( )( )1 11 sup 1 B AA Bv
u v v uµ µ µ µ

∈ℜ

 − = ∧ − →  ,       (3.24) 

The following theorem shows the fact that when the observations are closed to 
each other in the metric ( ).D  of (3.23) type, then there can be only a small 
deviation in the membership functions of the conclusions. 

Theorem 4 (Stability theorem)  
Let 0δ ≥  and let B , 1B  be fuzzy intervals and an implication operation in 

the fuzzy conditional inference rule (3.5) is from Table S1. If ( )1,D B B δ≤  then 

( ) ( ) ( ) ( ){ }1 1sup max ,
AA B Bu

u uµ µ ϖ δ ϖ δ¬ ¬
∈ℜ

− ≤  

Proof: 
Given an implication operation in the fuzzy conditional inference rule (3.5) is 

from Table S1, for the observation B  we have 

( ) ( ) ( ) ( )
1 2 1 2 1 2

1 2

, ;

| 1 ; | 1B A B A

V V V V V V V

v V v u v V v uµ µ µ µ

∃ ⊂ℜ = =∅

⇒∀ ∈ < − ∀ ∈ ≥ −

∪ ∩
 

( ) ( )( )
( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( )

1 2,
1 ,

1

B B A
V V U

B B A
v VU

A B R D y D x
v v v u v u

v v u u

µ µ µ

µ µ µ
×

∈

=
= − →

 = ∧ − → 

∫ ∫

∫

�
�

∪
        

 (3.25) 
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From (3.13) and given subsets from (3.14) we have 

( ) ( ) ( )( ) ( )1 1

1 2

1 1B AB B
v V v VU U

A v v u u v uµ µ µ µ
∈ ∈

   
   = ∧ ⋅ ∨ ∧      

   
∫ ∫∪ ∪ .  (3.26) 

Then from (3.16) the following is taking place: 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
1 1

1

1
1

, , ,
| ,

, , , ,
B B

B
B

v v f v u
v V v f v u

f v u v f v u

µ µ
µ

µ

≤∀ ∈ ∧ = 
>        

 (3.27) 

Since from (3.16) ( ) ( ) ( )1 , 0.25A Bu v f v uµ µ+ < ⇒ < , but ( ) [ ]0,1B vµ ∈ , 
therefore from (3.17) we have 

( ) ( ) ( )11 , , 0.25
B

v V v f v u f v uµ∀ ∈ ∧ = <             (3.28) 

( ) ( )1 12 1
B B

v V v vµ µ∀ ∈ ∧ =                  (3.29) 

From (3.27)-(3.29) we have 

( ) ( )1 1

2

1(3.26) 1
B A

v VU U

v u u u Aµ µ
∈

 
= = − = ¬ 
 
∫ ∫∪  

From (3.28) and (3.29), we see that the difference of the values of conclusions 
for both B  and 1B  observations for arbitrary fixed ( ) ( )1B B

v v vµ µ∈ℜ −  is 
defined as follows 

( ) ( ) ( ) ( )1
11

,

0,
A A

B B

u u
v V v v

µ µ
µ µ

 −∀ ∈ − = 


 

( ) ( ) ( ) ( )1 12 .B AB A
v V v v u uµ µ µ µ∀ ∈ − = −  Therefore from Lemma 1 we 

have 

( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1sup sup max ,B A BB A Bv u
v v u uµ µ µ µ ϖ δ ϖ δ¬ ¬

∈ℜ ∈ℜ
− = − ≤  (Q. E. D.) 

Theorem 5 (Continuity theorem) 
Let binary relationship ( ) ( )( ) ( ), 1 B AR v u v uµ µ= − →  be continuous. Then 

A  is continuous and ( ) ( )A Rϖ δ ϖ δ≤  for each 0δ ≥ . 
Proof: 
Let 0δ ≥  be a real number and let 1 2,u u ∈ℜ  such that 1 2u u δ− ≤ . From 

(3.22) we have ( ) ( ) ( )
1 2

1 2maxA A Au u
u u

δ
ϖ δ µ µ

− ≤
= − . Then 

( ) ( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( )

1 2 1

2

1 2

1 2

sup 1

sup 1

sup 1 1

sup sup

A A B B A
v

B B A
v

B B A B A
v

B R B R R
v v

u u v v u

v v u

v v u v u

v u u v

µ µ µ µ µ

µ µ µ

µ µ µ µ µ

µ ϖ µ ϖ δ ϖ δ

∈ℜ

∈ℜ

∈ℜ

∈ℜ ∈ℜ

 − = ∧ − → 

 − ∧ − → 

 ≤ ∧ − → − − → 

 ≤ ∧ − ≤ ∧ =   

 (Q. E. D.).  

Results from Theorem 4 and Theorem 5 could be used for formulating anoth-
er similarity measure, based on Hamming distance between two fuzzy sets  
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Figure 2. Terms “very” and “more or less”. 

 
A U⊆  and B U⊆ , which presented by non-linear membership functions, i.e. 

( )
( ) ( )

1
1 , 1 ; .

n

A i B i
i

u u
SI A B n CardU

n

µ µ
=

−
= − =

∑

        
 (3.30) 

For instance let us apply (3.29) to fuzzy sets from Example 1 (see Figure 2): 

Let B  labeled “SMALL” 1 2 3 4 5 6

7 8 9 10 11

1.0 0.9 0.8 0.7 0.6 0.5
0.4 0.3 0.2 0.1 0.0

v v v v v v
v v v v v

= + + + + +

+ + + + +
 

And 2B  labeled “very SMALL”  

1 2 3 4 5 6

7 8 9 10 11

1.0 0.81 0.64 0.49 0.36 0.25
0.16 0.09 0.04 0.01 0.0

v v v v v v
v v v v v

= + + + + +

+ + + + +
 

( )2
1 , 0.85SI B B = . It is important to pay attention to a fact that 
( )2

1 , 0.85SI A A¬ ¬ =  from the same Example 1, which confirms results of both 
Theorem 4 and Theorem 5. 

4. Generalized Modus Tollens Based Inverse Approximate  
Reasoning 

Let us remind that the scheme for Generalized Modus Tollens (2.3) looks like 
that 

Antecedent 1: If x is A, then y is B 
Antecedent 2: y is B1 

----------------------------------                (4.1) 
Consequent: x is A1. 

First consider classical logic equivalence 

a b b a→ ≡¬ →¬                       (4.2) 

The classical logic equivalence (4.2) can be extended in fuzzy logic with im-
plication and negation functions. We use the same fuzzy logic, which operations 
are presented in Table S1. Let us first proof that (4.2) holds. 
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Since 

( )1 , ,
1,

a b a b
a b

a b
 − ⋅ >→ = 

≤
                   (4.3) 

And because  

( )1 , , , ,
1,1,

b a b a b a a b
b a a b

a bb a
 −¬ ⋅¬ ¬ > ¬ ⋅¬ >¬ →¬ = = ≡ ¬ →¬  ≤¬ ≤ ¬ 

   (4.4) 

Both (4.3) and (4.4) proofs that classical logic equivalence (4.2) holds. It is 
very important to show that we transform Generalized Modus Tollens rule (4.1) 
into its equivalent form 

Antecedent1: If y is ¬B then x is ¬A 
Antecedent2: y is B1 

----------------------------------                (4.5) 
Consequent: x is A1. 

Let us formulize an inference method for a rule (4.5). Following a standard 
approaches toward such formalization, let U  and V  be two universes of 
discourses and correspondent fuzzy sets be represented as such 

[ ]: 0,1AA U Uµ⊂ → , [ ]: 0,1BB V Vµ⊂ → . 
Whereas given (3.6) a binary relationship for the fuzzy conditional proposi-

tion of the type: “If y is ¬B then x is ¬A” for a fuzzy logic is defined as 

( ) ( )( )
( )( ) ( ) ( )( ) ( )

( )( ) ( )( )( ) ( )

1 2,

1 , 1 ,

1 1 ,

B A
V U V U

B A
V U

R D y D x B V U A

v v u u v u

v u v u

µ µ

µ µ
× ×

×

= ¬ × → ×¬

= − → −

= − → −

∫ ∫

∫
    

(4.6) 

Given an implication operator from Table S1 expression (4.6) looks like 

( )( ) ( )( )
( ) ( )( ) ( ) ( )

( ) ( )
( ) ( )( ) ( ) ( )
( ) ( )

1 1

1 ,1 1 ,

1,1 1 .

1 , ,

1, .

B A

B A B A

B A

B A A B

A B

v u

v u v u

v u

v u u v

u v

µ µ

µ µ µ µ

µ µ

µ µ µ µ

µ µ

− → −

 ⋅ − − > −= 
− ≤ −

 ⋅ − >= 
≤

 

And again given a unary relationship ( )( )1R D y B′=  one can obtain the 
consequence ( )( )2R D x  by applying compositional rule of inference (CRI) to 

( )( )1R D y  and ( ) ( )( )1 2,R D y D x  of type (4.6): 

( )( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )( )( ) ( )

( ) ( )( ) ( )( )( )

2 1 1 2,

1 1 ,

1 1

B B A
V V U

B B A
v VU

R D x R D y R D y D x

v v v u v u

v v u v

µ µ µ

µ µ µ

′
×

′
∈

=

= − → −

 = ∧ − → − 

∫ ∫

∫

�

�

∪
    

(4.7) 

In order that Criterion V (see Appendix) is satisfied, that is ( )( )2R D x A= ¬  
from (3.9) the equality 
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( ) ( )( ) ( )( )( ) ( )1 1B B A A
v V

v v u uµ µ µ µ
∈

 ∧ − → − = ∪
        

 (4.8) 

must be satisfied for arbitrary u U∈  and in order that the equality (3.10) is sa-
tisfied, it is necessary that the inequality 

( ) ( )( ) ( )( )( ) ( )1 1B B A Av v u uµ µ µ µ∧ − → − ≤
          

 (4.9) 

holds for arbitrary u U∈  and v V∈ . Let us define new methods of fuzzy con-
ditional inference of the type (4.6), which requires the satisfaction of Criteria 
V-VIII from Appendix.  

Theorem 6 
If fuzzy sets [ ]: 0,1AA U Uµ⊂ → , [ ]: 0,1BB V Vµ⊂ →  are defined as (3.6) 

and ( ) ( )( )1 2,R D y D x  is defined by (4.6), where 

( )( ) ( )( ) ( ) ( )( ) ( ) ( )
( ) ( )

1 , ,
1 1

1, .
B A A B

B A
A B

v u u v
v u

u v

µ µ µ µ
µ µ

µ µ

 ⋅ − >− → − = 
≤

   (4.10) 

then Criteria V,VI,VII and VIII-2 are satisfied. 
Proof: 
For Criteria V-VII let ( )( ) ( )1 0R D y Bα α= >  then 

( )( ) ( ) ( )( )
( ) ( )( ) ( )( )( ) ( )

( ) ( )( ) ( )( )( )

2 1 2,

1 1 ,

1 1

B B A
V V U

B B A
v VU

R D x B R D y D x

v v v u v u

v v u u

α

α

α

µ µ µ

µ µ µ
×

∈

=

= − → −

 = ∧ − → − 

∫ ∫

∫

�

�

∪

    (4.11) 

( ) ( ) ( ) ( )
1 2 1 2 1 2

1 2

, ;

| ; |A B A B

V V V V V V V V

v V u v v V u vµ µ µ µ

∃ ⊂ = =∅

⇒∀ ∈ > ∀ ∈ ≤

∪ ∩
        (4.12) 

From (4.11) and given subsets from (4.12) we have 

( )( )

( ) ( ) ( )( ) ( )
1 2

2

( 1 1B B A B
v V v VU U

R D x

v v u u v uα αµ µ µ µ
∈ ∈

   
   = ∧ ⋅ − ∨ ∧     

   
∫ ∫∪ ∪

.  (4.13) 

Let us introduce the following function (as a part of implication operation) 

( ) ( ) ( )( ) ( ) ( ), 1 |B A A Bf v u v u u vµ µ µ µ= ⋅ − > .          (4.14) 

Then the following is taking place: 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )1

, , ,
| ,

, , , ,
B B

B
B

v v f v u
v V v f v u

f v u v f v u

α α
α

α

µ µ
µ

µ

 ≤∀ ∈ ∧ = 
>      

 (4.15) 

( ) ( )2 1 ,B Bv V v vα αµ µ∀ ∈ ∧ =                  (4.16) 

From (4.15), (4.16) we have 

( ) ( )
2

(4.13) B A
v VU U

v u u u Aα α αµ µ
∈

 
= = = 
 
∫ ∫∪ . (Q. E. D.). 

For Criteria VIII-2 let ( )( )1R D y B= ¬  then 
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( )( ) ( ) ( )( )
( )( ) ( )( ) ( )( )( ) ( )

( )( ) ( )( ) ( )( )( )

2 1 2,

1 1 1 ,

1 1 1

B B A
V V U

B B A
v VU

R D x B R D y D x

v v v u v u

v v u u

µ µ µ

µ µ µ
×

∈

= ¬

= − − → −

 = − ∧ − → − 

∫ ∫

∫

�

�

∪
  

 (4.17) 

From (4.17) and given subsets from (4.15) and (4.16) we have 

( )( ) ( ) ( ) ( )
1 2

2 1 , 1 1B B
v V v VU U

R D x v f v u u v uµ µ
∈ ∈

   
= − ∧ ∨ − ∧         
   
∫ ∫∪ ∪ . Since  

the following is taking place 

( )( ) ( ) ( )( )1 , 1 1B Bv f v u vµ µ   − ∧ ≤ − ∧    . 

Therefore 

( )( ) ( )
2

(4.17) 1 1 1B A
v VU U

v u u u Aµ µ
∈

 
 = − ∧ = − = ¬  

 
∫ ∫∪ . (Q. E. D.) 

To illustrate these results we will present couple examples. We use similar 
fuzzy sets as in Examples 1 and 2. 

Example 3 
Let U  and V  be two universes of discourses and correspondent fuzzy sets 

are represented as in (3.6) [ ]: 0,1AA U Uµ⊂ → , [ ]: 0,1BB V Vµ⊂ → ; related 
linguistic scale could consist of the terms like {“SMALL”…, “MEDIUM”…, 
“LARGE”}. Let us consider the following cases. 

A  labeled “LARGE” 1 2 3 4 5 6

7 8 9 10 11

0.0 0.1 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9 1.0

u u u u u u
u u u u u

= + + + + +

+ + + + +
 

And B  labeled “SMALL” 1 2 3 4 5 6

7 8 9 10 11

1.0 0.9 0.8 0.7 0.6 0.5
0.4 0.3 0.2 0.1 0.0

v v v v v v
v v v v v

= + + + + +

+ + + + +
 

The negations of fuzzy sets A  B  would look like 

1 2 3 4 5 6

7 8 9 10 11

1.0 0.9 0.8 0.7 0.6 0.5
0.4 0.3 0.2 0.1 0.0

A u u u u u u
u u u u u

¬ = + + + + +

+ + + + +
 

1 2 3 4 5 6

7 8 9 10 11

0.0 0.1 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9 1.0

B v v v v v v
v v v v v

¬ = + + + + +

+ + + + +
 

The binary relationship matrix ( ) ( )( )1 2,R D y D x  of a type (4.6) would look 
like 

 
\B A¬ ¬  1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

0 1 1 1 1 1 1 1 1 1 1 1 

0.1 0.9 1 1 1 1 1 1 1 1 1 1 

0.2 0.8 0.72 1 1 1 1 1 1 1 1 1 

0.3 0.7 0.63 0.56 1 1 1 1 1 1 1 1 

0.4 0.6 0.54 0.48 0.42 1 1 1 1 1 1 1 

0.5 0.5 0.45 0.4 0.35 0.3 1 1 1 1 1 1 

0.6 0.4 0.36 0.32 0.28 0.24 0.2 1 1 1 1 1 
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Continued 

0.7 0.3 0.27 0.24 0.21 0.18 0.15 0.12 1 1 1 1 

0.8 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 1 1 1 

0.9 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 1 1 

1 0 0 0 0 0 0 0 0 0 0 1 

 
Let 2B  labeled “very SMALL”  

1 2 3 4 5 6

7 8 9 10 11

1.0 0.81 0.64 0.49 0.36 0.25
0.16 0.09 0.04 0.01 0.0

v v v v v v
v v v v v

= + + + + +

+ + + + +
 

Applying (4.7)  

( )( ) ( ) ( )( )
( ) ( )( ) ( )( )( ) ( )

2
2 1 2
2

1 2 3 4 5 6

7 8 9 10 11
2

,
1 1 ,

0.0 0.01 0.04 0.09 0.16 0.25
0.36 0.49 0.64 0.81 1.0

B B A
V V U

R D x B R D y D x
v v v u v u

u u u u u u
u u u u u

A

µ µ µ
×

=
= − → −

= + + + + +
+ + + + +

=

∫ ∫
�

�

 

(“very LARGE”). 
Example 4 

A  labeled “LARGE” 1 2 3 4 5 6

7 8 9 10 11

0.0 0.1 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9 1.0

u u u u u u
u u u u u

= + + + + +

+ + + + +
 

And B  also labeled “LARGE”  

1 2 3 4 5 6

7 8 9 10 11

0.0 0.1 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9 1.0

v v v v v v
v v v v v

= + + + + +

+ + + + +
 

The negations of fuzzy sets A  B  would look like 

1 2 3 4 5 6

7 8 9 10 11

1.0 0.9 0.8 0.7 0.6 0.5
0.4 0.3 0.2 0.1 0.0

A u u u u u u
u u u u u

¬ = + + + + +
+ + + + +  

1 2 3 4 5 6

7 8 9 10 11

1.0 0.9 0.8 0.7 0.6 0.5
0.4 0.3 0.2 0.1 0.0

B v v v v v v
v v v v v

¬ = + + + + +
+ + + + +   

The binary relationship matrix ( ) ( )( )1 2,R D y D x  of a type (4.6) would look 
like 

 
\B A¬ ¬  1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

1 1 0 0 0 0 0 0 0 0 0 0 

0.9 1 1 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 

0.8 1 1 1 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 

0.7 1 1 1 1 0.18 0.15 0.12 0.09 0.06 0.03 0 

0.6 1 1 1 1 1 0.2 0.16 0.12 0.08 0.04 0 

0.5 1 1 1 1 1 1 0.2 0.15 0.1 0.05 0 

0.4 1 1 1 1 1 1 1 0.18 0.12 0.06 0 

0.3 1 1 1 1 1 1 1 1 0.14 0.07 0 

0.2 1 1 1 1 1 1 1 1 1 0.08 0 

0.1 1 1 1 1 1 1 1 1 1 1 0 

0 1 1 1 1 1 1 1 1 1 1 1 
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Applying (4.7)  

( )( ) ( ) ( )( )
( ) ( )( ) ( )( )( ) ( )

2 1 2

1 2 3 4 5 6

7 8 9 10 11

,

1 1 1 ,

1.0 0.9 0.8 0.7 0.6 0.5
0.4 0.3 0.2 0.1 0.0

B B A
V V U

R D x B R D y D x

v v v u v u

u u u u u u
u u u u u

A

µ µ µ
×

= ¬

= − − → −

= + + + + +

+ + + + +

= ¬

∫ ∫

�

�

 

5. Concluding Remarks 

In this article, we presented a systemic approach toward a fuzzy logic based for-
malization of an approximate reasoning methodology in a fuzzy resolution. We 
derived a truth value of A from both values of B → A and B by some mechanism. 
We used a t-norm fuzzy logic, in which an implication operator is a root of both 
graduated conjunction and disjunction operators. We investigated features of 
correspondent fuzzy resolvent, which was based on introduced operators. We 
proposed two types of Similarity Measures for both linear and non-linear mem-
bership functions. We applied this approach to both generalized mod-
us-ponens/modus-tollens syllogisms, for which we formulated a set of Criterion. 
The content of this investigation is well-illustrated with artificial examples. 
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Appendix 
Table S1. A Fuzzy Logic Operations. 

Name Designation Value 

Tautology AI 1 

Controversy AO 0 

Negation A¬  1 A−  

Disjunction A B∨  
, 1,

1, 1
a b a b

a b
⋅ + <

 + ≥
 

Conjunction A B∧  
, 1,

0, 1
a b a b

a b
⋅ + >

 + ≤
 

Implication A B→  
( )1 , ,
1,

a b a b
a b
− ⋅ >


≤

 

Equivalence A B↔  
( )

( )

1 , ,
1, ,
1 , ,

b a a b
a b

a b a b

− ⋅ <


=
 − ⋅ >

 

Pierce Arrow A B↓  
( ) ( )1 1 , 1,
0, 1

a b a b
a b
− ⋅ − + <


+ ≥

 

Shaffer Stroke A B↑  
( ) ( )1 1 , 1,
1, 1

a b a b
a b
− ⋅ − + >


+ ≤

 

 
Table S2. A Fuzzy Logic Implication Operation. 

a b→  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 1 1 1 1 1 1 1 1 1 1 1 

0.1 0 1 1 1 1 1 1 1 1 1 1 

0.2 0 0.08 1 1 1 1 1 1 1 1 1 

0.3 0 0.07 0.14 1 1 1 1 1 1 1 1 

0.4 0 0.06 0.12 0.18 1 1 1 1 1 1 1 

0.5 0 0.05 0.1 0.15 0.2 1 1 1 1 1 1 

0.6 0 0.04 0.08 0.12 0.16 0.2 1 1 1 1 1 

0.7 0 0.03 0.06 0.09 0.12 0.15 0.18 1 1 1 1 

0.8 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 1 1 1 

0.9 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 1 1 

1 0 0 0 0 0 0 0 0 0 0 1 

 
Criterion I 

Antecedent 1: If y is ¬B then x is A 
Antecedent 2: y is B 

---------------------------------- 
Consequent: x is ¬A. 
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Criterion II 

Antecedent 1: If y is ¬B then x is A 
Antecedent 2: y is very B 

---------------------------------- 
Consequent: x is ¬(very A). 

Criterion III 

Antecedent 1: If y is ¬B then x is A 
Antecedent 2: y is more or less B 
 ----------------------------------  

Consequent: x is ¬(more or less A). 

Criterion IV-1 

Antecedent 1: If y is ¬B then x is A 
Antecedent 2: y is ¬B 

 ----------------------------------  
Consequent: x is unknown 

Criterion IV-2 

Antecedent 1: If y is ¬B then x is A 
Antecedent 2: y is ¬B 

 ----------------------------------  
Consequent: x is A. 

Criterion V 

Antecedent 1: If y is ¬B then x is ¬A 
Antecedent 2: y is B 

 ----------------------------------  
Consequent: x is A. 

Criterion VI 

Antecedent 1: If y is ¬B then x is ¬A 
Antecedent 2: y is very B 

 ----------------------------------  
Consequent: x is very A 

Criterion VII 

Antecedent 1: If y is ¬B then x is ¬A 
Antecedent 2: y is more or less B 
 ----------------------------------  
Consequent: x is more or less A 

Criterion VIII-1 

Antecedent 1: If y is ¬B then x is ¬A 
Antecedent 2: y is ¬B 

 ----------------------------------  
Consequent: x is unknown 
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Criterion VIII-2 

Antecedent 1: If y is ¬B then x is ¬A 
Antecedent 2: y is ¬B 

 ----------------------------------  
Consequent: x is ¬A. 
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